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Abstract: Transition metal catalysis in modern organic synthesis has largely focused on noble
transition metals like palladium, platinum and ruthenium. The toxicity and low abundance of these
metals, however, has led to a rising focus on the development of the more sustainable base metals
like iron, copper and nickel for use in catalysis. Iron is a particularly good candidate for this purpose
due to its abundance, wide redox potential range, and the ease with which its properties can be tuned
through the exploitation of its multiple oxidation states, electron spin states and redox potential.
This is a fact made clear by all life on Earth, where iron is used as a cornerstone in the chemistry
of living processes. In this mini review, we report on the general advancements in the field of iron
catalysis in organic chemistry covering addition reactions, C-H activation, cross-coupling reactions,
cycloadditions, isomerization and redox reactions.
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1. Introduction

Iron is the most abundant element on Earth by mass and is used ubiquitously by living organisms [1].
The ability of iron to assume many oxidation states (from −2 up to +6) coupled with its low toxicity
makes it an attractive, versatile and useful catalyst in organic synthesis. The wide range of oxidation
states available for iron and its ability to promote single electron transfer (SET) allows it to cover a wide
range of transformations. In low oxidation states, iron becomes nucleophilic in character and takes
part in reactions such as nucleophilic substitutions, reductions and cycloisomerizations. At higher
oxidation states, iron behaves as a Lewis acid, activating unsaturated bonds and at very high oxidation
states (+3 to +5) iron complexes can take part in C-H activation. Due to iron’s central position in the
periodic table, it can have the property of both an “early” and “late” transition metal and with the
many oxidation states available, any type of reaction is, in principle, within reach. Iron cations also
bind strongly to many N- and O-based ligands, and these ligands can replace phosphine ligands in
iron chemistry.

As the atmosphere on Earth changed following the Great Oxidation Event about 2.4 billion years
ago, ferrous (+2) iron complexes became less stable and ferric (+3) complexes became predominant [2].
Iron in its ferric oxidation state typically forms complexes that are water-insoluble like hematite (Fe2O3)
or magnetite (Fe3O4), especially under basic conditions when exposed to air. This propensity of
iron complexes to precipitate can be a hindrance for catalysis, although, despite the fact that ferric
complexes are mostly water-insoluble at biological pH, iron is still the most common transition metal
in living organisms and is indispensable for the chemical processes of life—oxygen binding, electron
transport, DNA synthesis, and cell proliferation, to name only a few.

Modern catalysis has been dominated by noble transition metals, such as palladium, platinum,
ruthenium and iridium, and these metals have been used in a wide range of reactions. The main
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advantage that noble transition metals have over their base counterparts is their preference for
undergoing two-electron processes. They do, however, have significant drawbacks: high cost,
non-renewable supply and/or precarious toxicological and ecological properties. These factors may
not pose too much of a problem for academic research, but have profound implications for industry
and for the future of sustainable chemistry. It is for these reasons that attention has shifted towards
base transition metals like iron, copper and nickel. Iron is particularly well suited as it is the second
most abundant metal in the Earth’s crust after aluminum and is consequently attractive economically
and ecologically. Despite these advantages of iron, organoiron catalysts tend to suffer from serious
drawbacks such as difficult synthetic pathways, lack of robustness, poor atom economy and low
activity or enantioselectivity. Although circumventing these limitations will be necessary for iron
catalysis to reach its full potential, base metal catalysis will no doubt gain importance in the future
and it is reasonable to think that base metals such as iron will eventually supplant the traditional
dominance of noble transition metals as the field matures. In recent times, the area of iron catalysis
has exploded and Beller in 2008 and Bolm in 2009 declared that the age of iron has begun [3,4]. An
intriguing outlook on the future of homogeneous iron catalysis was published in 2016 by Fürstner [5].

This review focuses on the recent advancements in iron catalysis pertaining to organic chemistry
from 2016 to February 2020. An excellent and comprehensive review from 2015 by Knölker on all the
types of iron-catalyzed reactions discussed in this review in addition to others can be consulted for
the interested reader [6]. Other more specialized reviews may be found in each respective subsection.
It should be mentioned that metathesis reactions are omitted from this review.

2. Iron in Organic Synthesis

Organoiron chemistry began in 1891 with the discovery of iron pentacarbonyl by Mond and
Berthelot [7,8]. It was used sixty years later industrially in the Reppe process of hydroformylation of
ethylene to form propionaldehyde and 1-propanol in basic solutions [9]. An important event was the
discovery of ferrocene in 1951 [10], the structure of which was determined in 1952 [11,12] and led to
the Nobel prize being awarded to Wilkinson and Fischer in 1973. The discovery of the Haber–Bosch
process was an additional milestone in iron chemistry. The latter process uses an inorganic iron catalyst
for the production of ammonia and sparked an agricultural revolution [13,14]. In modern organoiron
chemistry, iron is used in a great number of diverse reactions, as will be apparent from this review,
though perhaps, just as in the chemistry of life, its most ubiquitous role is in redox chemistry.

2.1. Addition Reactions

The first example of an iron-catalyzed racemization of alcohols was reported in 2016 with the use
of an iron pincer catalyst [15]. Between 2016 and 2017, the groups of Bäckvall [16] and Rueping [17]
independently reported the dynamic kinetic resolution (DKR) of sec-alcohols using a combination of
iron catalysis for racemization and a lipase for resolution, which demonstrates a useful combination
of enzyme and transition metal catalysis (Scheme 1). In one study, Knölkers complex (II) was used
directly [17], and in the other study, a bench-stable precursor to Knölkers complex (II), iron tricarbonyl
complex I, was used, which was activated through oxidative decarbonylation with TMANO to form
coordinatively unsaturated iron complex I’ [16]. In the latter study, various benzylic and aliphatic
esters could be produced in good to excellent yields with excellent ee. Two different enzymes, Candida
antarctica lipase B (CalB/Novozyme 435) and Burkholderia cepasia (PS-C), could be used and the
procedure could be reproduced on gram-scale. The group of Zhou also reported a related work using
hexanoate as the acyl donor [18]. Rodriguez published a review on the synthesis, properties and
reactivity of this interesting class of iron catalysts in 2015 [19].
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purpose, an iron-PNP pincer complex was used. The reaction proceeds through a 106 
hydrogen-borrowing strategy where the iron complex temporarily activates the alcohol by 107 
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good yields with this method. Interestingly, hydroamidation could also be performed. 111 

Scheme 1. Bäckvall’s and Rueping’s DKR of sec-alcohols.

The indole ring is a ubiquitous heterocyclic motif in natural products and methods for constructing
chiral polycyclic systems with indole skeletons has attracted considerable attention. In 2017, the
group of Zhou reported the first intramolecular enantioselective cyclopropanation of indoles that was
catalyzed either by iron or copper in the presence of a chiral ligand (Scheme 2) [20]. Many functional
groups were tolerated and various cyclopropanated indoles were prepared in high to excellent yields
and in almost all cases with excellent ee. The mechanism of the enhancement of the enantioselectivity
is currently unknown, although the R2 group was found to be important and had to be different from
hydrogen for the reaction to proceed.
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Scheme 2. Zhou’s enantioselective cyclopropanation.

Hydroamination of alkenes is an atom-economic approach and the amines produced are some of
the most common functionalities found in fine chemicals and pharmaceuticals. Hydroamination of
terminal alkenes typically gives the Markovnikov product selectivity, but in 2019 the group of Wang
reported the first iron-catalyzed anti-Markovnikov addition of allylic alcohols [21]. For this purpose,
an iron-PNP pincer complex was used. The reaction proceeds through a hydrogen-borrowing strategy
where the iron complex temporarily activates the alcohol by dehydrogenation to the α,β-unsaturated
carbonyl compound. The latter compound reacts with an amine to form an iminium ion, which
undergoes conjugate additon at the β-position with another amine followed by hydrolysis and
reduction to give the product. Various amines were produced in good yields with this method.
Interestingly, hydroamidation could also be performed (Scheme 3).
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Scheme 3. Wang’s iron-catalyzed anti-Markovnikov hydroamination.

C-C and C-N bonds are important bonds in organic chemistry and one of the most effective ways
of creating these bonds simultaneously is through the carboamination of olefins. In 2017, the group of
Bao reported the diastereoselective construction of amines and disubstituted β-amino acids through
the carboamination of olefins (Scheme 4) [22]. Aliphatic acids were used as an alkyl source and nitriles
as a nitrogen source. The protocol could be performed on a gram-scale and various carboamination
products were obtained in good yields and excellent diastereoselectivity. The choice of acid was found
to have a strong effect on the diastereoselectivity. TsOH was used for the carboamination of olefins, but
for the carboamination of esters, binary and ternary acids had a more positive effect over monoacids,
with H2SO4 giving the best result. The addition of the nitrile group was found, through Density
Functional Theory (DFT) calculations, to be diastereoselectivity-determining, and hyperconjugation
was proposed to account for the anti-selectivity.
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Scheme 4. Bao’s carboamination.

Organosilicon compounds have significant chemical, physical and bioactive properties and an
example of these compounds is 1-amino-2-silylalkanes, which have, in recent times, emerged as
candidates for pharmaceutical development. Silicon-containing compounds are generally made
through hydrosylilation or dehydrogenative silylation, but in 2017 the group of Luo reported the first
iron-catalyzed synthesis of 1-amino-2-silylalkanes through the 1,2-difunctionalization of styrenes and
conjugated alkenes (Scheme 5) [23]. Di-tert-butyl-peroxide (DTBP) was used as an oxidant in the
reaction. Amines, amides and carbon nucleophiles could be employed and delivered the corresponding
products in mostly good yields. The reaction was proposed to proceed via a silicon-centered radical
from oxidative cleavage of the Si-H bond followed by addition across the C=C bond and a N-H
oxidative functionalization cascade.
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2.2. C-H Bond Activation

The first example of a C-H activation was a Friedel–Crafts reaction reported by Dimroth in
1902, where benzene reacted with mercury (II) acetate to give phenylmercury (II) acetate [24].
Later, in 1955, Murahashi reported the cobalt-catalyzed chelation-assisted C-H functionalization
of (E)-N-1-diphenylmethaneimine to 2-phenylisoindolin-1-one [25]. A great advance in the field
occurred in 1966 when Shilov reported that K2PtCl4 could induce isotope scrambling between methane
and heavy water [26,27]. Shilov’s discovery led to the so called “Shilov system”, which remains to this
day as one of the few catalytic systems that can accomplish selective alkene functionalizations under
mild conditions. In 2008, the synthetic power of C-H activation was expanded to include organoiron
catalysis by Nakamura in his arylation of benzoquinolines (Scheme 6) [28]. An excellent review on the
subject of iron in C-H activation reactions by Nakamura was published in 2017 [29] and a review on
oxidative C-H activation was published by Li in 2014 [30].
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Scheme 6. Nakamura’s C-H activation.

The group of Arnold has in the past used engineered cytochrome P450, which is a type of enzyme
that uses a heme cofactor, to enantioselectively α-hydroxylate arylacetic acid derivatives via C-H
activation [31]. In 2017, they reported the directed evolution of cytochrome P450 monooxygenase, for
enantioselective C-H activation to give C-N bonds (Scheme 7) [32]. It uses a variant of P411 based
on the P450 monooxygenase which has an axial serine ligand on the haem iron instead of the natural
cysteine. The method utilizes a tosyl azide as a nitrene source which generates an iron nitrenoid that
subsequently reacts with an alkane to deliver the C-H amination product. The P411 variant has a
turnover number (TON) of 1300, which is considerably higher than the best reported, to our knowledge,
for traditional chiral transition metal complexes, which is a chiral manganese porphyrin with a turnover
number of 85 [33]. A variety of benzylic tosylamines could be produced with excellent ees.
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Scheme 7. Arnold’s C-H amination.

In 2019, Arnold and coworkers extended their methodology using another variant of P411 in C-H
alkylation using diazoesters (Scheme 8) [34]. The diazo substrate scope could be extended beyond
ester-based reagents to Weinreb amides and diazoketones and gave the corresponding products with
excellent ees and with total turnover numbers (TTN) of up to 2330. These studies together show the
potential for generating C-H alkylation enzymes that can emulate the scope and selectivity of Natures
C-H oxygenation catalysts.
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Scheme 8. Arnold’s sp3 C-H activation.

C(sp3)-H alkylation via an isoelectronic iron carbene intermediate was first reported in 2017 by
the group of White using an iron phthalocyanine (Scheme 9) [35]. Iron carbenes generally prefer
cyclopropanation over C-H oxidation, but, in this case, allylic and benzylic C(sp3)-H bonds could be
alkylated with a broad scope. Mechanistic studies indicated that an electrophilic iron carbene was
mediating homolytic C-H cleavage followed by recombination with the resulting alkyl radical to form
the new C-C bond. The C-H cleavage was found to be partially rate determining.
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Scheme 9. White’s isoelectronic carbene C(sp3)-H oxidation.

In 2018, the group of Ackermann reported on an allene annulation through an iron-catalyzed
C-H/N-H/C-O/C-H functionalization sequence (Scheme 10) [36]. The mechanism was shown to involve
an unprecedented 1,4-iron migration C-H activation manifold. Alkyl chlorides were tolerated under
these reaction conditions, with no cross-coupling being observed. Various dihydroisoquinolones could
be produced through the use of this method in excellent yields and the modular nature of the triazole
group allowed for the synthesis of exo-methylene isoquinolones as well.
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Scheme 10. Ackermann’s allene annulation.

In late 2019, the group of Wang demonstrated an iron-catalyzed α-C-H functionalization of
π-bonds in the hydroxyalkylation of alkynes and olefins (Scheme 11) [37]. Propargylic and allylic C-H
bonds were functionalized with this method and a wide variety of homopropargylic and homoallylic
alcohols could be produced in excellent yields, although with modest stereoselectivity. The key to the
success of this approach is the fact that coordination of the iron catalyst to the unsaturated bond is
known to lower the pKa of a propargylic or allylic proton from ≈38 and ≈43, respectively, to <10 [38].
An (α-allenyl)iron or (π-allyl)iron complex for propargylic or allylic complexes, respectively, is then
formed in the presence of a base, which is utilized as the coupling partner.
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Scheme 11. Wang’s α-C-H functionalization.

In 2018, the group of Liu reported the unprecedented iron(II)-catalyzed fluorination of C(sp3)-H
bonds using alkoxyl radicals (Scheme 12) [39]. The procedure was applied to a wide range of substrates
and it was found that a range of functional groups were tolerated, including halide and hydroxyl
groups. N-fluorobenzenesulfonamide (NFSI) was used as the fluoride source and the substrate scope
could be extended from fluorination to chlorination, amination and alkylation. The authors also
demonstrated a one-pot application of their protocol starting from a simple alkane.
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Scheme 12. Liu’s C-H fluorination.

2.3. Cross-Coupling Reactions

Transition-metal-catalyzed cross coupling protocols have become an important tool in the organic
chemist‘s arsenal. This area has been important in chemistry for about five decades, and in 2010 it
received formal recognition when Richard Heck, Akira Suzuki and Ei-ichi Negishi received the Nobel
prize for palladium-catalyzed cross-couplings in organic synthesis. Although a powerful technique, its
applications have been dominated by the use of expensive palladium- and nickel-based catalysts, which
are often toxic. The most common types of cross coupling reactions using iron are those involving
Grignard reagents as the transmetalating nucleophile. The first example of an alkenylation of alkyl
Grignard reagents with organic halides using iron(III) chloride was reported in 1971 by Kochi and
Tamura (Scheme 13) [40]. A review on the subject of iron-catalyzed cross-coupling reactions with a
focus on mechanistic studies was published in 2016 by Byers [41]. A more focused review on the use of
iron-catalyzed cross-coupling for the synthesis of pharmaceuticals was released in 2018 by Szostak [42].
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Scheme 13. Kochi’s and Tamura’s original alkenylation.

In 2016, Bäckvall and coworkers reported the coupling of propargyl carboxylates and Grignard
reagents using the environmentally benign Fe(acac)3 to synthesize substituted allenes and protected
α-allenols (Scheme 14) [43,44]. The mild reaction conditions tolerate a broad range of functional groups
(silyl ethers, carbamates and acetals) and could be applied to more complex molecules such as steroids.
Tri and tetra substituted allenes were obtained in excellent yields, whereas the yield was found to drop
for less substituted allenes. A variety of alkyl and aryl Grignard reagents could be applied and it was
demonstrated that the protocol can be readily performed on a gram-scale.
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Scheme 14. Bäckvall’s synthesis of substituted allenes and protected α-allenols from carboxylates.

In 2016, the group of Frantz reported on a highly stereoselective iron-catalyzed cross coupling
using FeCl3 to couple Grignard reagents and enol carbamates (Scheme 15) [45]. Many functional
groups, such as ethers, silanes, primary bromides, alkynes and alkenes, were tolerated. In almost
all cases, the yield and E/Z selectivity was excellent, with (E)-carbamates leading to (E)-acrylates
and (Z)-carbamates leading to (Z)-acrylates. This study constitutes the only example so far of an
iron-catalyzed cross-coupling, where an oxygen-based electrophile is favored over a vinylic halide
(a Cl group at R2 in Scheme 15).
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Scheme 15. Frantz’ stereoselective synthesis of acrylates.

Aryl C-glycosides are interesting pharmaceutical candidates because of their biological activities
and resistance to metabolic degradation. In 2017, the group of Nakamura developed a highly
diastereoselective iron-catalyzed cross-coupling of glycosyl halides and aryl metal reagents to form
these compounds using FeCl2 in conjunction with a SciOPP ligand (Scheme 16) [46]. A variety of aryl,
heteroaryl and vinyl metal reagents based on magnesium, zinc, boron and aluminium could be applied.
The reaction was found to proceed through the generation and stereoselective trapping of glycosyl
radical intermediates and represents a rare example of a highly stereoselective carbon-carbon bond
formation based on iron catalysis.
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Heterocyclic motifs are common in biologically active compounds and the presence of heteroatoms
arranged around a quaternary carbon center often endows a certain spacial definition that can be
useful, for example, in enhancing drug-binding. These types of spirocyclic motifs are most often
generated through [2 + 3] cycloadditions, but, in 2017, the group of Sweeney developed an elegant
cross-coupling cascade reaction to generate these motifs with inexpensive Fe(acac)3 as the catalyst
directly from feedstocks chemicals directly available from plant sources (Scheme 17) [47]. The protocol
delivered diastereomerically enriched nitrogen- and oxygen-containing cis-heterospirocycles and was
applicable to substrates with typically sensitive functionalities like esters and aryl chlorides.
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Palladium catalysts have traditionally been ubiquitous in cross-coupling reactions. Utilizing iron
for the Suzuki coupling to provide simple biaryl compounds remained elusive until recently, when the
group of Bedford showed that simple π-coordinating N-pyrrole amides on the aryl halide substrate
could facilitate activation of the relatively unreactive C-X bond (Scheme 18) [48]. The use of an NHC
ligand with the appropriate steric bulk proved crucial. A variety of biaryl products were obtained
in excellent yields. This study demonstrates that iron-catalyzed Suzuki couplings to give biaryls are
achievable, though to make the procedure general, efforts will have to be made to develop non-directed
halide bond activation.
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2.4. Cycloadditions

Medium-sized rings (7–11 membered) are important structural motifs with applications
in the synthesis of polymers, fragrances and other specialty chemicals. Among these cyclic
compounds, eight-membered rings are particularly useful for the synthesis of polyethylene derivatives.
Metal-catalyzed [4 + 4]-cycloaddition of two butadienes to produce 1,5-cyclooctadiene is well
established, although the use of 1,3-dienes is challenging owing to unwanted side-products including
linear oligomers, [2 + 2]- and [4 + 2]-cycloadducts, as well as regio- and stereoisomeric [4 + 4] products.
Catalyst design must be guided with these concerns in mind. Recently, the group of Chirik developed
an iron-catalyzed [4 + 4]-cycloaddition of 1,3-dienes to access these compounds using (imino)pyridine
iron bis-olefin and α-diimine iron complexes (Scheme 19) [49]. A wide variety of 1,5-cyclooctadienes
could be produced in good to excellent yields and with controlled chemo- and regioselectivity. Kinetic
analysis and Mößbauer spectroscopy provided evidence for a mechanism in which oxidative cyclization
of the two dienes determines the regio- and diastereoselectivity.
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Scheme 19. Chirik’s iron-catalyzed [4 + 4]-cycloaddition.

Indolines are pharmaceutically significant aza-heterocycles and the first example of a synthesis
of these compounds via an iron-catalyzed decarboxylative [4 + 1]-cycloaddition was described in
2016 by the group of Xiao. A wide range of functionalized indolines could be prepared from vinyl
benzoxazinanones and sulfur ylides in good to excellent yields in high diastereoselectivity using
the nucleophilic Bu4N[Fe(CO)3(NO)] (TBAFe) catalyst (Scheme 20) [50]. The authors postulated
that the reaction proceeds via the formation of an electrophilic (π-allyl) iron complex, which would
subsequently react with the sulfur ylide and undergo an intramolecular SN2 displacement of dimethyl
sulfide by the tosyl amide anion. This study is noteworthy and constitutes the first example of the
exploitation of an interesting reverse-electron-demand (π-allyl) iron species.
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Scheme 20. Xiaos’ [4 + 1]-cycloaddition.

Oxidative [4 + 2] annulations of imines and alkynes for the synthesis of isoquinolines are well
established [51] but an interesting redox-neutral variant was reported in 2016 by the group of Wang
involving an iron-carbonyl-catalyzed C-H transformation of an arene (Scheme 21) [52]. A wide variety
of isoquinolines were isolated in good to excellent yield and only the cis-stereoisomer was observed.
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Mechanistic studies revealed that there was an essential synergy of dinuclear irons in the oxidative
C-H addition and turnover-limiting H-transfer to the alkyne in the catalytic cycle.Molecules 2020, 25, x FOR PEER REVIEW 11 of 20 
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Scheme 21. Wang’s [4 + 2] annulation/C-H activation.

Cyclotrimerization of alkynes mediated by transition metals is a key approach towards the
synthesis of substituted aromatic compounds. In 2017, the group of Jacobi von Wangelin reported the
iron-catalyzed trimerization of terminal alkynes in the absence of a reducing agent (Scheme 22) [53].
The approach was based on having a simple Fe (II) precatalyst and an internal bulky basic ligand
which could mimic the effect of an external reductant. Terminal alkynes readily reacted, whereas
internal ones did not, which is in accordance with the mechanistic postulate that the reaction is initiated
through alkyne deprotonation. Good regioselectivity was observed with almost exclusive formation of
the 1,2,4-substituted product over the 1,3,5-substituted and a wide variety of arenes were produced in
mostly excellent yields.
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Scheme 22. Jacobi van Wangelin’s cyclotrimerization.

2.5. Isomerizations

Iron-catalyzed isomerization of unsaturated alcohols to carbonyls was first reported by Emerson
and Pettit in the 1960s [54]. In this study, butadiene-(tricarbonyl)iron complexes were exposed to strong
acids to form their corresponding π-allyl iron complexes. When these were reacted with water, η2-(allyl
alcohol)iron complexes formed, which isomerized to the enol-iron complex. Upon decomposition,
butanone was obtained.

Between 2017 and 2019, the groups of Bäckvall [55,56] and Rueping [57,58] independently reported
the iron-catalyzed cycloisomerization of allenols and allenic sulfonamides using iron tricarbonyl
complex I (Scheme 23). An analogous ruthenium-catalyzed cyclization of α-allenols had previously
been reported by Bäckvall [59]. In these protocols, I is activated by TMANO to form the active
catalyst I’. The protocols have a wide scope and deliver the corresponding heterocycles in excellent
yields. Interestingly it was found that through the introduction of a substituent in the R2 position
of the allene, the reaction was made diastereoselective, giving the trans-product predominantly in
the case of dihydrofurans or exclusively in the case of dihydropyrroles [54,55]. The origin of the
diastereoselectivity, revealed through DFT calculations, was the participation of the non-innocent
cyclopentadienyl ligand of the catalyst lowering the transition state, leading to the trans product.
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Scheme 23. Bäckvall’s and Rueping’s cycloisomerizations.

According to the Woodward–Hofmann rules, [2 + 2] cycloadditions of two olefins are
photochemically allowed, but thermally forbidden [60]. Due to this restriction, photochemical [2 + 2]
cycloaddition between two olefins is the most common strategy to form cyclobutanes. In 2018, the
group of Plietker reported an unusual cycloisomerization of enynes using a cationic iron nitrosyl
catalyst (Scheme 24) [61]. Their 1,6- and 1,7-enyneacetates were expected to isomerize to allenes, but
instead isomerized to their corresponding bicyclo [3.2.0] or [4.2.0] alkylamides in good to excellent yield
under mild conditions. The reaction tolerates esters, amides and halides, and afforded the products
generally in good to high yields.
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Scheme 24. Plietker’s cycloisomerization of enynes.

Iron carbonyl complexes have been used in the isomerization of allylic alcohols, but a major
drawback associated with the use of these complexes is the fact that they require UV light for activation
and are thus not amenable to industrial synthesis [62]. In 2018, the group of de Vries reported the use
of a pincer PNP-iron complex for the isomerization of allylic alcohols and found it to be an excellent
racemization catalyst in conjunction with tBuOK (Scheme 25) [63]. Both benzylic and aliphatic allylic
and homoallylic alcohols could be isomerized in mostly excellent yields. The sterically hindered
trans-sobrerol could be reduced as well, although in a modest yield of 36%. A two-step hydrogen
borrowing mechanism involving dehydrogenation-hydrogenation isomerization was proposed on the
basis of DFT calculations.
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An elegant cascade reaction involving cross-coupling and cycloisomerization forming two C-C
bonds and highly functionalized 1,3-dienes with a stereodefined tetrasubstituted alkene unit, which is
difficult to obtain by other means, was developed in 2016 by the group of Fürstner (Scheme 26) [64].
A series of X-ray structures showed that the substituent delivered by the Grignard reagent and
the transferred alkenyl substituent were on the same side of the central tetrasubstituted alkene
unit. Any loss of stereoselectivity is likely the result of a secondary isomerization process. Many
variously substituted 1,3-dienes could be produced with this method in good to excellent yield and
enantioselectivity and both primary and secondary Grignard reagents could be used.
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2.6. Redox Reactions

Redox chemistry is what iron has traditionally been most known for, due to its multiple possible
oxidation states. It is a very important field, not only for organic synthesis but also for biochemistry
and industrial applications. A review on the use of iron (and other base metals) in borrowing hydrogen
strategies was released by Morrill in 2019 [65]. A review on iron in reduction and hydrometalation was
published in 2019 by Darcel [66].

One of the main bottlenecks in synthetic fuel production powered by sunlight or electricity is
the oxidation of water. The use of abundant and environmentally benign metals for this purpose
is desireable and, to this end, the group of Masaoka, in 2016, reported the use of a pentanuclear
iron catalyst [FeII

4FeIII(µ3-O)(µ-L)6]3+ ((L = 3,5-bis(2-pyridyl)pyrazole) [67]. A multinuclear core
typically gives rise to a redox flexibility that would be expected to be favourable in a reaction involving
multi-electron transfer, such as water oxidation, as is known from enzyme examples in nature such as
photosystem II in plants where Mn4Ca clusters are used. The turnover frequency was found to be 1900
per second, which is about three orders of magnitude greater than that of other iron-based systems,
but despite the advantage of this system, it required a H2O/MeCN mixture and a large overpotential of
0.5 V, preventing it from practical use. These findings do, however, clearly indicate that efficient water
oxidation protocols can be developed based on multinuclear iron catalysts.

Oxidation reactions are of fundamental interest in organic chemistry, and an ideal oxidant to use
in such processes is O2. To this end, the group of Bäckvall in 2020 reported the first example of a
biomimetic oxidation of alcohols (Scheme 27) [68]. Various primary and secondary alcohols could be
oxidized to their corresponding aldehydes and ketones with this method in good to excellent yields.
The process was inspired by the electron transport chain used in living organisms and involves coupled
redox processes that lead to a low-energy pathway through a stepwise oxidation using electron transfer
mediators (ETMs) with O2 as the terminal oxidant. An iron(II)-catalyst was used for this purpose,
which exhibited surprising stability in the presence of O2, in addition to a benzoquinone-derivative
and a Co(salen)-type complex as ETMs.
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In 2016, the group of Costas reported the first iron-catalyzed and highly enantioselective 411 
epoxidation of these compounds using a bulky tetradentate iron catalyst (Scheme 29) [70]. The 412 
reaction was found to proceed via the generation of an electrophilic oxidant, which is unusual for 413 
this class of reactions, where nucleophilic oxidants usually account for the reaction through a Weitz–414 
Scheffer-type mechanism. 2-Ethylhexanoic acid (2-eha) was found to be necessary as an additive to 415 
help activate H2O2. Various epoxides could be produced in mostly excellent yields and excellent ees. 416 

Scheme 27. Bäckvall’s biomimetic oxidation of alcohols.

The oxidation of alcohols to carboxylic acids typically involves the use of stoichiometric amounts
of toxic oxidants, such as KMnO4 or CrO3. In 2016, the group of Ma developed an iron-catalyzed
aerobic oxidation of alcohols to carboxylic acids to circumvent this problem (Scheme 28) [69]. A wide
variety of alcohols (and aldehydes) could be oxidized to their corresponding carboxylic acids and
synthetically useful groups such as halides, alkynes, olefins, esters and ethers were tolerated. The
synthetic application of this protocol was also demonstrated through the first total synthesis of the
naturally occurring allene, phlomic acid, and in a 55 g synthesis of palmitic acid.
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Scheme 28. Ma’s iron-catalyzed aerobic oxidation of alcohols.

Cyclic α-epoxide enones are structures found routinely in natural products and are also useful
synthons. Producing these compounds through enantioselective epoxidation is notoriously difficult.
In 2016, the group of Costas reported the first iron-catalyzed and highly enantioselective epoxidation
of these compounds using a bulky tetradentate iron catalyst (Scheme 29) [70]. The reaction was found
to proceed via the generation of an electrophilic oxidant, which is unusual for this class of reactions,
where nucleophilic oxidants usually account for the reaction through a Weitz–Scheffer-type mechanism.
2-Ethylhexanoic acid (2-eha) was found to be necessary as an additive to help activate H2O2. Various
epoxides could be produced in mostly excellent yields and excellent ees.
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Scheme 29. Costas’ enantioselective epoxidation.

A number of pharmaceutically active compounds for psychiatric therapy or cardic arrythmias
have optically active alcohols or oxaheterocycle motifs. The standard methods of synthesizing these
compounds rely on expensive and partly toxic noble metals and it would thus be advantageous
to employ base metals for this purpose. In 2018, the group of Gade developed an enantioselective
reduction of functionalized ketones to form these compounds (Scheme 30) [71]. A chiral pincer
“boxmi”-type iron catalyst with a low catalyst loading of 0.5 mol% was used which provided access to a
broad range of functionalized halohydrins, oxaheterocycles and amino alcohols in excellent yields and
mostly excellent ees. The protocol could also be performed on a gram scale to form a chiral halohydrin
that forms the basis for the preparation of the antidepressant (R)-fluoxetine.

Molecules 2020, 25, x FOR PEER REVIEW 15 of 20 

 

 417 

Scheme 29. Costas’ enantioselective epoxidation. 418 

A number of pharmaceutically active compounds for psychiatric therapy or cardic arrythmias 419 
have optically active alcohols or oxaheterocycle motifs. The standard methods of synthesizing these 420 
compounds rely on expensive and partly toxic noble metals and it would thus be advantageous to 421 
employ base metals for this purpose. In 2018, the group of Gade developed an enantioselective 422 
reduction of functionalized ketones to form these compounds (Scheme 30) [71]. A chiral pincer 423 
“boxmi”-type iron catalyst with a low catalyst loading of 0.5 mol% was used which provided access 424 
to a broad range of functionalized halohydrins, oxaheterocycles and amino alcohols in excellent 425 
yields and mostly excellent ees. The protocol could also be performed on a gram scale to form a 426 
chiral halohydrin that forms the basis for the preparation of the antidepressant (R)-fluoxetine. 427 

 428 
Scheme 30. Gade’s enantioselective reduction of functionalized ketones. 429 

Transfer hydrogenation processes are attractive alternatives to classical catalytic hydrogenation 430 
since the use of high pressure and expensive reactors can be avoided. The group of de Vries in 2019 431 
reported the base-free transfer hydrogenation of esters using EtOH as the hydrogen source (Scheme 432 
31) [72]. It is interesting to note that EtOH can be used as the reductant, which is usually a problem, 433 
since the acetaldehyde formed can potentially deactivate the catalyst by decarbonylation. Various 434 
aliphatic and aromatic esters, including lactones, could be reduced to their corresponding alcohols in 435 
good to excellent yields. In addition the reaction could be scaled up tenfold. Similar iron-based 436 
protocols using a base are known to reduce C=C bonds [73], but in this base-free protocol, esters 437 
were selectively reduced. One important topic in green chemistry is the recycling of polymers by 438 
conversion to their monomers. This study shows the first transfer-hydrogenation-catalyzed 439 
depolymerization of a polyester (Dynacol 7360, made from adipic acid and 1,6-hexanediol), 440 
demonstrating the possibility of using iron-catalysis for the recycling of plastic waste. 441 

Scheme 30. Gade’s enantioselective reduction of functionalized ketones.

Transfer hydrogenation processes are attractive alternatives to classical catalytic hydrogenation
since the use of high pressure and expensive reactors can be avoided. The group of de Vries
in 2019 reported the base-free transfer hydrogenation of esters using EtOH as the hydrogen
source (Scheme 31) [72]. It is interesting to note that EtOH can be used as the reductant, which
is usually a problem, since the acetaldehyde formed can potentially deactivate the catalyst by
decarbonylation. Various aliphatic and aromatic esters, including lactones, could be reduced to
their corresponding alcohols in good to excellent yields. In addition the reaction could be scaled
up tenfold. Similar iron-based protocols using a base are known to reduce C=C bonds [73],
but in this base-free protocol, esters were selectively reduced. One important topic in green
chemistry is the recycling of polymers by conversion to their monomers. This study shows the
first transfer-hydrogenation-catalyzed depolymerization of a polyester (Dynacol 7360, made from
adipic acid and 1,6-hexanediol), demonstrating the possibility of using iron-catalysis for the recycling
of plastic waste.
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Scheme 31. de Vries’ transfer hydrogenation of esters.

Simple carboxylic acids are excellent carbonyl donors for functionalized carboxylic acid derivatives.
Generating the enolate, enediolate, of a carboxylic acid is, however, quite challenging, due to the low
acidity of the α-proton. The Brønsted acidity of the carboxylic acid is a further complication for the
deprotonation of the α-proton, and therefore two equivalents of a strong base such as LDA are normally
required for efficient enolization. In 2020, the group of Ohshima reported the α-functionalization of
carboxylic acids through an iron-catalyzed 1e- radical process [74]. The use of molecular sieves was
found to be crucial in suppressing undesired decarboxylation and the alkali metal salt component of
the sieves (sodium or potassium carboxylate) was found to play a crucial role in promoting the reaction.
The reaction had wide scope and functional groups typically sensitive to oxidation conditions, such as
primary benzylic alcohols and thioethers were tolerated. This study constitutes the first example of
the generation of redox-active heterobimetallic enediolates from unprotected carboxylic acids under
catalytic conditions (Scheme 32).
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Scheme 32. Ohshima’s α-oxidation of carboxylic acids.

3. Conclusions

This review has highlighted recent advances in iron-catalysis with respect to organic synthesis.
This field has expanded greatly in recent years and giving a detailed account of each reaction category
is an impossible task for a short review of this type. Herein, only key representative examples are
given, and interested readers are advised to look into the reviews referenced throughout the text.

As is clear from the examples given in this review, iron complexes are capable of catalyzing a
wide range of reactions in organic synthesis. This potential of iron catalysis has not been fully realized,
however, and noble transition metal protocols continue to define the state of the art when it comes to
transition metal catalysis. The field is still in its infancy, but it is fair to say that iron (and other base
metals) may very well challenge this dominance of noble transition metals in the foreseeable future.
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