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Memory for verbal material improves when words form familiar chunks. But how does the improvement
due to chunking come about? Two possible explanations are that the input might be actively recoded into
chunks, each of which takes up less memory capacity than items not forming part of a chunk (a form of
data compression), or that chunking is based on redintegration. If chunking is achieved by redintegration,
representations of chunks exist only in long-term memory (LTM) and help to reconstructing degraded
traces in short-term memory (STM). In 6 experiments using 2-alternative forced choice recognition and
immediate serial recall we find that when chunks are small (2 words) they display a pattern suggestive
of redintegration, whereas larger chunks (3 words), show a pattern consistent with data compression. This
concurs with previous data showing that there is a cost involved in recoding material into chunks in STM.
With smaller chunks this cost seems to outweigh the benefits of recoding words into chunks.
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Memory for lists of words, digits, or letters tends to improve
when the input can be organized into familiar chunks (e.g., Cowan,
Chen, & Rouder, 2004; Miller, 1956; Simon, 1974). Miller argued
this was because the chunk was the underlying unit of storage in
short-term memory (STM). The capacity of STM was not deter-
mined by the number of items that could be stored, nor by the
amount of information that could be stored, but by the number of
chunks. Famously, Miller suggested that the capacity of STM was
seven plus or minus two chunks. Later work, notably by Cowan
(2001), has favored a lower estimate of capacity of three to five
chunks. However, the notion that the underlying capacity of STM
is determined by the number of chunks remains the same. Miller
suggested that the simplest way to perform chunking was “to
group the input events, apply a new name to the group, and then
remember the new name rather than the original input events” (p.
93). That is, chunking is achieved by recoding the input into a
different vocabulary.

Chunking by recoding can be seen as an example of data
compression. This capitalizes on redundancy in the input to form

a new representation of the input or message that can be transmit-
ted using fewer bits of information (for an extensive discussion of
data compression in STM, see Norris & Kalm, 2019). Although
there is no doubt that the presence of familiar groups of items in
the input leads to better performance, until recently there has been
little direct evidence that this comes about through data compres-
sion (Brady, Konkle, & Alvarez, 2009; Thalmann, Souza, & Ober-
auer, 2019). Indeed, in the case of verbal STM there is evidence for
the operation of a quite different mechanism—redintegration (Bot-
vinick, 2005; Botvinick & Bylsma, 2005; Jones & Farrell, 2018).
According to a redintegration view, chunks are not recoded into a
different representation that is then stored in STM. Instead, the
representations of chunks exist only in LTM, and these LTM
representations allow degraded traces in STM to be more readily
reconstructed. The benefit of having chunks is thus not mediated
by recoding and hence does not lead to compression of the repre-
sentations in STM. Although the basic prediction from both ac-
counts is that performance is improved by the presence of chunks,
there are circumstances where they make different predictions.
Here we report six experiments designed to compare these predic-
tions.

The paradigmatic example of chunking by recoding comes from
a study by Smith, reported in Miller (1956). Smith taught himself
to recode lists of binary digits as octal digits (e.g., recode 101 as
5). Every chunk of three binary digits could therefore be recoded
as a single octal digit. Smith could remember about 12 octal digits,
but by recoding triples of binary digits as octal he could recall
about 36 binary digits. Cowan and colleagues (Chen & Cowan,
2005, 2009; Cowan & Chen, 2008; Cowan et al., 2004; Cowan,
Rouder, Blume, & Saults, 2012) have performed more systematic
experimental investigations of chunking to determine whether the
capacity of verbal STM really is determined by the number of
chunks that can be stored. The general procedure in these studies
was to have participants learn multiword chunks in a cued recall
task. They were then tested on either free recall, serial recall, or
forced-choice recognition of lists containing different numbers of
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chunks. Memory performance typically improved when lists were
made up of larger chunks.

In one study, Chen and Cowan (2009) trained participants with
either pairs of words (e.g., brick–hat, king–desk) or individual
words (singletons), and then had them perform serial recall with
lists of two, four, six, eight, or 12 singletons, or four or six learned
pairs. Participants had to perform articulatory suppression during
list presentation and then to type their response. Responses were
scored both in terms of the number of items recalled in their
correct position (strict scoring) or the number of items recalled
anywhere (lenient scoring). If recall were determined by the num-
ber of chunks that could be stored, performance on lists of four
pairs should be the same as lists of four singletons because they
both contain the same number of chunks. That is, twice as many
items should be recalled when lists comprise of pairs than when
they comprise of singletons. This is what was found, but only
when using lenient scoring. With strict scoring, the number of
items recalled was also influenced by the number of items in the
list. In an earlier study, Chen and Cowan (2005) had found no sign
of a chunk-based limit when participants were not required to
perform articulatory suppression. In fact, for eight-item lists there
was no difference between lists consisting of either eight singles or
four pairs. Considering both of these studies together, Chen and
Cowan (2009) concluded that, “There is no apparent chunk-based
constant capacity for strict serial recall” (p. 1425).

Cowan et al. (2012) extended this work by examining recall of
a much larger range of list lengths and chunk sizes. As in their
previous studies, they found that recall performance was not a
simple function of the number of chunks in the list. Recall tended
to decrease as the number of items in the list increased, even when
the number of chunks remained the same. When lists were made
longer by adding more singletons, performance was better than
would be expected by constant chunk capacity. Cowan et al. fitted
a number of different mathematical models of chunking to the
data. The model that provided the best fit to the data (Model VIII)
added two parameters to the simple constant capacity model. The
first allowed for the possibility of chunk decomposition; some
chunks may break down into their components and no longer
function as a single chunk. This accounts for the poorer than
expected performance with larger chunks. The second allowed for
the possibility that some chunks may be stored in activated LTM,
which has unlimited capacity. This accommodates the finding that
recall does not decline as much as would be expected when lists
contain more singletons. Note that none of these models had
anything to say about how chunks are represented in either STM or
LTM.

Although the extra factors in Cowan et al.’s (2012) model mean
that performance is not a direct function of the number of chunks
in the input, the model nevertheless retains the assumption that the
underlying capacity of STM is determined by the number of
chunks that can be stored. If there are C chunks and S slots, each
chunk will be stored in STM with a probability S/C. Cowan et al.’s
mathematical models have nothing to say about the form that
chunks might take in STM. Earlier, Chen and Cowan (2009)
suggested that “An advantage of acquiring multiword chunks is
that it is then unnecessary to keep each word in capacity-limited
working memory, but just some index to each chunk, perhaps the
chunk’s first word” (p. 1428). This represents the simplest possible
account of chunking. Chunking need not require chunks to be

recoded into a completely different vocabulary (e.g., binary into
octal) but might simply involve deleting redundant information.

Evidence for Compression

Although chunking can be seen as a form of data compression,
few studies of STM (Brady et al., 2009; Chekaf, Cowan, & Mathy,
2016; Huang & Awh, 2018; Jones & Farrell, 2018; Mathy &
Feldman, 2012; Thalmann et al., 2019) have explicitly considered
chunking in this way. Mathy and Feldman proposed that serial
recall from STM may involve data compression. They found that
participants had better memory for lists of digits when they con-
tained runs of increasing or decreasing digits. They suggested that
the presence of regular patterns enabled the lists to be compressed
so as to take up less capacity, but they did not offer any sugges-
tions as to how that compression might operate.

One of the first indications of a genuine effect of data compres-
sion in memory came from a study of visual STM by Brady et al.
(2009). In their first experiment participants saw a display con-
sisting of four circles arranged in a diamond. Each circle had two
concentric rings of different colors, and the displays always con-
tained eight different colors. The display was presented for 1 s
after which they saw a second display that indicated which ring
they had to recall. Brady et al. varied the frequency with which
different colors were paired together in the circles. Individual
colors always appeared with equal frequency. Not surprisingly,
colors appearing in the pairs that had been presented more fre-
quently were recalled better. Furthermore, their estimate of the
number of items that could be held in memory increased over the
course of the experiment. However, the critical finding was that, in
displays containing high probability pairs, recall of colors in low
probability pairs also improved relative to displays containing only
low probability pairs. This implies that the presence of high
probability pairs allows the representation of the entire display to
be encoded more efficiently. The data can be interpreted in terms
of chunking on the assumption that high probability pairs come to
be treated as chunks, which take up less memory capacity and
hence free up space for pairs that do not form chunks. Thus,
chunking leads to data compression.

Brady et al. (2009) constructed a Bayesian model of how their
participants learned the probabilities of pairs. Treating each pair as
a separate item (i.e., blue outside, red inside might be pair x) they
showed that performance was inversely correlated with the length
of the Huffman code for the display. A Huffman code is a com-
pression algorithm that assigns shorter representations to more
frequently occurring symbols in the input. Even though memory
capacity as measured in terms of number of items stored increased
over the course of the experiment, the estimated capacity ex-
pressed in bits, as derived from the effective Huffman code,
remained constant. That is, there was no evidence that practice
with the task improved underlying memory capacity, but it does
improve how that capacity can be used. Although Brady et al.
determined memory capacity in terms of the length of a Huffman
code, they are neutral with respect to whether compression is
performed by something akin to Huffman coding or chunking.
Indeed, they show that a chunking model can also give a good
account of their data. They suggest that chunking can be thought
of as a discrete approximation to a more graded form of compres-
sion. However, as they note, the standard Huffman coding algo-
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rithm is probably a poor model of the psychological processes
involved. Huffman coding is ill-suited to modeling the process of
adapting to changes in probabilities over time.1 A Huffman code
would need to be continually recomputed over all possible color
pairs and the codes assigned to different pairs will change as their
probabilities change. In effect, the label assigned to a particular
chunk would keep on changing throughout the course of the
experiment. If some items come to be presented more often, this
naturally changes the relative probabilities of all items and the
codes for all items will need to be updated.

Brady et al.’s (2009) data provide an important qualification to
Miller’s claim that, “The span of immediate memory seems to be
almost independent of the number of bits per chunk” (p. 93). In
Brady et al.’s experiments there is an improvement in performance
due to chunking, but the memory capacity in bits remains constant.
Chunking has enabled that capacity to be used more efficiently in
coding the choices that must be made in the experiment.

Thalmann et al. (2019) investigated compression in verbal STM
using similar logic to the Brady et al. (2009) study. As in Cowan
et al.’s (2012) experiments, they familiarized participants with
three word chunks, or used existing three-letter acronyms. They
found that recall of novel three-word triples was improved when
the list also contained a familiar chunk. That is, as in Brady et al.’s
study, it appeared that the presence of a chunk in the list made
more storage capacity available for other items in the list. The
experiments to be reported here use a similar design, however, in
addition to investigating the idea that chunking is achieved by
some form of data compression, we also address the possibility
that chunking may sometimes be entirely a consequence of redin-
tegration.

Redintegration and Bayesian Inference

A distinctive feature of chunking by data compression is that
chunking must change the nature of the representations stored in
STM. To gain the benefit of compression the input must be
recoded into a different form than the original input. An alternative
possibility is that chunks are represented only in LTM and the
contents of STM remain unchanged. According to this view,
whenever information to be remembered contains familiar chunks,
memory will improve as a consequence of redintegration (Botvin-
ick, 2005; Botvinick & Bylsma, 2005; Brown & Hulme, 1995;
Hulme, Maughan, & Brown, 1991; Hulme et al., 1997; Jones &
Farrell, 2018; Lewandowsky & Farrell, 2000; Poirier & Saint-
Aubin, 1996; Roodenrys & Miller, 2008; Schweickert, 1993;
Thorn, Gathercole, & Frankish, 2002). That is, the presence of
LTM representations of chunks facilitates reconstruction of de-
graded traces in STM. Redintegration has been proposed, for
example, as an explanation for the superior recall of high- than
low-frequency words, or words than nonwords (Hulme et al.,
1991; Hulme, Roodenrys, Brown, & Mercer, 1995). Redintegra-
tion can be characterized as a process of Bayesian inference
(Botvinick, 2005; Botvinick & Bylsma, 2005); chunks in LTM
provide a set of priors which can be used to compute the posterior
probabilities of list items given the data in memory. According to
Bayes’s theorem,

posteriori � likelihoodi · priori.

With a more degraded representation in STM, representations
with stronger priors (sequences of words forming familiar chunks
in LTM) will necessarily be better recalled than representations
with weaker priors (no chunks in STM). Chunks, in effect, create
a bias toward recalling more probable items. Consistent with this,
Hulme et al. (1997) reported that low-frequency words tended to
be recalled as a similar sounding high-frequency word (“list”
substituted for “lisp”). Consider the case where the item to be
remembered is “lisp” but the representation of “lisp” in STM is
degraded. If there is some ambiguity in the representation there
will be some likelihood that the input is actually “list.”

However, even if likelihoodlisp � likelihoodlist, if priorlist is
much greater than priorlisp, posteriorlist may well be greater than
posteriorlisp. In contrast, given a degraded representation of “lisp,”
the likelihood of (evidence for) a dissimilar word such as “truth”
will be very small, and even a large frequency imbalance in favor
of “truth” will not lead to it being recalled in error.

Botvinick and Bylsma (2005) found evidence for a similar
phenomenon in serial recall which they called the “good-neighbor”
effect. They tested recall of sequences of pseudowords after par-
ticipants had been exposed to an artificial grammar. In the expo-
sure phases, participants might hear sequences including
ABABAB, ABBAAB, and AABABB, where ABABAB occurs
more frequently than the other two. The sequence ABBAAB
therefore has a higher probability “good neighbor” ABABAB,
which differs from it by just one transposition (BA ¡ AB). In
contrast, the sequence AABABB, which has the same probability
of occurring in the experiment, does not have a good neighbor—it
cannot be transformed into any other sequence in the experiment
simply by making a single transposition. Following exactly the
same logic as for the Hulme et al. (1997) study, a degraded
representation of ABBAAB will sometimes be erroneously re-
called as its higher frequency good neighbor—ABABAB. It will
therefore tend to have a higher error rate than a sequence such as
AABABB which does not have a good neighbor. This is what they
found. Although this is exactly what would be expected from a
Bayesian account of redintegration, there is no reason to expect
such a result if people had learned sequences by chunking.

Distinguishing Between Compression and
Redintegration

Given that both data compression and redintegration predict that
lists of items containing familiar chunks will be easier to remem-
ber than those that do not, is it possible to distinguish between
them? Fortunately, as demonstrated by Brady et al. (2009) and by
Thalmann et al. (2019), there are some conditions where they
make different predictions.

For expository purposes, we will frame our discussion of com-
pression in terms of a simple fixed-capacity slot model where each
slot can store a single chunk. A chunk might be a single word or
some representation of (or pointer to) a multiword chunk. Com-
pression is achieved by recoding single words into larger chunks.
However, the logic of the argument applies quite generally to all
forms of compression. For example, Brady et al.’s (2009) model
makes no commitment to slots.

1 The rather more complicated Adaptive Huffman code can update the
code as it processes a message but is less efficient.
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Consider the task of recalling a list where only some of the items
form chunks. The compression view implies that the formation of
chunks will release capacity that can be used to store more items.
For example, if chunking two words together frees up an extra slot
in memory, that slot can be used to store one more single item or
one more chunk. That is, chunking should benefit all items in the
list, not just the multiword chunks themselves. This will also be the
case for Cowan et al.’s (2012) model where the probability of
recalling a chunk is a function of the ratio of the number of slots
to the number of chunks.

A further prediction of the simple model is that the presence of
chunks should benefit multiword chunks and singletons to the
same extent. The probability of storing each chunk is the same as
the probability of storing each singleton; chunks and singletons
have the same probability of occupying one of the slots. Given that
the probability of remembering an item in multiword chunk must
be the same as the probability of remembering the chunk, the
probability of recalling any single word will be the same regardless
of whether or not it is part of a chunk. The chunking model
therefore predicts that chunking will improve the recall of all items
in the list, and they will all be improved to the same extent.2

In contrast, the redintegration view predicts that chunking should
have no influence on the amount of information or on the form of the
representations actually stored in STM. Chunking does not influence
the contents of STM, merely how well they can be retrieved. Conse-
quently, redintegration will benefit only those items that form chunks.
Overall performance will improve as the number of chunks in a list
increases, but this should be entirely due to superior recall of the
chunks. The performance on the remaining items should remain
constant.

The critical difference between the two accounts is therefore
that compression assumes that chunking alters the representations
in STM. The formation of chunks in STM frees up STM capacity,
which can then be used to store more items. In redintegration
theories, chunks exist only in LTM. A multiword chunk is repre-
sented in STM in exactly the same way as that sequence of words
would be if they did not form chunks. Redintegration benefits only
those items that correspond to chunks in LTM and will not help
other items in a list.

In the following experiments we test the predictions of these
accounts using the same procedures as Cowan et al. (2012). We
vary the size of the chunks used in our different experiments (two
words in Experiments 1–3, three in Experiments 4–6) to see
whether this has an influence on whether chunking is achieved by
compression or redintegration. In the first three experiments, the
chunks are prelearned pairs of words and in the next three exper-
iments the chunks are word triples. Our procedure differs substan-
tially from Thalmann et al. in that we used the same immediate
serial recall and 2AFC recognition tasks used by Cowan. Thal-
mann et al. used a nonstandard cued serial recall procedure. In
their experiments, words or letters were presented one at a time
from left to right on an imaginary 3 � 3 grid. Each row corre-
sponded to a learned chunk, three items in a novel sequence, or a
single item. At recall, participants were cued to recall the items
from each row in the correct order with the order of the cued rows
being unpredictable. By requiring participants to recall each row,
which might be a whole chunk, separately, they may have encour-
aged use a chunking strategy in a way not representative of
standard whole list recall methods. Participants are forced to

prepare to recall the whole chunk as a unit. It remains possible that
their chunking effects might be due to chunks being easier to
manipulate in this task rather than to any intrinsic advantage in
STM for chunks. Furthermore, they used only this variant of serial
recall.

Experiments

Whereas Cowan et al. (2012) focused on performance for the
entire experimental lists and how that varied as a function of list
length in items and chunks, here our concern will be with lists
containing a fixed number of items but where the number of
chunks is varied. For example, in Experiments 1–3, lists were
seven-items long and could either contain no prelearned pairs
(only singletons) or one, two or three pairs plus singletons. Fol-
lowing Cowan and colleagues we refer to singles, pairs and triples
as each being a single chunk. Each should occupy one slot in
memory. Consequently, lists with more pairs or triples are de-
scribed as containing fewer chunks. Experiments 4, 5 and 6 use
lists where the chunks are triples. The central question here is what
happens when more of the items in a list form chunks? Will that
confer an advantage to all items in the list or only to items in those
chunks? That is, will we see evidence of compression or will we
see evidence of redintegration?

Experiments 1, 2, and 4 use the same forced-choice recognition
task used by Cowan et al. (2012), whereas Experiments 3, 5, and
6 use an immediate serial recall task modeled on the experiments
of Chen and Cowan (2005, 2009). Experiment 5 used six-item lists
and the remainder used seven-item lists.

Although Chen and Cowan (2005, 2009) found that recall ben-
efitted from chunking in all of their studies, their effect of chunk-
ing was greatest when lists were presented under articulatory
suppression. Only then did they find any evidence of constant
chunk-based capacity. Even that was only observed with their
lenient scoring method (number of items recalled regardless of
position). Therefore, to maximize the benefit of chunking in our
experiments we had our participants perform suppression in all but
Experiment 6. Note that Cowan et al. (2012) used articulatory
suppression in all of their experiments. All experiments were
approved by the Cambridge Psychology Research Ethics Commit-
tee (CPREC 2009.57). In all six experiments we used 28 partici-
pants, which is more than used by Thalmann et al. (2019) in their
first two experiments (n � 20) and similar to the number used by
Cowan et al. (2012) in their three experiments (ns � 26, 26, and
27). Furthermore, Experiment 2 is a near-replication of Experi-
ment 1. The design of all six experiments is shown in Table 1. All
of our analyses are based on Bayes factors, and the results of all six
experiments show that we have sufficient power to both reject and
accept the hypotheses of interest.

Experiments 1–3: Two-Item Chunks

Experiment 1: 2AFC recognition. In the experiments re-
ported by Cowan and colleagues, their general procedure was to
vary the length of the lists while maintaining the number of
chunks. In our experiments the list length was fixed but the number

2 Note that this latter prediction may not hold for all possible models of
compression.
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of chunks within the list varied. All lists contained seven words,
and lists could contain zero, one, two, or three two-word chunks,
with the remaining words being singletons that had never been
learned as part of chunks. The order of the pairs and singletons was
randomized. This mixing of pairs and singletons inevitably im-
poses constraints on the location of the singletons. In lists con-
taining only one singleton, that item can never appear in Positions
2, 4 or 6. In all three experiments, there were eight blocks of eight
trials. Apart from the differences in list composition, the general
procedure was modeled as closely as possible on that used by
Cowan et al. (2012).

In Experiment 1 we presented lists in which number of words
was always seven, but number of chunks varied as shown in
Table 2.

All experiments were approved by the Cambridge Psychology
Research Ethics Committee and participants gave written consent
to take part in the study. Participants were given a verbal debrief-
ing when requested. All experiments lasted approximately 75 min
and participants were paid 10UKP for participation.

Participants. Twenty-eight members of the Cognition and
Brain Sciences Unit Volunteer Panel completed the experiment
(20 women, Mage � 21.4 years).

Materials and procedure. The experiment consisted of three
phases: chunk familiarization, articulatory suppression training,
and list memory. The words were presented on a computer screen
in an Arial 12-point lowercase typeface using DMDX (Forster &
Forster, 2003), All stimuli were constructed from a pool of 44
word pairs (see the Appendix). Most of the word pairs are likely to
have already been familiar (e.g., grass seed, oil can, radio show).
For each participant, 12 pairs were selected at random to be used
as complete pairs. For each participant either the first or the second

words of the remaining 32 pairs were used as the singletons.
Stimulus sequences were created by programs written in Python.

In the familiarization phase, participants saw a word or pair of
words presented for 1 s just above the center of the computer
screen. Immediately afterward, participants saw a single probe
word presented just below the center of the screen and surrounded
by question marks. The probe word could be one of the words just
seen or another word from the same condition (pair or singleton).
The participant had 1 s in which to press one of two keys to
indicate whether the probe word was part of the chunk just shown
or not. Immediate feedback was provided indicating whether their
response was correct, incorrect, or too slow (�1 s). There were
176 familiarization trials during which each word was shown at
least four times; twice at study and twice as a probe word. Probe
words appeared at least once as a correct probe and once as a
foil.

There was a brief articulatory suppression training session
where participants were trained to repeat the word the aloud in
time with a computer-presented metronome. This was followed by
the list memory task (see Figure 1). Following the procedure of
Cowan et al. (2012), all items were presented as chunks. That is,
both words in the pair were displayed together, and pairs and
singletons were both presented for 1 s. There were eight blocks of
eight trials.

Immediately before presentation of the study list participants
saw a message instructing them to begin performing articulatory
suppression. They were required to say the word the aloud two
times per second until the end of the lists which was indicated by
a row of asterisks.

Memory for each word in the list was probed using a 2AFC
recognition task. Each probe display consisted of a target word and
a foil word separated by a question mark, and the task was to
indicate which word had appeared in the list. Foil words were
drawn from the same condition (single or pair) as the target word.
The order of the probes was random subject to the constraint that
items in pairs were not probed successively. There was a short
break between blocks.

Results. In all the experiments reported here the primary ques-
tion is whether the evidence favors the hypothesis that there is an
effect of compression or the hypothesis that there is no effect of
compression. This comparison of the relative merits of two alter-
native hypotheses is best achieved by computing Bayes factors
(Kass & Raftery, 1995). Although all our conclusions will be
based on Bayes factors, we also report standard frequentist anal-

Table 1
Design Features of the Six Experiments

Experiment Task Chunk size
Chunk

presentation List length Extra training
Articulatory
suppression

1 2AFC Pair Chunk 7 No Yes
2 2AFC Pair Chunk 7 Yes Yes
3 ISR Pair Single 7 No Yes
4 2AFC Triple Chunk 7 Yes Yes
5 ISR Triple Single 6 Yes Yes
6 ISR Triple Single 7 Yes No

Note. 2AFC � 2-alternative forced choice; ISR � immediate serial recall. Chunk presentation indicates
whether items were presented singly or as chunks. See text for details of extra training.

Table 2
Composition of Lists in Experiments 1–3

List condition Number of words Number of chunks

1222 7 4
11122 7 5
111112 7 6
1111111 7 7

Note. Conditions indicate composition of the list and not the order in
which chunks of a give size appear. For example, 1222 refers to a list with
1 singleton and 3 pairs, irrespective of where in the list the singleton
appears.
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yses of variance (ANOVAs). In almost all cases where the Bayes
factor favors the hypothesis that there is compression, the effect is
also significant in the ANOVA. Conversely, when the Bayes factor
favors the hypothesis that there is no compression, the correspond-
ing effect in the ANOVA is nonsignificant. In describing the
results, we use the verbal labels suggested by Jeffreys (1961) (e.g.,
a Bayes factor between 1/3 and 1/10 is substantial evidence for the
H0 and a value between 1/10 and 1/30 is strong evidence). How-
ever, interpretation should be based on the value of the Bayes
factor and not on the verbal label. Bayes factors were computed
using the BayesFactor package in R.

The results of Experiment 1 are shown in Figure 2. We first
performed an analysis of recognition accuracy of lists containing
different numbers of chunks. There was decisive evidence for an
effect of number of chunks (BF10 � 156; F(3, 81) � 7.58, p �
.01), with lists comprised of fewer chunks (more pairs) being
recalled better than lists with more chunks (fewer pairs and more
singletons).

The critical question is whether having more pairs in a list
improves the performance of the singles or pairs separately. For
singles this analysis included all four list types, and for pairs only
the three types containing pairs. In both cases the evidence favored
the hypothesis that there was no compression (singles: BF10 � .05,
strong evidence; F � 1; pairs: BF10 � .11, substantial evidence;
F � 1): performance did not improve as the number of chunks in
the list decreased.

Next, we examined the interaction between list type (number of
chunks) and chunk size (singles-pairs). This was necessarily re-

stricted to lists containing a mixture of both singletons and pairs,
thus excluding lists containing seven singletons. There was deci-
sive evidence for a main effect of chunk size (BF10 � 46,238; F(1,
27) � 14.3, p � .01), with a higher percentage of individual words
in pairs being recalled than in singles. However, there was strong
evidence that recall was unaffected by the number of pairs in the
list (BF10 � .06; F � 1) and that list type (number of chunks) and
chunk size (singles-pairs) did not interact (BF10 � .007; F � 1).
Recognition of pairs remained around .8 across all list types and
recognition of singletons remained around .73 across all list types.

Discussion of Experiment 1. A strong effect of chunking was
evident in this experiment, with performance being better for lists
containing more prelearned word pairs, and better for words from
pairs than singletons. However, the benefit of chunking is entirely
restricted to the pairs themselves. There is no effect of compres-
sion. The recall of singletons does not benefit from the presence of
pairs elsewhere in the list. Furthermore, recall of the pairs them-
selves remains constant regardless of how many chunks are in the
list. The recall benefit conferred by the presence of pairs is simply
a direct function of the number of pairs in the list. This is exactly
what we would expect if chunking was supported entirely by
redintegration. Taken on its own, this result would lead us to
exactly the opposite conclusion from Thalmann—there is no evi-
dence that chunking is achieved by data compression.

Although Experiment 1 found clear evidence of chunking, per-
haps the word pairs might not have been well enough learned to act
as chunks in STM and support compression. Experiment 2 there-
fore includes an extra training phase to ensure that the chunks have
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Figure 1. Presentation sequence for Experiments 1 and 2.
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been well learned. The extra training phase was based on the
procedure used by Chen and Cowan (2005). The experiment is
otherwise identical to Experiment 1. We incorporated extra train-
ing into all subsequent experiments other than Experiment 3,
which was actually run before Experiment 2. Note that Experi-
ments 1 and 3 were run using DMDX, which is unable to record
the typed responses necessary for the extra training. To accommo-
date this requirement while keeping everything else identical, we
ran the extra training phase using E-Prime (Schneider & Zucco-
lotto, 2002).

Experiment 2: 2AFC recognition with extra training.
Participants. Twenty-eight members of the Cognition and

Brain Sciences Unit Volunteer Panel completed this experiment

(19 women, mean age 22.7 years). None had taken part in either of
the first two experiments.

Materials and procedure. The materials and procedure for
Experiment 2 were identical to that of Experiment 1 with the
exception that there was an additional cued recall familiarization
phase. On each trial, one word was presented in the center of the
screen and the participant had to type the word with which it was
paired or, type the letter s if it had been presented as a singleton.
Feedback was given. This training phase continued with the re-
peated presentation of the entire set of stimuli until the participant
was 100% correct on the set.

Results. The results of Experiment 2 are shown in Figure 3.
Although performance in Experiment 2 was better than perfor-
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mance in Experiment 1, the pattern of results remains the same: the
data support the view that there is no compression. The error rate
in the list memory task ranged between .03 and .41 (M � .142). An
analysis of list type (number of chunks) showed that the beneficial
effect of chunking was significant (BF10 � 4.9, substantial), F(3,
81) � 4.25, p � .01. accuracy: .83, .84, .86, .86, for 0, 1, 2, and
3 chunks. Singles and pairs were also analyzed separately. The
Bayes factor for the analysis of number of chunks on singles alone
was (BF10 � .25), F(3.81) � 1.5, and that for pairs alone (BF10 �
.12), F(2, 54) � .18, which corresponds to substantial evidence for
the null hypothesis. Next, we examined the interaction between list
type (number of chunks) and chunk size (singles-pairs). This was
necessarily restricted to lists containing a mixture of both single-
tons and pairs, thus excluding lists containing seven singletons. As
in Experiment 1, performance was better for pairs than for singles,
F(1, 27) � 30.5, p � .01; BF10 � 1 � 105, but was not affected
by the number of chunks (BF10 � .19; F � 1). There was no
interaction between the number of chunks in a list and whether
items were singles or pairs (BF10 � .04; F � 1).

Experiment 3: Serial recall. There are at least two reasons
why we might not have found compression whereas Thalmann et
al. (2019) did. First, we used a 2AFC procedure rather than serial
recall. Second we used two-item chunks rather than three-item
chunks. In the next experiment we examine chunking in an im-
mediate serial recall task. The familiarization procedure was iden-
tical to that in Experiment 1. Here we used a standard serial recall
paradigm where words were presented one at a time followed by
spoken recall. In a pilot study we found that participants tended to
say the pairs of items in chunks more rapidly than they would say
two singletons. This fact alone might potentially alter the overall
level of performance throughout the list by reducing the amount of
time available for forgetting when the lists contained more chunks.
We therefore adopted a paced recall procedure to force participants
to recall the list at a rate of one item per second. Note that in Chen
and Cowan’s (2005, 2009) serial recall experiments participants
had to type their responses into a computer.

Participants. Twenty-eight members of the Cognition and
Brain Sciences Unit Volunteer Panel completed the experiment
(21 women, mean age � 21.6 years).

Materials and procedure. Stimuli were identical to those used
in Experiment 1. In the serial recall phase participants received two
practice trials followed by 64 test trials. In all list conditions,
words were presented as single items rather than as chunks.

To initiate each trial the participant pressed the spacebar and
repeated the word the aloud at the rate of two times per second.
The first list item was presented 3 s later. List items were presented
at a rate of one per second. The instruction “Prepare to recall” was
then displayed on screen for 2 s and the participant had to stop
speaking and prepare to recall the items aloud in the order they
were presented. All responses were digitally recorded to be scored
later. Participants were instructed to recall each item in synchrony
with the appearance of seven visual cues (“X,” “XX,” “XXX,” and
so on). The cues were presented for 750 ms with a pause of 250 ms
in between. Participants were told to say “blank” for any item they
could not recall in the appropriate position.

Results. The data were scored in three different ways. First
they were scored according to the standard serial recall procedure
where items are considered to be correct only when recalled in the
correct serial position (strict scoring). A problem with this method

is that a single omission at the start of the list leads to a score of
zero even if all of the remaining items are recalled in the correct
order. This is a particular problem for spoken recall. To overcome
this limitation we also used a scoring procedure based on a
Levenshtein edit distance metric (Kalm, Davis, & Norris, 2013;
Kalm & Norris, 2016; Levenshtein, 1966), which counts the num-
ber of edit operations (insertions, deletions and substitutions) re-
quired to transform one sequence onto another. If recall is perfect,
the Levenshtein edit distance will be zero. Kalm, Davis, and Norris
used their Levenshtien Distance (LD) measure to score whole lists.
However, we can extend the procedure to produce a score for each
individual item. In calculating an edit distance there is frequently
more than a single alignment between two sequences producing
the same score. For example, if the list “1 2 3 4” is recalled as “1
2 4 3” the best alignment could be achieved by either deleting the
4 and inserting a 4 after the 3, or by deleting the 3 and inserting a
3 before the 4. The first two items are present on both of the best
alignments and therefore score 1.0. 3 and 4 are each present on
only half of the best alignments and are therefore both assigned a
score of 0.5. This procedure provides a measure of the extent to
which items are recalled in the correct order irrespective of posi-
tion. Note that this implementation of the item-based procedure
does not penalize individual items for the presence of insertions
(extra items) recalled elsewhere in the list. We will refer to this as
Levenshtein scoring. Mathy and Varré (2013) have used the more
elaborate Needleman-Wunch string alignment method in their
analysis of serial recall errors.

The third scoring procedure (item scoring) was the proportion of
items correctly recalled regardless of position. (Chen & Cowan,
2005, termed this “lenient” scoring). The results of all three
procedures are shown in Figure 4.

Items in correct position. All of the analyses reported here
collapse the data over serial position. In the one-way analysis of
list type (number of chunks) more items were recalled in the
correct position as the number of pairs in the lists increased
(BF10 � 9.5 � 1014), F(3, 81) � 49.0, p � .01. In the analysis of
singles alone, recall also improved as the number of pairs in-
creased (BF10 � 3.9 � 105), F(3, 81) � 16.0, p � .0.1. For recall
of pairs the evidence favored the null hypothesis that there was no
effect of number of chunks on recall (BF10 � 0.13), F(2, 54) � 1.
We also analyzed the three list types containing a mixture of both
singles and pairs. Recall was better in list with fewer chunks (more
pairs), (BF10 � 585), F(2, 54) � 9.9, p � .01, and was better for
pairs than for singles (BF10 � 2.7 � 1011), F(1, 27) � 37.4, p �
.01. There was also an interaction between list type (number of
chunks) and chunk size (singles vs. pairs; BF10 � 31.6), F(2,
54) � 8.6, p � .01, which is attributable to the improvement in
recall of singles when list contain more pairs. Performance on pairs
differed by less than 0.02 across the three list types.

Levenshtein distance scoring. As with strict position scoring,
the one-way analysis of list type (number of chunks) revealed that
recall improved as the number of pairs in the lists increased
(BF10 � 7.8 � 1018), F(3, 81) � 69.1, p � .01. However, in
contrast to strict scoring, when considering only those lists con-
taining a mixture of both single and pairs, there was little evidence
that performance increased with when the number of pairs in-
creased (BF10 � 1.25), F(2, 54) � 4.65, p � .05. Words in pairs
were recalled better than singles (BF10 � 1.2 � 1015), F(1, 27) �
50.8, p � .01, but here was little evidence of an interaction
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between number of chunks and chunk size (singles vs. pairs;
BF10 � 1.2), F(2, 54) � 3.5, p � .05.

Once again the Bayes factor for pairs alone indicated substantial
evidence that memory for pairs was not influenced by the number
of chunks (BF10 � .15), F(2, 54) � 1. However, for singletons the
Bayes factor indicated that there was decisive evidence for an
effect of number of chunks (BF10 � 56), F(3, 81) � 6.57 p � .01.
Note that when analyzing just the singletons we can include data
from all list types, including 1111111s, and so have more power
than in the two-way analysis.

Items in any position. In the analysis of all four lists types,
recall improved as the number of pairs increased (BF10 � 1.5 �
1020), F(3, 81) � 76.7, p � .01. In the analysis of only those lists
containing a mixture of both singles and pairs there was little sign
of an effect of number of pairs (BF10 � 1.3), F(2, 54) � 5.9, p �
.01, although there was an effect of single/pair (BF10 � 1.0 �
1016), F(1, 27) � 57.8, p � .01. There was little evidence of an
interaction between number of pairs and chunk size (singles vs.
pairs. BF10 � .51), F(2, 54) � 2.1, p � .13. In the analysis of
singles alone, there was decisive evidence for an effect of number
of pairs (BF10 � 26.8), F(3, 81) � 58.7. In contrast, for pairs the
evidence favored the hypothesis that there was no effect of varying
the number of chunks (BF10 � .16; F � 1).

An interesting insight into the improvement in recall of singles
as the number of pairs increases can be gained from an examina-
tion of the serial position curves. Figure 5 plots the strict positional
scores for singles. Positions 1, 3, 5, and 7 are the only positions
where singles can appear in all list types. The improvement in
recall as lists contain more pairs is almost entirely due to the
improvement in recall at Position 5 in 1222 lists. Given that singles
in 1222 lists can only appear in Positions 1, 3, 5, or 7, if partici-
pants either recall a pair correctly in Positions 6 and 7, or even
simply know that there was a pair in Positions 6 and 7, the possible
location of the single is significantly constrained. From Figure 4
we can see that item and LD scores are within a few percent of
each other. If an item is recalled it is almost always recalled in the
correct order relative to other items; item and order information
seem to be closely coupled. Therefore, the most likely basis for the
improvement in recall of singles with increasing number of pairs is
that the presence of pairs provides more constraint on the recall of
order information and that the order information is tightly bound to
item information. Interestingly, this seems to be true of both
singletons and pairs. One might have expected words in chunks to
maintain their relative order and therefore be less sensitive than
singletons to the difference between strict item and LD scoring.

A further hint that there is something different about recall of
singles in 1222 lists can be seen by comparing the strict and LD
scores for singles. Single scores are necessarily higher with LD
scoring, but the difference between the two decreases as the
number of pairs increases, implying that, with more pairs, singles
are more likely to be recalled in the correct absolute serial position
rather than simply in the correct relative order.

Discussion of Experiments 1–3. In all three experiments, lists
containing more pairs were recalled better than singletons; there
was a benefit of chunking. However, if that benefit were a conse-
quence of data compression, a pair of items in a chunk should take
up less memory capacity than a pair of singletons, and the benefit
of chunking should extend to all items in the lists. Instead, in
Experiments 1 and 2 the advantage of lists containing more pairs
is entirely attributable to fact that the pairs themselves are remem-
bered better then singletons. Recall of pairs and singletons is
unaffected by the composition of the list.

This is exactly what is to be expected by a redintegration
account, and contrary to what would be expected from a simple
compression view such as Cowan et al.’s (2012) model VIII. If
items in the chunk were replaced by their first word and that word
was used as a pointer to the chunk stored in LTM, then each chunk
in STM would take up as much capacity as a single word rather
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than two words, and this should free up capacity to remember one
more word.

In Experiment 3, using a serial recall task, we see one part of the
pattern we have taken to be the signature of compression; recall of
singletons improves as the number of pairs in the list increases.
However, interpretation of this effect is complicated by two fac-
tors. First, there is no improvement in recall of pairs as the number
of pairs increases. If singletons show signs of compression, then
pairs should too. The absence of a compression effect for pairs
cannot be attributed to a ceiling effect as recall of pairs is only a
little over .5 for strict scoring. Second, most of the improvement
appears in lists where the presence of pairs constrains the location
of singletons. Consequently, it is difficult to know whether this
effect is a genuine effect of compression or a consequence of the
constraints on position. If this result were simply due to improved
positional information there should be no compression effect with
item scoring. Items should be equally well recalled regardless of
the number of chunks in the list but, with fewer chunks, items
should be more likely to be recalled in the correct position.
However, as already noted, the similarity between LD and item
scoring tells us that when an item is recalled it is almost always
recalled in the correct relative order.

A further important finding is that in mixed lists, pairs are
always remembered better than singletons. In a simple chunking
model, a pair and a singleton should behave identically; they are
both chunks. Whether an item is remembered or forgotten depends
on whether the chunk containing it is remembered or forgotten,
and that should be the same regardless of the number of items in
the chunk. It follows that recall of pairs and singletons should be
equivalent, but they are not. Note that this was also the case in
Thalmann et al.’s (2019) data. They also noted that this was not
what would be expected by a simple compression model. One
suggestion they made was that chunks might be better recalled
because they are semantically more distinct than singletons. How-
ever, the superior recall of chunks follows necessarily from the
redintegration view.

The cost of chunking. The results of Experiments 1–3 are not
what would be expected on the basis of a simple compression
model in which each chunk, regardless of size, occupies a single
slot in memory. The fact that we see some indication of compres-
sion in Experiment 3 using serial recall might suggest that com-
pression is specific to serial recall. This might possibly explain the
discrepancy between our data from Experiments 1 and 2 and those
of Thalmann et al. (2019).

However, another possible explanation for the apparent discrep-
ancy between our data and that of Thalmann et al. (2019) is that
chunking must come with a cost. Chunks in the input have to be
recognized as such, recoded into a different form, and then be
converted back into the same vocabulary as the input in order to
be recalled. Bradmetz and Mathy (2008) and Portrat, Guida, Phé-
nix, and Lemaire (2016) have both made proposals for how those
costs might be simulated. One of the factors that determines
whether the benefit of chunking outweighs the cost may be the size
of the chunks; the capacity savings achieved by using a larger
chunk may outweigh the cost of encoding and decoding those
chunks. Indeed, several studies have demonstrated that chunking
really does have a cost (Glanzer & Fleishman, 1967; Huang &
Awh, 2018; Kleinberg & Kaufman, 1971; Pollack & Johnson,
1965).

Glanzer and Fleishman (1967) had participants recall sequences
of nine binary digits presented simultaneously for 0.5 s. Prior to
testing, three groups of participants were trained for 9 days to read
nine-digit sequences. One group was trained to describe the binary
digits as octal. A second group was trained to describe the digits in
groups of three in English. For example, 110100000 would be read
as “two ones, an oh; a one, two ohs; three ohs.” The final group
was allowed to use a method of their own choice. After nine days
of training one might have expected the binary to octal conversion
process to become automatic. Based on the findings of Smith one
might expect those trained to use the octal recoding strategy to
perform best. However, they performed worst. Glanzer and Fleish-
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man suggested that participants may not have been able to apply
the strategy efficiently enough to benefit from it.

Pollack and Johnson (1965) also used a serial recall task but
systematically varied the rate of presentation. They trained partic-
ipants for twenty-eight 1.5-hr sessions to recode groups of four
binary digits as the decimal numbers 0–15. They compared two
presented at a constant rate and one where there were gaps be-
tween groups of four items. In both cases there was a large
advantage of training at the 0.7 rate (ungrouped: 50%, grouped:
40%) which was greatly reduced at the 2.8 rate (12% and 9%).
(These percentages were derived from their Figure 4 using Web-
PlotDigitizer https://automeris.io/WebPlotDigitizer/index.html).

Kleinberg and Kaufman (1971) tested memory for visual pat-
terns. At fast presentation rates (less than one second) memory was
constant in terms of amount of information, but memory became
constant in chunks at slower rates. That is, effective use of chunk-
ing required time.

Huang and Awh (2018) examined the time to decode chunks.
They used a probe paradigm similar to that of Brady et al. (2009).
Stimuli could either be four color pairs or four letter pairs, and
pairs were either familiar or not. In the case of letters the familiar
pairs formed words. Performance was better with familiar pairs,
but this advantage disappeared when participants had to respond
under time pressure.

These studies highlight the fact that the benefit of chunking has
to be weighed against the cost of recoding and decoding. In the
next three experiments we therefore tried to increase the potential
benefit of recoding items into chunks by familiarizing participants
with larger chunks—three words rather than two.

Experiments 4–6: Three-Item Chunks

Experiment 4: 2AFC with triples. In this experiment we
asked whether moving from two-item chunks to three-item chunks
might also generate evidence for compression in a probe recogni-
tion task.

Materials. Stimuli were based on 45 triples and list could have
one of the following structures: 1111111, 11113, or 133. The
composition of the lists is shown in Table 3. Stimuli were based on
the 45 triples shown in the Appendix. For each participant nine of
those triples were selected at random to act as triples and one
randomly selected item from each of the remaining 36 were used
as singletons. In the familiarization trials each of the nine triples
appeared six times; three times so that each word could be probed,
and three times as a foil where the probe was a different word.
Each singleton also appeared six times, once with an identical
probe, and once with a foil. This experiment incorporated the same
cued recall training phase as in Experiment 2 with the exception
that for the triples, participants had to type in the remaining two
words of the set. During the presentation phase items were pre-

sented triples were presented simultaneously. There were eight
blocks of nine trials. As before, participants had to perform artic-
ulatory suppression during list presentation and recall was paced.

Participants. Thirty members of the Cognition and Brain Sci-
ences Unit Volunteer Panel participated in the experiment. The
data from one participant was lost because of a technical problem
and another was replaced as they took 18 iterations through the
training phase to reach criterion. The analyses are therefore based
on 28 participants (22 women, Mage � 22 years).

Results. The results are shown in Figure 6. As with all previ-
ous experiments performance increases as the number of multi-
word chunks increased, F(2, 54) � 69.6, p � .001, BF10 � 3.9 �
1012. In contrast to probe recall with pairs (Experiments 1 and 2),
an analysis of singles alone showed that performance improved as
a function of the number of triples in the list (BF10 � 39.5), F(2,
54) � 8.2, p � .001. However, any benefit of adding an extra triple
is seen only with 133 lists; scores for 11113 lists were almost
identical to scores for 1111111 lists. In the analysis of triples
alone, there was no indication of any improvement in recall as a
function of number of triples in the list (BF10 � 0.28; F � 1). This
could be a ceiling effect.

In the analysis of the lists containing both singletons and triples
(11113 and 133) there were effects of chunk size (singles vs.
triples; BF10 � 7.6 � 1011), F(1, 27) � 88.6, p � .001, and the
number of triples in the list (BF10 � 6.9), F(1, 27) � 7.14, p � .05.
In line with the separate analyses of singles and triples there was
also an interaction between the two (BF10 � 2.3), F(1, 27) � 5.1,
p � .05, such that singles benefitted more from the presence of
more triples than did the triples themselves.

Discussion. The use of three-item chunks changed the pattern
of findings in one important respect: performance on singletons
improved as the number of triples in the list increased. This is
exactly what would be expected if chunking led to data compres-
sion. However, there was no variation in recall of triples as a
function of the number of triples in the list. Although a data-
compression view would predict that triples should also benefit,
any advantage of having two triples in a list rather than one may
have been obscured by a ceiling effect as performance on triples
was above 0.9. As in the previous experiments, there was an
overall benefit of chunking, with words in triples being recalled
much better than singletons. This is not what would be expected
from a simple slot model. In the next experiment, we examine
whether the move from pairs to triples also reveals evidence of
compression in serial recall.

Experiment 5: Serial recall with triples. The procedure for
Experiment 5 was identical to that for Experiment 3 apart from the
fact that, to improve performance, the lists contained only six
items and we used the more extensive training procedure used in
Experiments 2 and 4. Lists could consist of six singletons, three
singletons and a triple, or two triples. The number of words
presented here was always six, but the number of chunks varied as
in Table 4:

Participants. Thirty members of the Cognition and Brain Sci-
ences Unit Volunteer Panel completed this experiment. None had
taken part in any of the first three experiments. Two participants
who took eight iterations through the extra training to reach
criterion were excluded. The analyses are based on the remaining
28 participants (16 women, Mage 20.5 years).

Table 3
Composition of Lists in Experiments 4 and 6

List condition Number of words Number of chunks

133 7 3
11113 7 5
111111 7 7
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Materials and procedure. This experiment was similar to
Experiment 3 with the addition of a cued recall phase as used in
Experiments 2 and 4. As lists were only six items long, the stimuli
were constructed around a set of 36 word triples (see the Appen-
dix). As in Experiment 4, for each participant nine triples were
selected at random to be used as complete triples and one word
from each of the remaining 27 triples was used as the singleton.

Results. The analysis follows the same procedure as Experi-
ment 3. The data are shown in Figures 7 and 8.

Items in correct position. There was an overall effect of
chunking with the number of items being recalled in the correct
position increasing as the number of triples increased (BF10 � 6 �
1033), F(2, 54) � 410, p � .01. In a separate analysis of the 1113
condition there was a main effect of chunk size with more triples
being recalled in the correct position than singletons (BF10 �
1.3 � 109), F(1, 27) � 112, p � .01. In an analysis of the singles
in the 111111 and 1113 conditions there was a significant effect of
list type, with more single items being recalled in the correct
position in the four chunk lists (1113) than the six chunk (111111)
lists (BF10 � 1.8 � 105), F(1, 27) � 55.2, p � .01. Similarly,
triples in 33 lists were recalled better than triples in 1113 lists
(BF10 � 3850), F(1, 27) � 31.5, p � .01. Note that in this
experiment it is not possible to perform a two-way analysis of
item-type and number of chunks because 1113 is the only list-type
that contains both singles and triples.

LD scoring. As with strict scoring, there was main effect of
list type (BF10 � 4.1 � 1035), F(2, 54) � 477, p � .01. In the 1113
condition there was an effect of chunk size (BF10 � 4.1 � 109),
F(1, 27) � 98.7, p � .01. Singles benefited from the presence of
a triple—11111 vs. 1113: BF10 � 7.4 � 104; F(1, 27) � 50.3, p �
.01—and triples were better in 33 lists than in 1113 lists (BF10 �
397), F(1, 27) � 21.8, p � .01.

Items in any position. There was an effect of list type, with
more items being recalled as number of chunks decreased (BF10 �
2.76 � 1034), F(2, 54) � 410.6, p � .01. In the 1113 condition
more words were recalled from triples than singles (BF10 � 1.6 �
1010), F(1, 27) � 89.2, p � .01. Singles in 1113 lists were recalled
better than singles in 111111 lists (BF10 � 6384), F(1, 27) � 36.6,
p � .01. Triples in 33 lists were recalled better than triples in 1113
lists (BF10 � 3617), F(1, 27) � 29.8, p � .01.

Discussion. The most notable feature of the present experi-
ment compared to Experiment 3 (serial recall of pairs) is that the
overall level of performance is substantially higher. The strict
position score of the pairs in the 1222 chunks was 0.53 compared
with 0.93 for the 33 triples here. The combination of the larger
chunks and the shorter lists both acted to boost performance. Note
that the improved performance is unlikely to be solely attributable
to the use of a shorter list. The improvement on lists of pure singles
between the experiments was about 0.1, whereas the difference
between the 2221 and 33 condition was 0.4. That is, three-quarters
of the improvement seems to have come about through the use of
bigger chunks.

As in Experiment 4, singletons are recalled better when there is
a larger chunk in the list. Triples are also recalled slightly better
when the rest of the list forms a single chunk rather than three
chunks (singletons). It is impossible to make any quantitative
comparisons between the effects of the number of chunks on
singles and triples because performance on triples is near ceiling.

The beneficial effect of having other chunks in the list holds
regardless of the scoring we use. This is exactly what is expected
if participants are able to form a compressed memory representa-
tion of the chunks. If chunks take up less memory capacity than
singletons, then that capacity should be available to store more
information about singletons. Chen and Cowan (2005, 2009) only
found evidence for constant chunk capacity using a lenient serial
order scoring procedure. Given that our lists are all the same
length, our data cannot speak to the issue of whether there is a
fixed chunk-based limit, but it is interesting that we see signs of
compression even when the data are analyzed using strict scoring.

So far we have had our participants perform articulatory sup-
pression during list presentation. We did this because these are the
conditions under which Chen and Cowan (2009) had found the

Table 4
Composition of Lists in Experiments 5

List condition Number of words Number of chunks

33 6 2
1113 6 4
111111 6 6
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Figure 6. Experiment 4. Proportion of correct recognition responses to singles and triples as a function of list
composition.

883CHUNKING AND REDINTEGRATION



strongest evidence for chunk-based memory. However, most stud-
ies of chunking have not used suppression. Thalmann et al. (2019)
used suppression only in their Experiment 3. Chen and Cowan
(2009) motivated their use of suppression by suggesting that by

preventing phonological rehearsal “What remains is a core verbal
working-memory capacity” (p. 1420). However, at least within the
Baddeley and Hitch (1974) working memory framework, articu-
latory suppression also prevents visual material being recoded into
the phonological store. Chen and Cowan’s definition of core verbal
working memory would therefore exclude the phonological store,
which is probably the most widely studied component of verbal
STM. Core verbal-working memory would seem to correspond to
that part of verbal working memory outside of the phonological
store. In the absence of articulatory suppression, immediate serial
recall will be largely mediated by the phonological store rather
than ‘core verbal working memory’ or the episodic buffer. In
everyday life we rarely find ourselves trying to remember while
performing suppression. The next experiment therefore dispenses
with articulatory suppression in an attempt to discover whether
chunking might also enable compression when the phonological
loop is involved.

Experiment 6: Serial Recall with Triples Without Articula-
tory Suppression.

Procedure. This experiment differed in two respects from
Experiment 5. First, participants were not required to perform
articulatory suppression. The instruction to begin suppressing was
replaced with “Ready.” Second, because performance is always
better without suppression than with, and we had already run into
ceiling effects with triples in Experiment 5, we reverted to using
seven-item lists structured as in Experiment 4. Although the in-
tention was to ensure that both singletons and triples appeared
equally often at all possible locations, a programming error meant
that no triples began at position 5 that is, no lists ended in a triple.

Twenty-eight members of the Cognition and Brain Sciences
Unit Volunteer Panel completed the experiment (21 women,
Mage � 21.5 years). None had taken part in any of the previous
experiments.

Results. The results are shown in Figure 9. The main findings
are consistent across the different scoring procedures. There was a
main effect of number of chunks in a list, with performance being
better for lists containing more triples—strict: F(2, 54) � 277.08,
p � .01, BF10 � 5.1 � 1028; LD: BF10 � 5.9 � 1028; F(2, 54) �
276.96, p � .01; and item: BF10 � 1.4x 1026; F(2, 54) � 227.3,
p � .01. In the analysis of singles only, performance increased as
the number of triples increased—strict: BF10 � 1.8x 1020; F(2,
54) � 147.6, p � .01; LD: BF10 � 3.2 � 1017; F(2, 54) � 114.8,
p � .01; and item: BF10 � 3.7 � 1014; F(2, 54) � 84.9, p � .01.
In the analysis of triples alone (11113, 133), only strict scoring
produced substantial evidence that increasing the number of triples
improved performance—strict: BF10 � 132; F(1, 27) � 16.28, p �
.01; LD: BF10 � 1.46; F(1, 27) � 3.78, p � .06; and item: BF10 �
1.3; F(1, 27) � 3.63, p � .07.

Only two list types contain both singles and triples (11113, 133).
In an analysis of these lists triples were better recalled than
singletons—strict: BF10 � 2.0 � 1020; F(1, 27) � 118.8, p � .01;
LD: BF10 � 2.4 � 1023; F(1, 27) � 136.83, p � .01; and item:
BF10 � 7.0 � 1023; F(1, 27) � 137.9, p � .01—and recall was
better in the list with more triples (133 compared to 11113—strict:
BF10 � 1.4 � 1016; F(1, 27) � 130.7, p � .01; LD: BF10 �
4.2 �1012; F(1, 27) � 128, p � .01; and item: BF10 � 1.1 � 1011;
F(1, 27) � 71.1, p � .01. There was an interaction between chunk
size and list type, with the effect of number of chunks being greater
for singletons than triples—strict: BF10 � 2 � 1020; F(1, 27) �
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Figure 7. Experiment 5. Proportion of items correctly recalled as a
function of list composition, scored as either items in correct position,
Levenshtein scoring, or items recalled regardless of whether they are in the
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51.1, p � .01; LD: BF10 � 8.3 � 105; F(1, 27) � 61.2, p � .01;
and item: BF10 � 1.7 � 105; F(1, 27) � 53.9, p � .01.

Discussion. As in Experiment 5, the data here show the pat-
tern we have taken to be a signature of compression - performance
on singles improves when there are more triples in the list. This
effect does not, therefore, seem to depend on whether or not
participants perform articulatory suppression. However, as in all of
the previous experiments, items in larger chunks (triples) are
recalled better than items in smaller chunks (singletons). This is
not what would be expected from a simple compression model.
This result differs from Experiment 2 of Chen and Cowan (2005)
which used eight-item lists without articulatory suppression. With
strict scoring they found no difference between lists formed from
eight singletons or eight pairs. However, they did find a difference
with item (lenient) scoring.

Serial position data from Experiments 5 and 6. The results
of Experiments 4, 5, and 6 seem to provide clear evidence for some
form of compression; memory for both singletons and triples
improves when there are more triples in the lists. This is consistent
with the chunking model preferred by Cowan et al. (2012). How-
ever, according to that model there should be no difference in the
probability of recalling a singleton or a triple. In effect, this
chunk-based model is an instantiation of Conrad’s (1965) slot
model. There is a set of discrete slots and each slot can hold a

single chunk. However, although a simple slot model might be
applicable to visual STM experiments where all items are pre-
sented simultaneously followed by a single probe (e.g., Brady et
al., 2009; Luck & Vogel, 1997), they become implausible as
models of verbal STM where words must be processed one at a
time. In a standard serial recall experiment items must necessarily
be both presented and recalled in sequence.

In Cowan et al.’s (2012) model, all of the chunks presented need
to be held in memory in order to select the N chunks that will
finally be stored. Alternatively, the first N chunks would be en-
coded and any further items would not enter into memory. This
would seem to predict that only the first N items would ever be
recalled. Such a model would have problems explaining why there
should ever be a recency effect. Items toward the end of a supras-
pan list should simply never be stored in STM. If simple slot
models are unable to account for the basic data on serial recall,
how can we explain the advantage of chunking seen in Experi-
ments 4–5? We can get some insight into what is happening by
looking at the serial position curves. Figure 10 shows composite
serial position data for singletons in lists containing either only
singletons or singletons and just one triple. In the [1]1113 condi-
tions, the first three points correspond to items occurring before the
triple. Item one averages over lists where triples appear in Posi-
tions 2, 3, and 4. Item two averages over lists where triples begin
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at Positions 3 and 4, and, for Item 3, the triple always starts at
Position 4. The difference between the two conditions is largely
restricted to the latter half of the list. That is, the benefit of having
a triple in the list applies mainly to those items occurring after the
triple. Thalmann et al. found exactly the same effect in their
data—the main benefit if chunking was found when chunks ap-
peared at the start of the list. A simple compression account should
predict that all list items would benefit from compression. It should
make no difference what order the items appear in.

Consider what might happen when processing a 1113 list where
the singletons appear in the first three position. Until the fourth

item appears, this list is effectively identical to the initial items in
a list of six singletons. The initial encoding of these items should
therefore be unaffected by the presence of a later chunk, even
though that later chunk would be expected to take less memory
capacity than when the remaining items are all singletons. A
simple compression view might suggest that this extra capacity
could be used to enhance memory (or reduce forgetting) of the
earlier items. However, this would imply that the list items already
in memory could be somehow be revisited and then reencoded in
memory.

Given these problems with slot models of verbal memory it
should not come as a surprise that there are no current computa-
tional models of verbal STM that use a fixed set of discrete slots.
These models have softer constraints on capacity which are im-
posed by factors such as decay (Page & Norris, 1998) or interfer-
ence (Farrell & Lewandowsky, 2002). Supraspan items are always
encoded to some extent. Each additional item impairs performance
of all of the items in the list either by interfering with the repre-
sentations of those items, or by adding extra time for time-based
decay. In these models the simplest chunk-based account would be
that there is no change in the encoding of single items as a function
of the presence of chunks at all; chunks just behave like single
items. This will confer a benefit to single items following chunks
but not before. If a chunk is encoded as a single item, then an item
occurring immediately after a three-item chunk should effectively
be recalled as well as the item in Position 2 of a list of singletons.
Both items are the second chunk in the list. This is roughly what
we see in both the item and order data where Items 3, 4, and 5 in
the 1113 lists are recalled at the same level as Items 2, 3, and 4 in
the 111111 list. The most consistent result from all six experiments
is that multiword chunks are remembered better than singletons.
As noted earlier, this is not what would be expected on the basis
of a simple chunking model that took no account of serial recall.
In such a model recall of singletons and multiword chunks should
be equivalent. However, this is not what is expected from models
of serial recall. The first item in a chunk should be recalled with
equivalent accuracy to a singleton in the same position. However,
recall of subsequent singletons will decrease as a consequence of
decay or interference, but all items in a chunk will be recalled
together with the same accuracy as the first item. Memory for
chunks will therefore be superior to memory for singletons. We
now report a series of simulations to determine whether we can
provide a quantitative account for our results by incorporating this
simple assumption into an existing model of serial recall. The aim
of these simulations is to establish whether this verbal explanation
can give a quantitative account of the data.

Simulations

Here we use the primacy model of Page and Norris (1998) as an
example of a simple model able to give an account of the main
benchmark features of serial recall. In common with most models
of serial recall its behavior relies on the combination of a primacy
gradient, response suppression, and a mechanism whereby infor-
mation is lost from memory (see Lewandowsky & Farrell, 2008,
for an analysis of the features of different models of STM). Given
that the assumption we are making about chunking is so simple,
other models should also have little difficulty simulating the same
data. Our aim in using the primacy model is simply to demonstrate
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Figure 9. Experiment 6. Proportion of items correctly recalled as a
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that the pattern of data we see when chunks and singletons are
intermixed can be readily accommodated by the principles shared
by most computational models of serial recall from verbal STM.

In the primacy model, information is assumed to be lost due to
time-based decay. However, for the present purposes it makes no
difference whether information is lost because of decay or because
of interference. One appealing feature of the primacy model is that
it captures the simple idea that the discriminability of order infor-
mation and the accessibility of item information decrease during
recall of the list. It starts by setting up an activation gradient
whereby the first item has given level of activation and successive
items have one unit less activation. Recall is performed by adding
zero-mean Gaussian noise to the activations and choosing the item
with the largest activation. For the first item in the list the most
likely item to be recalled will therefore be the first item, with the
second item being less likely to be recalled, and subsequent items
with even lower activation being even less likely to be recalled.
The most active item then has its activation suppressed and will
not be recalled again. The chosen item then has further noise
(omission noise) added to its activation and the resulting value is
compared with an omission threshold. If the activation exceeds the
threshold the item is recalled, if not, it is omitted. That chosen item
then has its activation suppressed and will not be recalled again.
After each recall cycle the activation gradient is made to decay by

multiplying it by a decay factor. Consequently, the activation
levels of the remaining items are reduced and move closer together
and therefore become more subject to being recalled out of posi-
tion, or being omitted.

The model therefore has five parameters: peak activation, se-
lection noise, omission noise, omission threshold, and decay. The
simulations3 incorporate the assumption that each triple is treated
single item. As is the case with Cowan et al.’s (2012) mathematical
models, we are not making any claims about the exact represen-
tation of a chunk in STM. One straightforward consequence of this
assumption is that all three items in any triple are always either
recalled or omitted together and hence give rise to the same recall
score. This is a very close approximation to what we see in the data
if we examine lists with a single triple. In Experiment 5, if any one
member of a triple was recalled, the probability that all three
members would be recalled was .94. In Experiment 6, this prob-
ability was .97. Recall of triples as a function of the starting point
of the triple are shown in Tables 5 and 6. The fact that all members
of a triple are always recalled together means that the model
necessarily predicts that chunks will be better recalled than sin-
gletons. This is the most consistent feature of the data in all six

3 Simulations were written in Python.
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experiments. In a three-item chunk all words in the chunk will be
recalled with the same accuracy. With three singletons in the same
positions, the first item will be recalled at the same level as the first
item in the chunk but recall of the following two items will decline.
Overall, triples will therefore be recalled better than singletons.

The serial position curves produced by fitting the model to item
scores and strict position scores simultaneously (i.e., 24 data points
in Experiment 5, 28 in Experiment 6) are shown in Figures 11 and
12. Fitting was performed using Powell’s (1964) conjugate gradi-
ent method and each step of the optimization process was based on
50,000 iterations through the model. With this many iterations, the
Root Mean Squared (RMS) error of the model varies by no more
than 0.001 between steps with the same parameters. The model
does an excellent job of capturing the data for both Experiment 5
(RMS error: .053) and Experiment 6 (RMS error: .07). In fact,
given that the pattern of data is mainly carried by omissions, most
of the data can be captured by an even simpler two-parameter
model. The simulation of the data from Experiment 5 in Figure 13
has the peak step and omission noise as free parameters, fixes the
omission threshold at zero, and has no decay. Of course, the full
primacy model simulation is to be preferred as it has the advantage
that it simultaneously simulates order errors as well as item errors.

One interesting feature of these simulations is that by assuming
that each chunk is treated as a single item we are implicitly
assuming that forgetting during recall is the same for a chunk as it
is for a single item. The simulations make no allowance for the fact
that presentation and recall of a chunk will take longer than a
single item and might produce more decay or interference for
subsequent items. However, decay and interference models would
seem to predict that forgetting should be a function of either time
or items, and not of chunks.

We examined this by fitting a variant of the model where there
were three cycles of decay per triple. Although the triple was
treated as a single item, we assumed that each member of the triple
would have the same effect on decay of the remaining items as a
singleton. This produced only marginally poorer fits but did so by
setting the decay to be close to 1.0. This means that the decrease
in performance over position was carried entirely by the increase
in omissions. The increase in omissions over position is produced
by the activation gradient at encoding, which decreases by one step
per item or chunk. As the activation decreases, so the opportunity
for omissions increases (the activation plus the omission noise will
fall below the omission threshold). We can also investigate
whether the fit of the model will change if we allow the activation
step for a chunk to be larger than for a singleton. If we add a
parameter to the model that allows the reduction in activation
caused by a chunk to vary, we find that in Experiment 5 the
activation step for a chunk can be up to 1.5 times that for a

singleton with no change in the goodness of fit. These additional
simulations show that the good model fits we obtain when triples
and singletons are treated identically should not be taken as de-
finitive evidence that triples must be identical to singletons. There
is room to vary the model parameters without any change in the
degree of fit.

A further point to note is that the simulations embody the assump-
tion that all chunks are coded as such. That is, unlike the model
favored by Cowan et al. (2012) for their data, none of the chunks
degenerate and become represented as two or three singletons instead.
Combining these two features of the model together it should be
apparent that it has to predict that memory capacity for three triples
would be the same as for three singletons. This contrasts with Chen
and Cowan’s (2005, 2009) report that a constant chunk-based capac-
ity was found only with articulatory suppression. Here we see a
similar pattern of data regardless of whether or not there is suppres-
sion. Furthermore, our simulations, which are based on the assump-
tion that a chunk is indeed equivalent to a singleton, fit the data from
Experiments 5 and 6 equally well.

It is important to note that although the model treats chunks as
the storage units of memory it does not have a hard chunk-based
limit on capacity. As noted earlier, the softer constraints in this and
other models of verbal STM are necessary to capture fundamental
properties of serial recall such as the shape of the serial position
curve. Of course, the simulations we have presented here are not
intended as a complete model of chunking in verbal STM. Instead
they indicate the simplest possible set of assumptions necessary to
account for our serial recall data. Although the simulations of
serial recall suggest that chunks are treated in the same way as
singletons, there is no comparable model of the 2AFC task that
would allow us to estimate whether chunks are treated like single-
tons in that task too. Sometimes capacity in 2AFC is measured
using Cowan’s k (Cowan, 2001). However, this is based on the
assumption that there is a fixed-capacity chunk-based storage.
Cowan et al. (2012) found that capacity was not constant in the
way that this simple model would assume. Instead of remaining
constant, k decreased as chunks contained more items.4 However,
this need not imply that what is stored in memory is different in
serial recall and 2AFC. This decrease is what one might expect if,
for example, there is any cost at all in decomposing a chunk to
determine whether it contains the probe item.

Thalmann et al. (2019) took the finding that chunks only had a
benefit when they appeared early in the list as evidence against

4 The same is true here. k for Experiments 1, 2, and 4, from most chunks
(all singletons) to fewest (most pairs/triples): E1: 2.5, 3.1, 2.7, and 2.3. E2:
4.6, 3.9, 3.5, and 2.8. E4: 3.8, 3.2, and 2.4.

Table 5
Accuracy of Recall of the Three Items in a Triple as a Function
of Starting Position of the Triple in Experiment 5

Starting position First Second Third

1 .90 .90 .90
2 .87 .87 .86
3 .77 .81 .78
4 .84 .85 .86

Table 6
Accuracy of Recall of the Three Items in a Triple as a Function
of Starting Position of the Triple in Experiment 6

Starting position First Second Third

1 .94 .93 .93
2 .98 .98 .96
3 .98 .96 .96
4 .92 .92 .84
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decay. Given that we successfully simulated the data with a model
that is neutral as to whether loss of information form STM is by
decay or interference, it is hard to see how this finding itself could
possibly be inconsistent with decay models. They suggest that a
chunked representation should take less time to rehearse than three
unchunked items and that this should benefit items before a chunk
as well as afterward. However, this explanation rests on two
questionable assumptions. The first is that what is rehearsed is a
representation of the chunk and not its constituent items. This
would only be possible if the phonological representation of the
chunk was replaced by say, the first word in the chunk and that
participants rehearsed that word rather than the whole chunk.
However, the second assumption is that what is rehearsed is the
entire list and that it continues to be rehearsed after the final chunk
is presented. However, in their primacy model which incorporates
both decay and rehearsal, Page and Norris (1998) assumed that
rehearsal is performed cumulatively from the beginning of the list
but is abandoned at the point where all items can no longer be
rehearsed in the interval between items. Given that items in our
experiments and in Thalmann et al. (2019) were presented at a rate
of one per second, participants are unlikely to be able to rehearse
more than four items in the gap between items. They will therefore
have abandoned rehearsal well before the end of the list.

General Discussion

Chunking is usually thought of as a way of squeezing more
information into a limited capacity STM system. That is, chunking
is a form of data compression. Currently there are only two studies
(Brady et al., 2009; Thalmann et al., 2019) that provide support for
the idea that representations in STM may become compressed so
as to allow more information to be stored in memory. The data
from Thalmann et al. (2019) et al. provide convincing evidence
that chunking may lead to compression under some circumstances,
but their data come from an idiosyncratic cued serial recall task.
Here we used the two tasks that have been most widely used to
study chunking: 2AFC recognition and immediate serial recall. We
also varied the size of the chunks.

The experiments reported here were designed to distinguish
between two alternative hypotheses as to how chunking might
operate in verbal STM. According to a data compression view,
words are recoded into chunks and this should free up space for
more words to be stored in memory. This should lead to improved
recall of both multiword chunks and singletons. Performance
should improve equally for all items in the list regardless of
whether they form part of larger chunks. According to a redinte-
gration view, the benefit of chunking should apply to the chunks
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Figure 11. Simulations of recall of singletons in Experiment 5 using the primacy model.
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(pairs or triples) themselves and have or no influence on items not
forming part of a larger chunk (singletons).

The results of Experiments 1 and 2, using a recognition task and
chunks of two words, strongly favor redintegration. In line with
previous studies, overall performance was better for lists contain-
ing more pairs. However, contrary to the predictions of a com-
pression hypothesis, the performance on both singletons and pairs
was unaffected by the number of pairs in the list, and pairs were
remembered better than singletons. The improvement in perfor-
mance on lists with more pairs was entirely attributable to the fact
that they contained more pairs, each of which was always recalled
equally well regardless of the composition of the list. There was no
indication that the words in a chunk could be stored in a slot that
would normally hold just a single item. Instead, the data are
exactly as would be expected on the basis of redintegration. Larger
chunks are better recalled because the constraints provided by
representations of those chunks in LTM enable those chunks to be
more readily decoded from STM. As would be expected from a
redintegration account, the benefit of chunking does not extend to
words that do not form part of a chunk.

The results from the serial recall task used in Experiment 3 are
similar. Recall of pairs remains constant regardless of the number
of chunks. However, recall of single items does improve when the
lists contain more chunks. This occurs most strongly when a strict
serial recall scoring procedure is adopted. A possible explanation
for this result is that when lists contain more chunks, this places
increasing constraints on the number of locations where a single
item might appear. It seems that the improvement in recall of
singles with increasing number of chunks is entirely attributable to
the improvement in recall of the item in Position 5. Note that if
compression had been operating, performance on pairs should also
have improved as the number of pairs increased, but it did not.
These first three experiments make the important point that when
recall is found to benefit from the presence of familiar chunks this
should not be taken as evidence that the input has been recoded
into compressed representations of those chunks in STM.

In Experiments 4, 5, and 6 we used three-word chunks. Given
that there must be some cost to chunking, we hypothesized that
compression might emerge only with larger chunks. Chunks in the
input need to be recognized as such and then recoded into a
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different compressed representation. At recall, the compressed
representation must be unpacked to retrieve the individual items in
the chunk. If any of these processes compete for resources or time
with memory, then the cost may outweigh the benefits of recoding.
In all three of these experiments with three-item chunks, recall of
single items improved as the number of triples in the lists in-
creased. In Experiments 5 and 6, using serial recall, performance
on triples also improved when there were more triples in the list.
That is, when we increased the size of the chunks from two to three
items, we saw the emergence of a pattern of data that we take to
be a signature of compression. These findings using 2AFC and a
standard serial recall task indicate that the data from Thalmann et
al. (2019) are not simply due to their use of an unusual task. Of
course, it is quite possible that redintegration continued to play
some role even when we can be fairly sure that there is compres-
sion too. If recall can benefit from redintegration, then it should be
used all of the time.

Our initial discussion of chunking models implicitly assumed
that the presence of chunks should always make more storage
capacity available for all other items in the list. Simple models
such as those considered by Cowan et al. (2012) also predict that
recall of chunks should be equivalent regardless of the number of
words in the chunk, because each chunk must occupy a single slot.
However, the most consistent finding across all six experiments
was that the larger chunks were recalled better than singletons.
This result is consistent with redintegration. However, it can also
be explained by compression when we take account of the fact that
verbal material must be presented and processed sequentially. If all
processing is sequential, then the presence of multiword chunks
can only benefit recall of singletons when those chunks appear
before the singletons in the list. The serial position data suggest
that list items are indeed encoded in strict serial order and are not
recoded when later items arrive.

We simulated our serial recall data with a model incorporating
the simplest possible account of chunking; as each chunk arrives it
is stored exactly as though it were a single item. The simulations
gave a good fit to the data. They also explain why performance on
chunks should be better than singletons; chunks should be less

susceptible to decay or interference during recall. As with all
computational models of verbal STM, our simulations do not
assume that there is a hard chunk-based capacity limit. Simple
fixed-slot chunking models are likely to be more applicable to
visual stimuli where all of the items to be remembered can be
presented simultaneously.
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Appendix

Stimuli Used in Experiments

Chunks used in each experiment

Word pairs used in Experiments 1, 2, and 3

door knob game play pig tail cave man
finger nail horse fly gold fish goose down
house work sales woman bee sting ice cold
brief case bus pass jazz band school dinner
hack saw head light lady bird table cloth
red rose monkey business sail boat egg shell
shoe lace radio show oil can post box
step mother mouse trap winter coat fruit cake
green tea desk lamp shopping list pie crust
brick building swim pool dairy farm grass seed
river flow bread bake coal mine rain cloud

Word triplets used in Experiment 4

brass door knob fair game play curly pig tail
extinct cave man broken finger nail horse fly bite
gold fish bowl goose down quilt house work done
busy sales woman bee sting sore ice cold beer
heavy brief case student bus pass loud jazz band
healthy school dinner sharp hack saw bright head light
tiny lady bird clean table cloth red rose smell
cheeky monkey business moored sail boat crack egg shell
black shoe lace morning radio show rusty oil can
sweet green tea wicked step mother mouse trap cheese
warm winter coat iced fruit cake parcel post man
folding desk lamp long shopping list cherry pie crust

Word triplets used in Experiments 5 & 6

brass door knob fair game play curly pig tail
extinct cave man broken finger nail horse fly bite
gold fish bowl goose down quilt house work done
busy sales woman bee sting sore ice cold beer
heavy brief case student bus pass loud jazz band
healthy school dinner sharp hack saw bright head light
tiny lady bird clean table cloth red rose smell
cheeky monkey business moored sail boat crack egg shell
black shoe lace morning radio show rusty oil can
parcel post service wicked step mother mouse trap cheese
warm winter coat iced fruit cake sweet green tea
folding desk lamp long shopping list cherry pie crust
brown brick building swim pool full dairy farm cows
grass seed grown fast river flow hot bread bake
deep coal mine dark rain cloud milk bottle top
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