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Abstract 

Background:  The anti-angiogenic fusion protein RBDV-IgG1 Fc (RBDV), which comprises the receptor-binding 
domain of vascular endothelial growth factor-A (VEGF-A), has shown antitumour effects by reducing angiogenesis 
in vivo. This study used the cationic lipoplex lipo-PEG-PEI-complex (LPPC) to simultaneously encapsulate both the 
RBDV targeting protein and the RBDV plasmid (pRBDV) without covalent bonds to assess VEGFR targeting gene 
therapy in mice with melanoma in vivo.

Results:  LPPC protected the therapeutic transgene from degradation by DNase, and the LPPC/RBDV complexes 
could specifically target VEGFR-positive B16-F10 cells both in vitro and in vivo. With or without RBDV protein-targeting 
direction, the pRBDV-expressing RBDV proteins were expressed and reached a maximal concentration on the 7th day 
in the sera after transfection in vivo and significantly elicited growth suppression against B16-F10 melanoma but not 
IgG1 control proteins. In particular, LPPC/pRBDV/RBDV treatment with the targeting molecules dramatically inhibited 
B16-F10 tumour growth in vivo to provide better therapeutic efficacy than the treatments with gene therapy with 
IgG1 protein targeting or administration of a protein drug with RBDV.

Conclusions:  The simultaneous combination of the LPPC complex with pRBDV gene therapy and RBDV protein 
targeting might be a potential tool to conveniently administer targeted gene therapy for cancer therapy.
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Background
As the sizes of tumours increase to more than 1–2 mm3, 
the microenvironments of the tumour will become 

hypoxic to threaten tumour growth. At this time, the 
tumours will disrupt the balance between pro- and 
anti-angiogenic factors within the microenvironment of 
tumour areas to facilitate angiogenesis [1, 2]. Under such 
conditions, various pro-angiogenic factors, including 
growth factors and proinflammatory cytokines, increase 
their expression to promote angiogenesis, which contrib-
utes to tumour growth, persistence, and metastasis [3–5]. 
Without such angiogenesis, the tumours will undergo 
necrosis [6].

Open Access

Journal of Nanobiotechnology

*Correspondence:  4467@mmh.org.tw; liaonms@mail.nctu.edu.tw
†Shu-Yi Ho, Pin-Rong Chen and Chia-Hung Chen contributed equally to 
this work
1 Department of Biological Science and Technology, National Chiao Tung 
University, Hsinchu City 30068, Taiwan, ROC
12 Department of Medicine, MacKay Medical College, New Taipei 
City 25245, Taiwan, ROC
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12951-020-00610-9&domain=pdf


Page 2 of 14Ho et al. J Nanobiotechnol           (2020) 18:58 

Thus, interference in the VEGF-VEGFR axis signalling 
pathway to inhibit angiogenesis has been under devel-
opment to suppress both tumour growth and metastasis 
due to all of the angiogenic factors, with VEGF playing 
the most crucial roles [7–10]. For tumour therapy, beva-
cizumab [an anti-VEGF humanized monoclonal anti-
body (mAb)], aflibercept (an anti-VEGF fusion protein) 
and ramucirumab (an anti-VEGFR-2 human mAb) have 
been developed and shown to inhibit the VEGF-VEGFR 
interaction and indeed provides an excellent thera-
peutic effect in patients with tumours [11–13] and in 
experimental animal models [14–16]. However, certain 
obstacles exist in the clinical trials of anti-angiogenic 
protein-based therapies. First, some acute and unusual 
toxicities have been observed, including gastrointestinal 
perforation and arterial thromboembolic complications 
[17–19]. Second, clinical results show that protein drugs 
need repeated administration to maintain a therapeu-
tic concentration in tissues due to their relatively short 
half-lives. Third, pharmacokinetic studies have also 
shown that the administration of therapeutic proteins 
might not be optimal in the body, as they cannot main-
tain a continuous stable elevated level [20–22]. There-
fore, high-dose administration of therapeutic proteins 
is required for a good therapeutic effect, especially for 
anti-angiogenesis proteins. Finally, the prices for the 
production and purification of protein drugs still cannot 
be lowered, and protein drugs are more expensive than 
traditional chemo drugs, which causes an economic 
burden.

Therefore, gene therapy for the continued expres-
sion of anti-angiogenic proteins has become an attrac-
tive approach, in which non-viral vectors may provide 
several advantages, such as being non-pathogenic, less 
immunogenic, not limited to transgene size, of low cost, 
and simple to prepare [23–25]. Within the non-viral gene 
delivery system, lipoplexes have become popular for can-
cer gene therapy. Moreover, lipoplexes are modified with 
various targeting tools to specifically deliver a drug to its 
target [26–31].

In cancer, the difference in the densities of endothelial 
cells between tumour tissues and normal tissues may be 
50-fold, and the density could be a tumour-specific tar-
get that makes it easily accessible for drug administra-
tion [32]. RBDV-IgG1 Fc (RBDV), a recombinant fusion 
protein constructed by the receptor-binding domain of 
VEGF-A and the Fc fragment of human IgG1, can sup-
press tumour growth and angiogenesis in C57BL/6 mice 
after administration [33].

However, using RBDV as an anti-angiogenic protein 
also has its drawbacks, similar to other anti-angiogenic 
protein-based therapies. Hence, we used the cationic 
lipoplex (LPPC) as the vector for targeted gene therapy. 

LPPC is composed of two polymers, polyethylene gly-
col (PEG) and polyethylenimine (PEI), and two lipids, 
1,2-Dioleoyl-sn-glycero-3-phosphocholine (DOPC) and 
1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC). It 
has been shown that LPPC can be complexed with pro-
teins in a non-covalent linkage manner, and the bound 
proteins which still retain their biological activity can-
not be displaced by unbound proteins [34, 35]. With this 
property, LPPC has been used as a vector for targeted 
tumour therapy in combination with Herceptin [36]. 
However, the use of LPPC for targeting gene therapy has 
been still unknown.

In this study, LPPC simultaneously encapsulated an 
RBDV plasmid (pRBDV) and targeted the RBDV protein 
to achieve specific targeted gene therapy for melanoma. 
The results showed that LPPC-based gene therapy could 
contribute to a better therapeutic efficacy than adminis-
tration of protein drugs alone.

Results
The characteristics of the LPPC/DNA complexes
The gel retardation assay showed that the LPPC parti-
cles encapsulated different amounts of plasmid DNAs 
to form complexes and are trapped in the loading wells 
of the agarose gel (Fig.  1a, lanes 2–5). Furthermore, 
0.6% SDS disrupts the liposomal complex and releases 
plasmid DNAs, which are visible as bands on the gel 
(Fig.  1a, lanes 6–9). Additionally, the maximal DNA 
binding capacity of 50  μg LPPC was approximately 
12 μg (Fig. 1b). Moreover, the particle diameters or sur-
face charges of different LPPC complexes were exam-
ined by dynamic light scattering. Table 1 shows that the 
average size of LPPC is 197.1 ± 17.8 nm, and the binding 
of DNA, protein, or PEG to LPPC increases the parti-
cle size of LPPC from 197.1 ± 17.8 to 527.5 ± 83.4  nm. 
In addition, the surface charge of the LPPCDNA com-
plexes and LPPC/RBDV complexes decreased from 
43.2 ± 1.4 to 4.9 ± 2.0 mV.

The stability of the LPPC/DNA complex was examined 
for DNase I degradation, and the results indicate that 
DNase I can fully degrade the DNA released from the 
LPPC complexes but not the DNAs on the LPPC com-
plexes (Fig. 1c, lanes 3–4). These results reveal that LPPC 
protects DNAs from DNase I degradation. Moreover, 
the LPPC complexes that inserted hrGFP plasmids can 
transfect B16-F10 cells, and the transfectant can express 
green fluorescence in a dose-dependent manner (Fig. 1d). 
Furthermore, the fluorescence of these transfectants was 
determined by flow cytometry to demonstrate the effi-
ciency and expression of the transfection. The results 
show that LPPC can transfect the plasmid DNAs into the 
cells, and the transfectants can express the transgene in a 
dose-dependent manner (Fig. 1e, f ).
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In vitro targeting activity of RBDV‑IgG1 Fc (RBDV) on LPPC 
to VEGFR‑positive cells
RBDV was used to adsorb on DiO-labelled LPPC to eval-
uate the specific targeting activity to VEGFR-positive cells 

(B16-F10 cells) and VEGFR-negative cells (BALB/3T3 
cells). Figure 2a, b show that the DiO-labelled LPPC with 
or without RBDV or IgG1 Fc (negative control protein) 
all have a high fluorescence intensity in both cell lines 

Fig. 1  Characteristics of the LPPC/DNA complexes a LPPC (50 μg) was incubated with different amounts of DNA for 30 min at room temperature, 
and the complexes were determined by 0.8% agarose electrophoresis. Lane 1 was 5 μg DNA alone and lanes 2–5 were 1, 5, 10, and 15 μg DNA with 
LPPC, respectively. The replacement of DNA from the complexes by competition with 0.6% SDS is shown in lanes 6–9. b Different amounts of DNA 
were incubated with 50 μg of LPPC for 30 min at room temperature, and the amounts of bound DNA were analysed with a spectrophotometric 
assay. c The ability of LPPC to protect DNA from DNase I digestion was assessed by treatment with DNase I. Lane 1 was the LPPC/DNA complexes 
alone; lanes 2–5 were LPPC/DNA complexes treated with DNase I, SDS+ DNase I, DNase I+ SDS and SDS alone, respectively; and lanes 6–8 were 
DNA alone, DNA treated with DNase I, and DNA treated with SDS, respectively. d Different amounts of pAAV-MCS-hrGFP plasmids with 50 μg of 
LPPC at ρ = 63, 21, 13, 9 (± charge ratio) were transfected into B16-F10 cells, and the cells were observed under a microscope after 48 h. e, f Flow 
cytometry was used to analyse the transfection efficacy and the mean fluorescence intensity. The data represent the mean ± SD (n = 6). Significant 
differences were evaluated by ANOVA with the Bonferroni test and labelled as *P < 0.05
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compared to the untreated cells, which suggests that 
the cationic character of LPPC causes nonspecific bind-
ing of the cells. To improve the specific targeting of the 
liposomal particles, PEG was used to attenuate the extra 
cationic charges of the LPPC/protein complex. With 
PEG complexing, the LPPC/RBDV/PEG complex lost 
its non-specific binding activity to BALB/3T3 cells but 
still maintained binding activity to B16-F10 cells; mean-
while, LPPC/PEG and LPPC/IgG1 Fc/PEG also lowered 
their non-specific binding activities in both cell lines 
(Fig.  2c, d). Figure  2e shows that the targeting abil-
ity of DiO-labelled LPPC to B16-F10 cells by RBDV is 
dose-dependent.

The abilities of LPPCs to encapsulate different amounts 
of RBDV or IgG1 Fc proteins for transfection were 
examined, and the results revealed that the transfectant 
expressed high fluorescence after treatment with LPPC 
with different amounts of RBDV in a dose-dependent 
manner but only showed a low fluorescent signal after 
treatment with IgG1 Fc (Fig. 3a, b). Flow cytometry also 
demonstrated that RBDV enhanced the transfection effi-
ciency and the expression of the transfection in a dose-
dependent manner (Additional file 1: Figure S1).

The effects of the RBDV protein expressed 
by the transfectant in B16‑F10 cells
Figure 4a shows the expressive abilities of the transfect-
ants after LPPC with RBDV and different plasmids at 
different times. The VEGFR-positive transfectants signifi-
cantly expressed RBDV or IgG1 Fc after transfection with 
pRBDV or pIgG1 Fc. As previously described, VEGFR-
negative cells (BALB/3T3 cells) express few or no recom-
binant proteins at any time after transfection (Fig.  4a). 
Then, the recombinant proteins in the culture superna-
tants were examined for their bioactivities. Figure  4b, c 
show that the pRBDV-expressed RBDV proteins in the 
B16-F10 transfectants can significantly elicit ADCC and 

CDC effects against B16-F10 cells, while the control pro-
tein, IgG1 Fc, cannot.

Targeted transfection ability of the LPPC/RBDV complexes 
in vivo
The IVIS imaging system first examined the in vivo tar-
geting ability of DiO-labelled LPPC to determine the 
effects of RBDV and IgG1 Fc. The results show that the 
RBDV/DiO-labelled LPPC complexes can target B16-F10 
tumours at 72  h and do not accumulate in BALB/3T3 
cells or other organs (Fig.  5a). Then, the transfection 
ability of the LPPC/RBDV complexes was assessed by 
carrying pAsRed2-N1 to observe the expression of red 
fluorescent proteins in  vivo. Figure  5b shows that the 
reporter gene can be significantly expressed in B16-F10 
tumours but not in other organs after 6  days. In addi-
tion, the tissue sections also revealed that with RBDV, 
LPPC/pAsRed2-N1 encoded red fluorescent proteins in 
B16-F10 tumour tissues but not in other organ tissues. 
Conversely, the IgG-absorbed LPPC/pAsRed2-N1 lost 
its ability to be specifically expressed in tumour tissues 
and caused nonspecific expression in heart, liver, spleen, 
lung, and kidney tissues (Fig. 5c).

Inhibition of B16‑F10 tumour growth by the expressed 
RBDV protein
The in vivo expression of LPPC-mediated transgenes was 
followed by intravenous (i.v.) injection with different for-
mulas, and the sera of the treated mice were collected 
and measured. Figure 6 indicates that the LPPC/plasmids 
with either RBDV or IgG1 Fc can transfect the transgene 
and express the recombinant proteins after i.v. injection 
for 7 days. Thus, the effects of one i.v. injections with dif-
ferent LPPC complexes on B16-F10 tumour growth were 
examined. The results show that LPPC-mediated trans-
fections significantly inhibited tumour growth compared 
with PBS-treated groups over 17 days. The order of the 
inhibitory efficacy for the treatments was LPPC/pRBDV/
RBDV > LPPC/pRBDV/IgG1 > LPPC/RBDV = LPPC/
pIgG1/RBDV (Additional file  1: Figure S2). To further 
assess the therapeutic effects of LPPCs on B16-F10 
tumour growth, mice were i.v. injected twice with distinct 
LPPC complexes. The results show that only the LPPC/
pRBDV/RBDV treatment dramatically inhibited tumour 
growth compared with the other groups (Fig. 7a); moreo-
ver, treatment with LPPC/pRBDV/RBDV significantly 
improved the survival time compared with the other 
groups (Fig. 7b). Furthermore, the therapeutic effects of 
LPPC/pRBDV/RBDV were compared with the effects of 
recombinant RBDV proteins after multiple injections. 
After four treatments, LPPC/pRBDV/RBDV had better 
tumour growth inhibition than the recombinant RBDV 
protein alone (Fig. 8).

Table 1  Average diameters (nm) and zeta potentials (mV) 
of LPPC complexes (per 50 μg of LPPC)

The data represent the mean ± SD (n = 6)

Formulation Size (nm) Zeta potential (mV)

LPPC 197 ± 17.8 4302 ± 1.4

LPPC + 1 µg DNA 263.1 ± 27.9 37.4 ± 1.5

LPPC + 3 µg DNA 287.7 ± 29.9 34.9 ± 2.4

LPPC + 5 µg DNA 320.4 ± 12.4 27.2 ± 4.8

LPPC + 7 µg DNA 365 ± 22.6 21.7 ± 3.4

LPPC + 5 µg DNA + 1 mg 
RBDV protein

426.7 ± 22.7 17.1 ± 2.3

LPPC + 5 µg DNA + 1 mg 
RBDV protein + PEG

527.5 ± 83.4 4.9 ± 2.0
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Discussion
In this study, LPPC showed excellent gene transfection 
capability both in  vitro (Fig.  1d) and in  vivo (Fig.  5b, 
c). In combination with targeting molecules, LPPC has 

been shown to be a specific delivery vector for an anti-
tumour drugs to tumour cells [36]. The targeting mol-
ecule RBDV-IgG1 Fc (RBDV) further causes specific 
gene transfection in  vitro (Fig.  3) and in  vivo (Fig.  5b, 

Fig. 2  The binding activities of the LPPC/DiO/RBDV-IgG1 Fc complexes. a BALB/3T3 cells and b B16-F10 cells were stained with DiO-labelled 
LPPC complexes without PEG 1.500 complexed. c BALB/3T3 cells and d B16-F10 cells were stained with PEG-complexed LPPC/DiO complexes. 
e DiO-labelled LPPC complexes (50 μg) were incubated with different amounts of RBDV-IgG1 Fc or IgG1 Fc proteins for 30 min, and then the 
complexes were added to B16-F10 cells. The binding intensity was analysed by flow cytometry. The data represent the mean ± SD (n = 6). 
Significant differences are evaluated by Student’s t-test and are labelled as *P < 0.05
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c), which all make LPPC a novel vector in gene ther-
apy. On the other hand, pRBDV also shows benefits 
of gene therapy on antitumour effects by expressing a 
therapeutic molecule in vivo (Figs. 5b, c and Additional 
file  1: Figure S2) through the mechanisms of ADCC 
and CDC in  vitro (Fig.  4b, c). Moreover, we have also 
confirmed that RBDV protein-directed gene therapy of 
pRBDV can dramatically suppress tumour progression 
in mouse melanoma in vivo and provides a better ther-
apeutic efficacy than the administration of pure RBDV 
protein (Fig. 8) in addition to being a target molecule.

It is an original strategy to use a therapeutic gene 
that expresses the same therapeutic protein as the tar-
geting molecule (RBDV) at the same time. Currently, 
researchers have designed a strategy for specific tar-
geted gene therapy using a therapeutic transgene 
expressing a therapeutic protein that is different from 
the targeting molecule. For example, scholars have 
used a PEI-PEG copolymer to covalently link to the 

anti-HER2 antibody for the enhancement of trun-
cated-Bid (tBid) killer gene expression, which causes 
the death of HER2-positive breast cancer cells [37]. 
Likewise, Huang et  al. constructed an immunoli-
posome-loaded endoglin single-chain antibody for 
enhancing the expression of the porcine α1,3GT gene 
to suppress lung cancer [29]. Additionally, Nusrat 
Khan and his co-workers developed a CD33 targeting 
vector to express an inducible caspase-9 suicide gene 
in acute myeloid leukaemia therapy [38]. None of the 
current studies of nanoparticle technology in cancer 
therapy have had the same idea as this study does, and 
this strategy indeed provides a better therapy than 
protein-targeted therapy.

In addition, using LPPC as a transfection reagent in 
this strategy also provides several advantages for specific 
gene therapy. First, the positive charge of PEI can bind 
DNA electrostatically and protect the binding DNA from 
DNase degradation (Fig.  1c). Second, LPPC can stably 

Fig. 3  In vitro transfection efficiency of the LPPC/DNA/RBDV complexes. Different concentrations of a RBDV complexes or b IgG1 Fc with 5 μg of 
DNA and 50 μg of LPPC were transfected into B16-F10 cells, and the cells were observed under a microscope 48 h after transfection. LPPC, which 
encapsulated with RBDV or IgG1 Fc, were all complexed by PEG
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adsorb proteins via a noncovalent linkage, which retains 
the flexibility to encapsulate different targeted proteins 
without damaging the activity of the targeting molecules. 
Although the covalent linkage of the target molecules 
to liposomes is a prevalent method for conjugation, this 
process may attenuate the activities of specific targeting 
molecules [39, 40]. Third, LPPC can be centrifuged to 
form a pellet, which allows LPPC to be easily separated 
from the unincorporated molecules to avoid the interfer-
ence of free proteins prepare for use.

Interestingly, although previous studies have shown 
that RBDV can provide a good anti-angiogenesis effect 
against tumour growth by targeting both VEGFR1 and 
VEGFR2, the ability to cause tumour regression by 
RBDV protein treatment is less useful than pRBDV in 
this study. Moreover, LPPC with both RBDV and pRBDV 
revealed the best therapeutic effects among all groups 
(Fig.  8). There are two possibilities that could explain 
such a phenomenon. First, RBDV can specifically bind 
to VEGFR1 and VEGFR2, which leads the LPPC com-
plex to the tumour site and transfects pRBDV. Then, 
the newly encoded RBDV proteins will have a relatively 
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Fig. 4  The expression of the RBDV protein and the in vitro 
cytotoxicity assay. a pRBDV or pIgG1 Fc were transfected into B16-F10 
cells and BALB/3T3 cells. The black or white circles mean transfections 
of LPPC/pRBDV/RBDV/PEG or LPPC/pIgG1 Fc/RBDV/PEG in B16-F10 
cells, respectively. The black or white squares mean transfections of 
LPPC/pRBDV/RBDV/PEG or LPPC/pIgG1 Fc/RBDV/PEG in BALB/3T3 
cells, respectively. The cell culture media were analysed at 0, 6, 12, 
24, and 48 h for the amount of protein expression by ELISA. LPPC, 
which encapsulated with RBDV, were all complexed by PEG. The 
data represent the mean ± SD (n = 3). Significant differences were 
evaluated by ANOVA with the Games-Howell test and labelled 
as *P < 0.05. b NK-92MI cells (effector cells) mixed with B16-F10 
cells (target cells) at an E/T ratio of 1:1 were co-incubated with 
IgG1 Fc, RBDV-IgG1 Fc, or VEGF plus RBDV-IgG1 Fc for 5 h, and the 
cytotoxic activity was determined by MTT assay. The data represent 
the mean ± SD (n = 6). Significant differences were evaluated by 
ANOVA with the Bonferroni test and labelled as *P < 0.05 compared 
with other groups. c Complement mixed with B16-F10 cells was 
co-incubated with IgG1 Fc or RBDV-IgG1 Fc, and the cytotoxic activity 
was determined by MTT assay. The data represent the mean ± SD 
(n = 4). Significant differences were evaluated by ANOVA with the 
Bonferroni test and labelled as *P < 0.05 compared with other groups

▸

Fig. 5  Targeting ability and Targeted transfection ability of the LPPC/RBDV complexes in vivo. a Tumour-bearing mice were i.v. injected with LPPC/
DiO/RBDV or LPPC/DiO/IgG1 Fc. After 72 h, the organs and tumours were excised and imaged with an IVIS system at the appropriate wavelength 
(Em: 600 nm and Ex: 465 nm). b Tumour-bearing mice were i.v. injected with LPPC/pAsRed/RBDV or LPPC/pAsRed/IgG1 Fc. After 6 days, the organs 
and tumours were excised and imaged with an IVIS system at the appropriate wavelength (Em: 560 nm and Ex: 465 nm). c The tumours and organs 
were further processed by H&E staining and photographed with a fluorescence microscope. LPPC, which encapsulated with RBDV or IgG1 Fc, were 
all complexed by PEG

(See figure on next page.)
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higher concentration in the tumour microenvironment 
than that in other tissues, which contributes to the anti-
tumour effects. Second, the pRBDV transfectant can con-
tinue expressing RBDV over time, which makes it a better 
therapeutic than RBDV.

Conclusions
In conclusion, we show that LPPC could adsorb not only 
plasmid DNA and the RBDV protein but also retain their 
bioactivities. The LPPC/RBDV complexes could target 
B16-F10 tumours, and the reporter gene pAsRed2-N1 
could be significantly expressed in B16-F10 tumours but 
not on other organs. Modification of cationic liposomes 
through the addition of specific targeting molecules 
may make it possible to increase uptake by angiogenetic 
endothelial cells and decrease uptake by healthy endothe-
lial cells and macrophages. Hence, the concept of using 
LPPC-encapsulated pRBDV and the RBDV protein might 
be a useful strategy for specific gene delivery.

Methods
Cell lines, animals and reagents
Human embryonic kidney (HEK) 293T cells, mouse mel-
anoma B16-F10 cells, and mouse embryonic fibroblast 
BALB/3T3 cells were obtained from the Bioresource 

Collection and Research Center (BCRC, Hsinchu City, 
Taiwan, ROC). These cells were cultured in Dulbecco’s 
modified Eagle’s medium (DMEM; Invitrogen, Gaith-
ersburg, MD, USA) supplemented with inactivated 10% 
foetal bovine serum (FBS; Invitrogen) and 1% penicillin–
streptomycin amphotericin B (PSA; Biological industries, 
New York, NY, USA). Human natural killer NK-92 MI 
cells were grown in alpha minimum essential medium 
(αMEM; Sigma-Aldrich, St. Louis, MO, USA) supple-
mented with 0.2  mM inositol (Sigma-Aldrich), 0.2  mM 
2-mercaptoethanol (Sigma-Aldrich), 0.02  mM folic acid 
(Sigma-Aldrich), 12.5% horse serum (Gibco BRL, Gaith-
ersburg, MD, USA) and 12.5% FBS. All cells were incu-
bated at 37 °C in an atmosphere of 5% CO2.

Male C57BL/6 mice (6–8 weeks old) were purchased 
from the National Laboratory Animal Center (NLAC, 
Taipei City, Taiwan, ROC).

1,2-Dioleoyl-sn-glycero-3-phosphocholine (DOPC) 
(Avanti Polar Lipids, Inc., Alabaster, AL, USA), 
1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC) 
(Avanti Polar Lipids, Inc.) and polyethylene gly-
col (PEG, MW 1.500) (Shimo-Meguro, Meguro-Ku, 
Tokyo, Japan), PEG (MW 8.000, Sigma-Aldrich) and 
polyethylenimine (PEI, branched, MW 25.000, Sigma-
Aldrich) were purchased to prepare LPPC.
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Plasmid construction
The pAAV-MCS-hrGFP plasmid was cloned from pNF-
kB-hrGFP and pAAV-MCS (Stratagene, La Jolla, CA, 
USA). The pAsRed2-N1 plasmid was purchased from BD 
Biosciences (San Jose, CA, USA). Plasmids pAAV-MCS/
RBDV-IgG1 and pAAV-MCS/IgG1 were constructed 
according to the procedures in previous studies [33, 41]. 
All plasmids were amplified and purified with the Gene-
Spin MidiPrep Kit (Protech Technology, Taipei City, Tai-
wan, ROC).

Preparation of the RBDV‑IgG1 Fc (RBDV) and IgG1 Fc 
recombinant proteins
RBDV and IgG1 Fc recombinant fusion proteins were 
produced and purified according to the procedures in 
previous studies [33, 41]. Briefly, the two plasmids were 
transfected into 293T cells. After 48 h, the supernatants 
of the cell culture media were collected and purified by 
Protein G-Agarose (Upstate, Inc., Lake Placid, NY, USA). 
Then, the eluted fractions were further purified by a 
nickel-charged HisTrap Hp affinity column (Amersham 
Biosciences, Piscataway, NJ, USA). Finally, the solvents of 
the eluted proteins were exchanged in PBS by a Sepha-
dex G-25 prepacked column (Amersham Biosciences), 
and the recombinant fusion proteins were concentrated 
with Microcon Centrifugal Filters (Millipore, Bedford, 
MA, USA). The concentrations of the RBDV and IgG1 

Fc recombinant fusion proteins were calculated by the 
Bradford assay by measuring the absorbance at 595  nm 
with a Sunrise™ absorbance microplate reader (TECAN, 
Männedorf, Zurich, Switzerland).

Preparation of the LPPC and LPPC/DNA complexes
LPPC was produced according to the procedures in a pre-
vious study [34]. In brief, LPPC was prepared with two 
kinds of lipids (DOPC and DLPC) and two kinds of poly-
mers (PEG and PEI). The molar ratio of lipids:PEI:PEG 
was approximately 13:5:5.

The amounts of DNA complexed to LPPC were based 
on the nitrogen/phosphate ratio (ρ), which refers to the 
molar ratio of amine and phosphate groups in PEI of 
LPPC and DNA, respectively. For LPPC/DNA complex 
preparation, 5 μL of LPPC (50 μg/mL) was mixed with 1, 
3, 5, 7 μg of hrGFP plasmids at 25 °C for 30 min to give 
a final volume of 15 μL LPPC/DNA complexes at ρ = 63, 
21, 13, 9, respectively.

For LPPC/DNA/RBDV complex preparation, 5  μL of 
LPPC (50 μg/mL) was mixed with 5 μg hrGFP plasmid at 
25  °C for 30  min, and then different amounts of RBDV 
were added for another 30 min to a final volume of 50 μL 
LPPC/DNA/RBDV complexes. Finally, the extra positive 
charges of the complexes were attenuated with 50 μL of 
PEG 1.500 (100 mg/mL) for 30 min twice.

Fig. 8  Inhibition of tumour growth by LPPC/pRBDV/RBDV and the RBDV protein. Female C57BL/6 mice (6–8 weeks of age) were subcutaneously 
inoculated with 1 × 106 cells in 100 mL of PBS. When the average tumour volume reached 30 mm3, the mice were i.v. injected with LPPC/pRBDV/
RBDV or RBDV protein. Inverted filled triangle means the day of complex injection. Tumour volume was measured every 2 days after injection of the 
complexes, and the mice were sacrificed when the tumour grew to a size of 2500 mm3. LPPC, which encapsulated with RBDV or IgG1 Fc, were all 
complexed by PEG. The data represent the mean ± SD (n = 7). Significant differences are evaluated by Student’s t-test and are labelled as *P < 0.05
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Gel retardation assay
The binding of LPPC to the hrGFP plasmid with or with-
out 0.6% SDS was assayed by gel retardation analysis. Dif-
ferent amounts of plasmids and 0.6% SDS were added to 
50 μg of LPPC and briefly shaken. After 30 min of incuba-
tion at room temperature, 10 μL of the LPPC/DNA com-
plexes were analysed by agarose gel electrophoresis. DNA 
was visualized with a UV lamp by using a Uni-photo gel 
image system (EZ lab, Keelung City, Taiwan, ROC).

Size and zeta potential measurements
Ten microliters of the LPPC/DNA complexes were pre-
pared as described above. The particle size and zeta 
potential were determined with a BI-200SM dynamic 
laser light scattering goniometer (Brookhaven, Inc., 
Holtsville, NY, USA).

In vitro transfection
To study the transfection activity of the different LPPC/
DNA complexes and LPPC/DNA/RBDV complexes, 
B16-F10 cells were seeded in 6-well plates at 2 × 105 cells 
per well in 3 mL of DMEM containing 10% FBS and 1% 
PSA. The cell lines were incubated at 37 °C overnight in 
5% CO2, and then the media was replaced with 1 mL of 
serum-free DMEM containing different LPPC complexes 
for 6 h at 37 °C. After 6 h, 2 mL of fresh DMEM growth 
media was added to the cells and followed by incubation 
for an additional 42 h. Then, the cells were resuspended 
in trypsin, and the transfection efficiency was measured 
by using FACScan flow cytometry (BD Biosciences).

Antibody‑dependent cell‑mediated cytotoxicity (ADCC) 
and complement‑dependent cytotoxicity (CDC) assay
The ADCC is typically triggered by immune cells such as 
NK cells, which can recognize the Fc region of IgG and 
induce the IgG-targeted cell to apoptosis. Besides, the 
CDC assay, which is triggered by the binding of C1q pro-
tein to the IgG can cause the IgG-targeted cell lysis by the 
activation of complement. Hence, the ADCC and CDC 
assays were used to verify the effects of RBDV at B16-F10 
cells in presence of immunity in vitro.

Briefly, after 48  h of LPPC transfection, the superna-
tants of the cell culture media with the RBDV or IgG1 
protein were collected for the analysis of ADCC and 
CDC assays.

In the ADCC assay, B16-F10 cells (target cells) were 
seeded in 96-well plates at 1 × 104 cells per well over-
night. Then, 2 μg of RBDV or IgG1 protein was added to 
the cells for 2 h, 1 μg/mL VEGF was added for 20 min, 
and the cells were treated with 2 μg of RBDV for another 
1 h. NK-92 MI cells (effector cells) were also added to the 
plates at 1 × 104 cells/well in 100  μL of αMEM for 4  h. 
Finally, the culture media was replaced by the working 

concentration of MTT (Sigma-Aldrich) for 4  h. The 
supernatants of the cell culture media were removed, and 
100 μL of dimethyl sulfoxide (DMSO) was added to solu-
bilize the MTT crystals. The ADCC effects on cell pro-
liferation were determined by measuring the absorbance 
at 595 nm with a Sunrise™ absorbance microplate reader 
(TECAN).

In the CDC assay, B16-F10 cells were coated in a 
96-well flat-bottom plate at 1 × 104 cells per well. Two 
micrograms of RBDV or IgG1 protein was added to each 
well, and the cells were incubated for 2 h. Then, 200 μL of 
horse serum (Gibco BRL) as a source of active comple-
ment was added to each well for 2 h. Then, the superna-
tants of each well were removed and supplemented with 
MTT reagent for the cell proliferation assay.

Quantification of the expressed RBDV and IgG1 Fc 
recombinant proteins
Plates were coated with 100  μL/well anti-human IgG 
antibody (250  ng) overnight at room temperature, fol-
lowed by a blocking procedure with 2% skim milk in PBS 
for 1  h. RBDV and IgG1 Fc proteins ranging from 0 to 
50 μg/mL were used to establish standard curves, and the 
supernatants from the in vitro transfection cell media or 
mouse sera were added. The standard ELISA protocol 
followed, and the absorbance was measured at 450  nm 
with a Sunrise absorbance microplate reader (TECAN).

In vivo imaging
The tumour-targeting effects of RBDV were investigated 
with a Caliper IVIS Spectrum system (Caliper Life Sci-
ences, Hopkinton, MA, USA), and the in  vivo distribu-
tion of LPPC-modified complexes in C57BL/6 mice was 
observed. Briefly, B16-F10 or BALB/3T3 cells (1 × 105) 
were implanted subcutaneously into the backs of mice. 
When the tumour size reached 50  mm3, two groups of 
mice were given either LPPC/DiO/RBDV or LPPC/DiO/
IgG1 Fc in the amounts of 80 μg of RBDV, 80 μg of IgG1 
Fc and 4 mg of LPPC via tail vein injection. At 0, 48, and 
72 h post-injection, the mice were observed in the IVIS 
system with an appropriate wavelength of Em: 600  nm 
and Ex: 465 nm. Then, the mice were sacrificed, and the 
organs were imaged.

In another experiment, LPPC/pAsRed2N1/RBDV com-
plexes were injected via the tail vein. At 6 days post-injec-
tion, the mice were sacrificed, and then the organs and 
tumours were excised and imaged with wavelengths Em: 
560 nm and Ex: 465 nm.

Therapeutic experiment
B16-F10 cells (1 × 105) were implanted subcutane-
ously into the backs of mice. When the average tumour 
volumes reached 30 mm3, which occurred within 
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7  days post-implantation, the mice were injected 
intravenously with RBDV/pRBDV/LPPC complexes 
(80  μg/400  μg/4  mg). The tumour volumes were meas-
ured every 2  days. Once the tumour volume reached 
2500 mm3, the euthanasia procedures of mice were per-
formed under the standard protocol. The tumours and 
organs of the mice were excised, fixed with paraformal-
dehyde, and examined by microscopic haematoxylin and 
eosin (H&E) staining.

H&E staining
The tumours and organs of the mice were embedded in 
paraffin wax after dehydration. Then, the tissue sections 
(4 μm/section) from paraffin-embedded blocks were col-
lected on clean glass slides and dehydrated for 30  min 
at 60  °C. The tissue slides were further deparaffinized, 
rehydrated, and stained with Mayer’s haematoxylin and 
eosin Y solution for 3 min. Finally, the tissue slides were 
mounted with mounting media and photographed by 
microscopy.

Statistical analysis
The data represent the mean ± standard deviation (SD) 
of two or three independent experiments. Statistical 
analysis was performed by Student’s t-test or analysis of 
variance (ANOVA) with Bonferroni or Games-Howell 
test and were calculated with IBM SPSS software (IBM 
Corp., Armonk, NY, USA). The significant differences are 
labelled with *for P < 0.05.
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