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ABSTRACT We propose LongQC as an easy and automated quality control tool for genomic datasets
generated by third generation sequencing (TGS) technologies such as Oxford Nanopore technologies
(ONT) and SMRT sequencing from Pacific Bioscience (PacBio). Key statistics were optimized for long read
data, and LongQC covers all major TGS platforms. LongQC processes and visualizes those statistics
automatically and quickly.
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Short read sequencing technologies have changed the paradigm in
biology for the past decade. Recently, TGS have emerged and provided
remarkably long but relatively error-prone reads from singlemolecules.
There are standard quality control (QC)methods for short reads such as
FastQC (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/)
or PRINSEQ (Schmieder and Edwards 2011); however, these methods
have not been fully optimized for characterizing long error-prone read.
Because the scientific community is fast adopting TGS, it is worth
reconsidering the applicability and suitability of such methods for long
read data. Unique properties of long read data require different QC
statistics to describe the different characteristics.

Phredquality score is awidelyusedmeasurement toassess thequality
of sequencing data. Unfortunately, this is not applicable for the PacBio
Sequel system which no longer provides meaningful Phred scores.
WithoutPhred scores as an indicator ofbasecallingconfidence, coverage
becomes a crucial criterion to achieve reliable consensus sequences
from the dataset. This also affects the recently released NanoPack

(De Coster et al. 2018), mainly developed for ONT dataset. Despite
capability of PacBio uBam loading, NanoPack cannot fully assess data
due to the lack of Phred score.OtherQC tools available within theONT
community are only suitable for ONT because they summarize plat-
form specific statistics using meta-data generated by ONT systems
(Loman and Quinlan 2014; Watson et al. 2015; Lanfear et al. 2019).
Such tools can be applied before a full analysis; however, they are
susceptible to format change of meta-data. In fact, changes in raw data
format (Fast5) and basecalling programs have been frequent for ONT.
Earlier ONT QC tools are no longer applicable with the latest Fast5
format. Additionally, new ONT basecallers such as Scrappie or Bonito
skip Phred score calculation like Sequel; therefore, development of a
QC tool that is insensitive to file formats or Phred score availability is
beneficial.

An alternative QC approach is to apply read polishing tools. DAS-
CRUBBER, a suite developed for scrubbing PacBio reads (https://
github.com/thegenemyers/DASCRUBBER), although not designed
specifically for QC per se, can be used for quality assessment.
Under DASCRUBBER framework, all-vs.-all comparison of reads
is executed to find and trim erroneous segments. The whole pro-
cess can take hours on a workstation for completeness and pre-
cision. Additionally, limited number of supported file formats,
running multiple commands in the suite with different parameter
options, and lack of explicit means to judge data quality could
pose a challenge for inexperienced users.

It has been reported that ONT reads from low quality pores can be
random, even though they sometimes show misleadingly high quality
scores (Mojarro et al. 2018). These reads are artificially produced and
have no biological relevance to the sample. In fact, eachTGS dataset can
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contain a certain amount of “non-sense reads”, which we define as
unique reads that cannot be mapped onto sequences of any other
molecules in the same library. We thus propose that the fraction of
non-sense reads contained in a dataset can be used as a robust indicator
of sequencing quality.

Here we report a new QC pipeline for TGS data named LongQC
(Long read Quality Control). LongQC is a computationally efficient,
platform-independent QC tool to spot issues before a full analysis. The
tool visualizes statistics designed for erroneous long read data to
highlight potential problems originated from the biological samples
as well as those introduced at the sequencing stage. It supports major
TGS file formats. LongQC relies on k-mer based internal overlaps and
skips alignment; therefore, it operates efficiently without reference
genomes.

MATERIALS AND METHODS

Datasets
Escherichia coli strain K-12 genome was sequenced on PacBio
RS-II, PacBio Sequel and ONT MinION. Public datasets were re-
trieved from published studies (Michael et al. 2018; Mojarro et al.
2018) and PacBio DevNet (https://github.com/PacificBiosciences/
DevNet/wiki/Datasets). Simulated datasets were generated using
PBSIM version 1.0.4 and NanoSim version 2 (Ono et al. 2013; Yang
et al. 2017). See supplementary information for further details.

Quantification and estimation of actual fraction of
non-sense reads
We mapped actual reads from PacBio RS-II, PacBio Sequel, and ONT
MinION onto known reference genomes using minimap2 ver. 2.6 (Li
2018) and computed the amount of actual non-sense reads in each
dataset (Table S1-3). Possibility of contamination during library prep-
aration was assessed using blastn and the nt database (Table S4). See
supplementary information for further details.

Computational modules
LongQC consists of several different computational modules. Among
them, the coverage module is the core of the pipeline, and it generates
coverage statistics and plots that depend on overlap information using a
modified version of minimap2 (named minimap2-coverage and see
below). See supplementary information for further details.

Minimap2-coverage and non-sense read definition
Toestimate fractionofnon-sense reads, overlapsbetween sampled reads
and a given dataset is computed by minimap2-coverage. Output is
written in a tab delimited text and is parsed by the coveragemodule (see
above).During overlap calculation,minimap2-coveragefilters out some
spurious overlaps (supplementary information). Sampled reads having
very low coverage (with 2 or fewer overlapping partners as default) are
marked as non-sense reads. Overlap calculation also provides extra
information in addition to coverage statistics: boundary for adapter like
sequences and estimation of per-read error rate. See supplementary
information for further details.

Data availability
LongQC is mainly written in Python3, and it is freely available under
the MIT license. The source code and help can be found at https://
github.com/yfukasawa/LongQC. The code is compatible with Linux
and Mac OS X. Raw sequencing data were deposited in the Sequence
Read Archive (SRA) under project PRJNA578920. Supplemental ma-
terial available at figshare: https://doi.org/10.25387/g3.11516004.

RESULTS

Overview of LongQC
LongQCwasdesignedasaquickscreening tool tospot issues inTGSdata
through various statistics and plots: general statistics (yield and noise
level), adapter statistics, read length analysis, per-read quality statistics,
per-read coverage analysis, GC contents analysis, flanking region anal-
ysis, sequence complexity analysis, and per-read sequence error esti-
mation. Combination of these statistics and plots help to understand
TGS data and issues, if they exist. Moreover, because all major TGS file
formats are supported, users can start QC as soon as data are available.
Further details are available in supplementary information with sample
plots.

Quantification of noise in datasets
Sequencing output always comes with a portion of noise such as non-
sense reads due to technical or experimental variations in a project. It is
important to assure that the noise of sample dataset falls within a certain
range.These non-sense reads can be identified anddiscardedat the stage
of read alignment against a reference genome; however, this approach
relies on having a high quality reference genome, which might be
unavailable. Itwould be advantageous to estimate the quality of a dataset
without a reference genome.

Because the nucleic acids of a sample are fragmented randomly
during library preparation, if there is enough coverage, there must be
overlaps between readswithin a given dataset.With this observation,we
designed a QC method without a reference genome using the read
overlap concept (Figure 1A).

To put this concept into practical use, quantification of non-sense
reads is important. We used publically available and in-house dataset
generated on threemajor platforms to empirically determine non-sense
read thresholds (TableS1andS2).Wevalidated the approachusingboth
simulated datasets and public real datasets. The fraction of non-sense
reads estimated by LongQC is very close to the actual fraction in the
datasets (Table S3 and S5).

Assessment using experimentally produced
challenging datasets
To assess the capability of LongQC under a real situation, we prepared
challenging datasets intended to mimic library failure. Two particularly
challenging datasets were generated experimentally on Sequel (supple-
mentary information), which resulted in high non-sense read fractions
of 37%and22%. It is noteworthy thatnon-sense read fraction is typically
lower than10%innormalPacBiodatasets (TableS1).LongQCestimated
that 39.6% and 23.4% of these datasets are noise, closely approximating
the actual fractions. It shows that; therefore, estimation of the non-sense
read fraction gives valuable and timely insight of data quality even in
challenging datasets soon after the data acquisition. We noticed that
short reads in the challenging datasets show lower coverage; this is
observed only in the challenging datasets (Figure 1B). The fraction of
very short fragment is higher in the challenging datasets compared to
normal datasets (Figure 1C). These suggest that the challenging datasets
contain a larger amount of non-sense short fragments. Part of these
fragments are short and mappable spiked-in control reads, which
would normally be removed during data generation process by Sequel.

We also applied DASCRUBBER, a part of DAZZLER suite. During
scrubbingprocess, for anygivendataset,DASCRUBBERcomputesQVs
(quality values) for every short segment and based on the distribution it
determines twoQV thresholds to define good and bad segments, which
would then be used in downstream analysis. A high QV means low
quality. Theoretically, threshold values of a low quality dataset are
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expected to be high compared to those of good quality datasets. In-
terestingly, while it is possible for DASCRUBBER to notice different
proportions of poor-quality reads in our datasets, QV thresholds de-
termined for normal and challenging datasets were comparable and not
highlighting any differences (Table S6).Moving forward to downstream
analysis using these thresholds might not have paid sufficient attention
to the vast quality disparities in these datasets.

Detection of short fragment contamination
We tested LongQC on a recently published dataset for Arabidopsis
thaliana (Michael et al. 2018). Interestingly, coverage plot of certain
read length (between 3,000 and 6,000 bps) shows fluctuation (Figure 2A),

and other plots also have unexpected spikes (Figure 2B,C). Post-hoc
analysis revealed that it is highly likely to be resulted from the fact that
8% of this dataset came from a specific region of E. coli genome (Table
S3). We should note that the spurious spikes in read length, GC
content and per-read coverage distribution disappeared by removal
of those reads (Figure 2D-F). Although this dataset has an overall high
quality, subtle contamination was visualized by LongQC.

Transcriptomics/Iso-Seq
LongQC is applicable to other types of application such as Iso-Seq on
PacBio platform. We applied LongQC on Iso-Seq datasets from hum-
ming bird and zebra finch. Without tuning of parameters for overlap

Figure 1 Schematic diagram of non-sense reads and example plots for E.coli genome. (A) Blue rectangles represent normal read derived from
large molecules such as genomic DNA and orange rectangle shows non-sense read. Non-sense reads have no coverage due to randomness or an
even higher error rate. (B) whisker plots for standardized per-read coverage in two challenging and two normal datasets. Standardized per-read
coverage is centered by mean of per-read coverage values and divided by standard deviation of per-read coverage values. Blue lines represent
3 standard deviations. (C) read length histograms for the same datasets.

Figure 2 Effects of E. coli filter on ONT A. thaliana dataset. Top panels were generated from the original dataset and bottom panels show plots
after E. coli read removal. (A, D) Distribution of per-read coverage. (B, E) GC content distributions. (C, F) Length distributions. Yellow boxes
highlighted the spikes that disappeared after E. coli read removal.
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computation, non-sense read fractions were estimated accurately
(Table S7).

Empirical assessment of read quality
Assessment of read quality is not trivial when quality values are un-
available. To evaluate read quality in those cases, we slightly modified
previously suggested values for read quality assessment using k-mer
(Ondov et al. 2016; Li 2018). Because reference genomes are not always
available, the number of k-mers without any error/mutations is esti-
mated from read to read overlap computations. This modification
enabled a rapid computation of empirical read quality without refer-
ences, and the resulting empirical score was significantly correlated
with sequence identity (Table S8). We also validated this formulation
using recently reported reads which are likely to be noise but have
enough high quality (HQNR), and it was reported that HQNR have
no similar sequences in public database (Mojarro et al. 2018). This set
of reads is expected to be quite random even though they have high
quality scores assigned by the sequencer. In fact, HQNR reads show
much higher estimated per-read sequence error rate and there is no
significant correlation between sequencer based quality and estimated
error rate by our formulation (Figure S1. Spearman’s rank correlation =
0.03, p-value = 0.374); therefore, this is consistent with the fact that they
cannot be mapped to any known sequences with high confidence
(Mojarro et al. 2018) (Figure S1). In contrast, there is a strong correla-
tion (Figure S1. Spearman’s rank correlation = -0.90, p-value, 2.2e-16)
between our estimated error rates and quality scores assigned by a se-
quencer for non-HQNR reads (Figure S1). Although there is a small
fraction of non-HQNR which have actually high estimated error rates
(estimated per-read error rate . 0.2 and per-read QV, an average of
quality scores assigned by a sequencer,. 7), wemanually confirmed that
they have no hits or partial hits against the nt database.

DISCUSSION
In this study, we have tackled the problem of assessing the quality of
dataset generated by TGS, particularly in the absence of a reference
genome and/or Phred scores. Existing QC programs are unsuitable or
inefficient to process those datasets: the quality of DNA sequences is
often evaluated by aligning any query reads against a reference genome,
or sequencingfiles are assessed on quality indicators such as Phred score
given by the sequencing platform. However, one or both above condi-
tions can be missing in a TGS dataset, for example, in case of de novo
assembly without reference or in case of Sequel data where Phred scores
are not provided. A platform-independent, computationally efficient
and user-friendly QC tool that can operate under these circumstances is
needed in order to allow a comprehensive visualization of different
characteristics of a dataset and highlight any potential quality issues as a
first step right after data acquisition before a deep-dive downstream anal-
ysis. It is noticed that there is often a certain amount of reads that cannot
be mapped onto any other sequences in the same sequenced library. We
call them “non-sense reads” and propose that the fraction of these reads
can be used as a powerful indicator of the general data quality.

LongQCisdesigned toperformquickqualityassessmentofTGSdata
and works with all major TGS platforms to date, including PacBio and
ONT. Because there is an undeniable trend of sequencing throughputs
increasing exponentially, balancing between speed and completeness
hasbecomeavalid concerneven in theQCstep. Forexample,DAZZLER
suite is a full analysis package and computational cost could be high,
especially for large datasets. While it conducts a thorough all-vs.-all
comparison, the trade-off is reflected in the computational time, espe-
cially for larger normal datasets (Table S10). In contrast, LongQC uses

subsampling for a rapid QC before a full analysis without compromis-
ing overall usefulness with well-estimated statistics (Table S3 and S5).
Users should select appropriate tools to use according to the need and
stage of a project.

Long-read technologies are improving rapidly, andmay become the
mainstay of sequencing in the next decade and it is increasingly popular
in various applications to address a diverse range of biological problems.
LongQC could be applied on new applications. For example, we tested
Iso-Seq datasets for avian transcriptomes and the difference between
LongQC-estimated and actual mapping results was small (Table S7).
LongQC could also be useful for single cell analysis. Adapter sequences
for single cell discrimination can be quite diverse or simply random.
Nonetheless, success or failure of such adapter ligations can be in-
terrogated and visualized under LongQC framework before a full
analysis (Figure S2).

In conclusion, we showed that LongQC is a valuable, efficient and
easy-to-use tool for QC of any present and future TGS data that enables
better understanding of the dataset prior to downstream analysis.
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