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ABSTRACT	 Objective: Upper gastrointestinal (UGI) cancers, predominantly gastric cancer (GC) and esophageal cancer (EC), are malignant 

tumor types with high morbidity and mortality rates. Accumulating studies have focused on metabolomic profiling of UGI cancers in 

recent years. In this systematic review, we have provided a collective summary of previous findings on metabolites and metabolomic 

profiling associated with GC and EC.

Methods: A systematic search of three databases (Embase, PubMed, and Web of Science) for molecular epidemiologic studies on 

the metabolomic profiles of GC and EC was conducted. The Newcastle–Ottawa Scale (NOS) was used to assess the quality of the 

included articles.

Results: A total of 52 original studies were included for review. A number of metabolites were differentially distributed between GC 

and EC cases and non-cases, including those involved in glycolysis, anaerobic respiration, tricarboxylic acid cycle, and protein and 

lipid metabolism. Lactic acid, glucose, citrate, and fumaric acid were among the most frequently reported metabolites of cellular 

respiration while glutamine, glutamate, and valine were among the most commonly reported amino acids. The lipid metabolites 

identified previously included saturated and unsaturated free fatty acids, aldehydes, and ketones. However, the key findings across 

studies to date have been inconsistent, potentially due to limited sample sizes and the majority being hospital-based case-control 

analyses lacking an independent replication group. 

Conclusions: Studies on metabolomics have thus far provided insights into etiological factors and biomarkers for UGI cancers, 

supporting the potential of applying metabolomic profiling in cancer prevention and management efforts.
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Introduction

Upper gastrointestinal (UGI) cancers, predominantly gastric 

cancer (GC) and esophageal cancer (EC), are major malignan-

cies in China and worldwide1, with prognosis remaining poor 

in many countries without effective screening programs2,3. 

Holistic promotion of etiological research and identification 

of novel biomarkers is essential to ensure implementation of 

timely and appropriate preventive and treatment strategies. 

Developments in molecular biology, along with emergence of 

various new omics techniques, have provided powerful tools 

for advancement of molecular epidemiologic studies on UGI 

cancers.

Metabolic dysregulation has been shown to underlie car-

cinogenesis of UGI cancers4. In addition to the alterations in 

glucose metabolism, as indicated by the well-known Warburg 

effect, dysregulated metabolism of amino acids, lipids, and 

nucleotides has been demonstrated, both in vitro and in vivo5-7. 

Metabolites represent the end product of complex joint effects 

of intrinsic metabolism, environmental exposures, and genetic 

predisposition. High-throughput metabolomics techniques 

can facilitate comprehensive identification and quantitative 

profiling of the entire spectrum of endogenous low molecular 

weight metabolites (< 1000 Da) in a single sample8,9, which 

may not only aid in identifying promising novel biomarkers 

but also provide insights into cancer etiology, leading to the 

development of novel preventive approaches and therapeutic 

targets10.
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Studies have been conducted to investigate the broad net-

work of metabolites in UGI cancers based on various human 

biological samples, including tissue, plasma, and urine11. 

Although efforts have been made to review past literature on 

the metabolomics of UGI cancers4,11-14, these reports were 

simply narrative descriptions. Only one systematic review was 

available as of 2012, which included 20 references4. In view of 

the accumulating studies on metabolomic profiling of UGI 

cancers over the last 6 years, an updated systematic review 

is warranted to summarize the available literature for a clear 

understanding of the field of metabolomic studies on UGI 

cancers and identify specific metabolites and metabolic path-

ways consistently associated with these cancer types.

To address this issue, we conducted a systematic review of 

the currently available metabolomic studies on GC and EC. 

Given the described major interests and our long-standing top 

priority as cancer epidemiologists to promote cancer preven-

tion and management at the population level, we focused on 

previous human molecular epidemiologic studies on metabo-

lomic profiling of UGI cancers. Here, we present a summary 

of the latest advances in determining the individual metab-

olites and metabolic pathways associated with these cancers 

while highlighting the limitations of the available studies, 

with the aim of providing insights into future metabolomic 

approaches, promoting etiologic research and precision pre-

vention and control of UGI cancers.

Materials and methods

This study was performed and presented following the require-

ments of the Preferred Reporting Items for Systematic Reviews 

and Meta-Analyses (PRISMA statement)15 and Preferred 

Reporting Items for Systematic Review and Meta-Analysis 

protocols (PRISMA-P)16.

Search strategy and data extraction

We searched the literature for studies focusing on metab-

olomic profiling of human GC and EC as of September 4, 

2019, using Embase, PubMed, and Web of Science databases. 

Multiple combinations of the keywords, including “mass 

spectrometry/nuclear magnetic resonance spectroscopy”, 

“metabolomic/metabonomic/metabolic profiling”, “gastric 

cancer/stomach cancer”, and “oesophageal/esophageal cancer”, 

were used (Supplementary Table S1). Articles in both English 

and Chinese were considered.

The identified literature was imported to EndNote, a 

standard software for publishing and managing bibliogra-

phies, citations, and references. Two researchers (S.H. and 

Y.G.) independently screened the title and abstract of each 

reference. Non-metabolomic (proteomic, glycomic and vol-

atile organic compound-related) studies and conference 

abstracts were excluded. Studies comparing the metabo-

lomic profiling of human biological specimens from GC/

EC patients to those of control samples (either biological 

specimens from independent individuals or tumor-adjacent 

tissues) were included. Owing to our primary interest in the 

risk of UGI cancer development, studies concentrating on 

metabolomics associated with responses to cancer therapy 

and recurrence and metastasis of UGI cancers were addi-

tionally excluded.

For all selected articles, information on authors, publica-

tion year, sample type, analytical platform, sample size, and 

differentially distributed metabolites across comparison 

groups were independently extracted by two investigators 

(S.H. and Y.G.). In addition to individual metabolites, the 

two investigators independently reviewed findings on alter-

ations in major metabolic pathways associated with UGI 

cancers.

Study quality assessment

The quality of included studies was assessed using the 

Newcastle–Ottawa Scale (NOS)17, which covers three key 

domains, including Selection (4 items), Comparability 

(1 item), and Exposure (3 items), with a total of 8 items. 

Studies were rated on each of the eight items using a star 

system, with the final scores for each study ranging from 0 

to 9 stars. A maximum of 1 star could be awarded for each 

item within the Selection and Exposure categories and a 

maximum of 2 stars allowed for the one item within the 

Comparability category. Studies that scored more than 6 

stars were classified as high quality, and any discrepancies 

between the findings of the two investigators (S.H. and Y.G.) 

were resolved by discussion. In addition to NOS, we applied 

a new quality appraisal tool for cross-sectional studies using 

biomarker data (BIOCROSS)18 as a supplement. BIOCROSS 

includes 10 items in 5 domains, including “Study rational”, 

“Design/Methods”, “Data analysis”, “Data interpretation” 

and “Biomarker measurement”, and has been proved to be 

reliable in facilitating comprehensive review of human bio-

marker studies18.
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Results

Study characteristics

Following application of inclusion criteria, a total of 52 stud-

ies were enrolled, including 30 on GC, 21 on EC, and 1 on 

both GC and EC (Figure 1, Table 1). In the majority of studies, 

controls were described as healthy individuals. Several studies 

(n = 10) included cases of benign gastric or esophageal lesions 

as controls. Among these, 5 included subjects with precancer-

ous gastric lesions, 3 of which reported metabolic changes in 

precancerous gastric lesions compared with less severe lesions 

or normal controls, and 4 included subjects with precancerous 

esophageal lesions displaying metabolic alterations. However, 

findings from these studies were inconsistent.

The sample sizes of included studies ranged from 16 to 179, 

with a median of 81. Previous reports assayed tissue (n = 23), 

blood (n = 27), urine (n = 8) and gastric juice (n = 1), with 

6 studies involving two or more types of biological specimens. 

The analytical platforms for measurement of metabolites also 

differed across studies, including nuclear magnetic resonance 

Totally, 1,099 records identified from the following
databases on Sep 4, 2019: 

1. PubMed (n = 427)
2. Web of Science (n = 72)
3. EMBASE (n = 597)
Additional records identified through reference (n = 5)

Duplicated articles in
different databases

n = 338  

Articles for title and abstract screening
n = 763

Articles for full-text
reading
n = 59

Excluding articles: 

Reviews (n = 5)
Animal studies (n = 1)
Cell studies (n = 1)

Final included articles
n = 52

Irrelevant articles
n = 704

Gastric cancer
studies
n = 30 

Esophageal
cancer studies

n = 21 

Gastric and esophageal
cancer studies

n = 1  

Figure 1  Flow chart of literature identification and the selection 
process.

(n = 14), liquid chromatography–mass spectrometry (n = 20), 

gas chromatography–mass spectrometry (n = 13), capillary 

electrophoresis–mass spectrometry (n = 4), magnetic resonance 

spectroscopy (n = 2), and matrix-assisted laser desorption/ioni-

zation mass spectrometry (n = 1).

Review of the methods used for data analysis showed that 

half (n = 26) of the previous studies only conducted univariate 

tests (Supplementary Figure S1). Only six studies corrected 

for multiple comparisons, with calculation of the false discov-

ery rate in all cases. A receiver operating characteristic (ROC) 

curve was plotted to delineate the performance of biomarkers, 

with area under the receiver operating characteristic (AUC), 

sensitivity, and specificity reported in 40.4% (n = 21) studies.

Quality assessment of studies

Quality assessment with NOS revealed a mean score of 5.37 

(ranging from 4 to 8) for studies on GC and 5.30 (ranging from 

4 to 7) for studies on EC (Figure 2 and Supplementary Table 

S2). The majority of studies involved hospital-based subject 

selection but the comparability of groups was not adequately 

described. Around 59.6% (31/52) of the studies considered 1 

or 2 important confounding factors (mostly age or sex) during 

study design or statistical analysis. Quality assessment using 

BIOCROSS disclosed similar results to those obtained with 

NOS assessment, raising possible concerns on study popula-

tion representativeness, study limitations, and biomarker data 

modeling (Supplementary Figure S2).

Carbohydrate metabolism

Metabolites of carbohydrate metabolism have been previously 

associated with UGI cancers (Table 2). Several metabolites 

involved in cellular respiration, including lactic acid, glucose, 

citrate, and fumaric acid, have been frequently reported, but 

these results are not consistent across studies. Moreover, oppo-

site associations of some metabolites with UGI cancers are 

documented by different research groups. For example, lactic 

acid was found to be upregulated in tissue and urine samples 

of GC in 8 studies33,39,41,42,49,52,63,66, while one group reported 

upregulation in tissue and conversely, downregulation in 

plasma57. Upregulation of citrate in EC was reported in 5 stud-

ies29,54,55,60,65 and downregulation in one study22. A separate 

study showed upregulation of citrate in plasma but downreg-

ulation in urine53. The findings also support distinct associa-

tions of different carbohydrate metabolites with GC and EC. 
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Analysis of earlier data revealed upregulation of α-ketoglu-

taric acid in both GC42,49,59 and EC29 while isocitric acid was 

upregulated in GC63 and downregulated in EC22. Upregulation 

of glyceraldehyde in GC was reported by a number of stud-

ies63,66 but its association with EC is currently unclear.

We additionally attempted to provide a systematic summary 

of reports on metabolic pathways or profiles within the scope 

of carbohydrate metabolism but uncovered no direct findings 

on pathway-level associations or profiles.

Amino acid metabolism

Alterations in essential and non-essential amino acids were 

reported for UGI cancers (Table 3), the most frequent being 

valine, glutamate, and glutamine. Increased valine was consist-

ently detected in studies on GC based on tissue, plasma, serum, 

and urine samples while inconsistent findings were obtained 

from studies on EC. Increased glutamate in tissue, blood and 

urine samples was reported in the majority of available stud-

ies on GC (5/6) and EC (8/9). Earlier studies on glutamine 

reported variable findings from different biological specimens 

of GC and EC. In addition, alterations in tryptophan were fre-

quently reported in UGI cancers. Decreased tryptophan in tis-

sue and blood samples was observed in the majority of avail-

able studies on GC (5/6 studies) while results for EC differed 

based on the biosample type.

Several studies additionally reported altered levels of pri-

mary derivatives of amino acids in UGI cancers. Upregulation 

of kynurenine, anthranilic acid, and nicotinic acid was 

observed in tissue, plasma, serum and gastric juice of GC and 
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Figure 2  Quality assessment of included studies using the 
Newcastle–Ottawa Scale (NOS) (maximum scores of 4, 2, and 3 given 
in selection, comparability, and exposure categories, respectively).
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d (or) EC patients26,32,35. In addition, kynurenic acid was upreg-

ulated in tissue of EC and gastric juice of GC patients29,32 but 

downregulated in serum of GC patients32.

Although a number of studies briefly discussed the potential 

biological mechanisms of related amino acids24,37,42,46,48,54,59,66, 

none directly examined the pathways or profiles of amino 

acids associated with UGI cancers using statistical approaches.

Lipid metabolism

All studies based on tissues, blood, and urine samples demon-

strated lipid dysregulation in UGI cancers (Table 4), among 

which sphingomyelins, phosphatidylcholines, and phosphati-

dylethanolamine were the most frequently reported. However, 

findings on these lipid metabolites were not consistent across 

studies. In contrast, data obtained for several less commonly 

reported metabolites were generally consistent across studies, 

including upregulated triacylglycerides (2/2 studies)68,69 and 

downregulated arachidonic acid (2/2 studies)56,59 in GC, as 

well as downregulated unsaturated lipids (4/4 studies)21,43,44,48, 

low-density lipoprotein (3/3 studies) and very low-density 

lipoprotein (3/3 studies) in EC21,43,44.

Metabolites of free fatty acid (FFA) oxidation are addition-

ally known to be associated with UGI cancers. Three studies 

demonstrated increased aldehyde levels in UGI cancer tissues, 

i.e., glyceraldehyde in GC63,66 and betaine aldehyde in EC22. In 

addition, 2 of the 3 endogenous ketones, acetone22,33,39,48,53,55,65 

and β-hydroxybutyrate33,46,52,54,60, were reported to be associ-

ated with GC and EC, although these findings were not con-

sistent across studies.

Despite several investigations on the mechanisms under-

lying altered lipid metabolism in association with UGI can-

cers37,42,46,48,54,59, we uncovered no direct findings in terms of 

metabolic pathway-level associations with UGI cancers.

Nucleotide metabolism

Several studies focused on metabolites of nucleotides asso-

ciated  with GC and EC. Review of the data showed upreg-

ulation of pyrimidine nucleotides67, adenine48,62, and uri-

dine-containing compounds62 and downregulation of uracil48 

in EC tissues, compared with controls. In addition, one study 

reported upregulation of guanosine, cytidine and adeno-

sine-containing compounds, along with downregulation of 

uridine in serum of EC patients64. In GC patients, increased 

levels of cytidine-containing compounds40 in urine and uracil 
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in tissues and decreased uridine in tissues52 were documented. 

Although dysregulation of pathways of nucleotide metabolism 

in UGI cancers have been demonstrated66, direct evidence on 

the metabolic pathways of nucleotides related to UGI cancers 

is still unavailable.

Performance of metabolites as potential 
biomarkers

A total of 21 studies assessed the performance of specific 

metabolites as potential biomarkers for predicting the risk of 

UGI cancers, the majority of which showed area under ROC 

curve (AUC) values ≥ 0.80 (19/21 studies) for individual 

metabolites or metabolite set. However, among the predictive 

models reported, we identified no overlapping metabolite bio-

markers for risk of UGI cancers.

Discussion

Metabolomic profiling has been increasingly applied for 

comprehensive characterization of the functional pheno-

types of metabolic changes in cancers. Here, we systematically 

reviewed 52 molecular epidemiologic studies on metabolo-

mic profiling of human UGI cancers and summarized key 

findings on the dysregulation of major metabolic pathways 

(glucose, amino acid, lipid, and nucleotide) associated with 

UGI cancers.

Metabolic reprogramming is a hallmark of cancer71. During 

tumor development and progression, metabolic pathways 

are reprogrammed to maintain cancer cell proliferation and 

survival, which involves large demands for adenosine triphos-

phate (ATP), nicotinamide adenine dinucleotide phosphate, 

nicotinamide adenine dinucleotide, carbon skeletons, and 

other molecules72. Metabolic alterations have been shown to 

be closely associated with GC and EC, raising the profile of 

metabolomics as a promising tool for etiologic research and 

biomarker screening of UGI cancers4,12.

Alterations in carbohydrate metabolism have been reported 

in a number of earlier metabolomic studies on UGI cancers. 

Detection of dysregulated pivotal intermediates of glycolysis, 

such as glucose, fructose, glyceraldehyde, and pyruvic acid, in 

the UGI cancers GC and EC29,53,63,66 corroborates the well-

known Warburg effect22,29,33, which highlights the phenome-

non that most cancer cells avidly consume glucose to generate 

energy mainly by glycolysis instead of oxidative phosphoryl-

ation through the tricarboxylic acid (TCA) cycle, even under 

aerobic conditions73. This less efficient method of generat-

ing ATP by glycolysis is subsequently rationalized through 

diverting available glycolytic intermediates into biosynthetic 

pathways critical for the synthesis of amino acids, lipids and 

nucleosides to produce new cells74. The Warburg effect can 

also enhance generation of pyruvic acid and subsequent lactic 

acid fermentation catalyzed by lactate dehydrogenase, which 

may partly explain the upregulation of lactic acid observed 

particularly in GC.

The metabolite intermediates of the TCA cycle, such as 

citrate, α-ketoglutaric acid, and fumaric acid, have also been 

identified in UGI cancers22,29,30,33,37,39,41,42,49,51-55,57,59,60, 63,65,66.  

Consistent with the findings of a previous systematic review4, 

fumaric acid and citrate were determined as the most fre-

quently reported metabolites of the TCA cycle. However, 

results from different studies were inconsistent, supporting 

the necessity for further investigation. Although cancer cells 

favor glycolysis over oxidative phosphorylation, the increase 

in TCA cycle metabolites may rely on the process of anaple-

rosis, which refers to replenishment of TCA metabolites via 

generation of α-ketoglutarate from the source of glutamate 

by deaminating glutamine72,75. The present review revealed 

frequent aberrant metabolism of glutamine and glutamate in 

UGI cancer patients, supporting the importance of the path-

way in this cancer type.

Along with glutamine and glutamate, valine is another 

frequently reported amino acid dysregulated in UGI cancer 
20,22,26,29,33,39,48. Elevated levels of valine can be converted into 

TCA intermediates to generate energy12. The collective data 

from studies in the literature clearly demonstrate that valine 

is upregulated in GC20,33,39,41,51,61,66 although findings in EC 

are inconsistent22,26,29,48,53,55,65,67. It remains to be established 

whether these results reflect differential metabolic profiling for 

GC and EC.

Prior studies have also reported alterations in tryptophan 

and kynurenine in UGI cancers26,32,35,46,54, indicating that 

potential metabolic perturbations of the tryptophan/kynure-

nine catabolism pathway are associated with development of 

EC and GC. Considerable evidence supports the theory that 

molecules in this pathway are involved in the immune reg-

ulation of tumor cells. For example, the tryptophan-catab-

olizing enzyme, indoleamine-2, 3-dioxygenase (IDO), may 

alter tumor microenvironment to favor cancer progres-

sion76,77. IDO is proposed to function as an immune sup-

pressor and induce immune tolerance76,78, and its increased 

expression in the tumor microenvironment is correlated 
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with immunosuppression in UGI cancers32,79. A number of 

studies have reported upregulation of lysine, serine or argi-

nine22,24,39,66,67 and downregulation of isoleucine, tyrosine or 

glycine20,23,52,55,65 in UGI cancers, although the findings were 

not all consistent20,29,54. Increased levels of amino acids in tis-

sues and other biological specimens may be generated from 

various sources, such as environmental degradation of the 

extracellular matrix and autophagic degradation of preexist-

ing intracellular proteins66, while amino acid overutilization 

in tumor tissues may have contributed to the decreased levels 

of amino acids (such as methionine, histidine, and leucine) 

observed in some studies33,57.

While previous investigations have highlighted changes in 

fatty acid metabolic pathways associated with UGI cancers, 

mixed findings were reported on the levels of unsaturated 

and saturated FFA in UGI cancers48,59. Low levels of FFA 

or lipids have been attributed to increased consumption by 

tumors due to their anabolic metabolism while metabolic 

reprogramming in cancer is related to fatty acid increase 

in the tumor environment80. In addition, systemic lipolysis 

secondary to cancer cachexia or de novo fatty acid synthe-

sis may contribute to FFA accumulation4,81. Although the 

mechanisms underlying lipid synthesis in cancer are not 

fully understood at present, it is proposed that de novo lipid 

synthesis leads to the formation of structural lipids for cell 

membrane production, provides energy through β-oxida-

tion, and affects fundamental cellular processes, such as sig-

nal transduction81,82.

β-Oxidation of fatty acids is a main source of energy gen-

eration83. Dysregulation of aldehydes and ketones, the meta-

bolic products of β-oxidation, has been consistently reported 

in UGI cancer patients22,33,39,46,48,52-55,60,63,65,66. Altered ketone 

body synthesis and degradation have also been documented in 

relation to UGI cancers42,46,54. Fatty acid β-oxidation not only 

efficiently produces energy but also promotes reactive oxygen 

species generation84, facilitating lipid peroxidation and alde-

hyde production85.

Several studies have shown alterations in nucleotide metab-

olites in UGI cancers40,48,52,62,64,66,67. Nucleotide synthesis and 

metabolism are required for adequate energy generation and 

proposed to be critical for proliferation and differentiation of 

cancer cells12. The growth superiority of cancer cells gradually 

switching to anaerobic glycolysis may partly explain the mixed 

findings on nucleotide metabolites.

Review of the collective data from the literature suggests 

that consistent findings on UGI cancer-associated metabolites 

based on metabolomic studies are limited. Moreover, discrep-

ancies in results even exist among studies on the same types 

of biospecimens. While different analytical platforms and bio-

specimens may partly explain these inconsistencies, discrep-

ant findings also reflect the heterogeneity in study design and 

subject selection across studies. The majority of prior studies 

were hospital-based cross-sectional or case-control analyses 

with a modest sample size and may have led to high false-pos-

itive probability due to negligence of potential multiple 

comparisons and lack of an independent replication group. 

Under representativeness of specific study populations may 

have restricted the extrapolation of findings across studies. 

Multivariate adjustments were not possible for most studies 

due to the unavailability of detailed information on UGI can-

cer risk factors and potential residual confounding may have 

distorted these findings.

Conclusions

In conclusion, a total of 52 molecular epidemiologic studies on 

metabolomics have been conducted for human UGI cancers 

over the years. Studies on metabolomics have thus far facili-

tated effective biomarker detection in GC and EC, support-

ing the potential of applying metabolomic profiling in cancer 

prevention and management efforts. Although a number of 

metabolites have been identified for GC and EC, identification 

of putative metabolomic biomarkers has been inadequate. 

Application of metabolomic profiling to molecular epidemi-

ologic studies on UGI cancers may provide insights into the 

biological significance of crucial metabolites and metabolic 

pathways but there is no actual information on the underly-

ing mechanisms. Given the multi-stage progression of UGI 

carcinogenesis, it is necessary to identify metabolic biomark-

ers associated with both precancerous and early UGI can-

cers, which would benefit screening of high-risk populations 

and early diagnosis. Limited studies to date have focused on 

metabolomic profiling for the cascade of precancerous lesions 

and UGI cancers.

To fulfill the potential of effectively applying metabolomics 

for UGI cancer prevention and control in public health and 

clinical practices, major gaps need to be filled with the aid of 

well-designed molecular epidemiologic studies. Studies with 

large sample sizes, clearly defined study population and inde-

pendent validation samples are warranted to identify metab-

olomic biomarkers and define the critical metabolomic path-

ways and patterns. Prospective follow-up of subjects covering a 
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cascade of precancerous lesions and subsequent cancers would 

also be advantageous in identifying metabolomics biomarkers 

for efficient assessment of the risk of UGI cancer development 

and progression.
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