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Abstract

Targeted memory reactivation (TMR) is a methodology employed to manipulate memory 

processing during sleep. TMR studies have great potential to advance understanding of sleep-

based memory consolidation and corresponding neural mechanisms. Research making use of 

TMR has developed rapidly, with over 70 articles published in the last decade, yet no quantitative 

analysis exists to evaluate the overall effects. Here we present the first meta-analysis of sleep 

TMR, compiled from 91 experiments with 212 effect sizes (N=2,004). Based on multilevel 

modelling, overall sleep TMR was highly effective [Hedges’ g=0.29, 95% CI: (0.21, 0.38)], with a 

significant effect for two stages of non-rapid eye movement sleep [Stage NREM 2: Hedges’ 

g=0.32, 95% CI: (0.04, 0.60); and Slow-Wave Sleep: Hedges’ g=0.27, 95% CI: (0.20, 0.35)]. In 

contrast, TMR was not effective during REM sleep nor during wakefulness in the present analyses. 

Several analysis strategies were used to address the potential relevance of publication bias. 

Additional analyses showed that TMR improved memory across multiple domains, including 

declarative memory and skill acquisition. Given that TMR can reinforce many types of memory, it 

could be useful for various educational and clinical applications. Overall, the present meta-

analysis provides substantial support for the notion that TMR can influence memory storage 

during NREM sleep, and that this method can be useful for understanding neurocognitive 

mechanisms of memory consolidation.
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The idea of manipulating memories and thoughts during sleep is fascinating for 

neuroscientists, psychologists, and the general public. Although the idea may sound like 
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science-fiction, the past decade has witnessed an increasing number of studies wherein 

memory processing is directly manipulated during sleep. By covertly administering sensory 

cues while participants are asleep, associated memories from recent learning can be 

reactivated and modified. This procedure, known as targeted memory reactivation (TMR), 

gives researchers the ability to noninvasively reactivate specific memories during sleep. 

More generally, memory reactivation is thought to be a natural feature of sleep that underlies 

sleep-dependent memory consolidation and the effective preservation of memories (Paller, 

Mayes, Antony, & Norman, in press).

The use of TMR in various experimental contexts has greatly advanced our understanding of 

causal relationships between sleep physiology and memory consolidation. TMR research is 

also attractive because its usefulness could extend beyond the laboratory, with high potential 

value for enhancing learning via offline memory processing. For example, benefits may be 

realized for boosting skill and language acquisition, and even enhancing psychotherapeutic 

effectiveness (for related discussions, see Diekelmann, 2014; Paller, 2017). Despite the 

influx of publications dedicated to this line of research, two imperative questions remain un-

answered: what is the overall effect size aggregating across TMR studies and what are the 

variables that modulate the effectiveness of TMR? This meta-analysis aims to address these 

questions, providing quantitative estimates of the overall TMR effect as well as effects under 

various experimental conditions.

Spontaneous and Targeted Memory Reactivation During Sleep

Memories continue to change, even after initial encoding and between episodes of deliberate 

rehearsal. Jenkins and Dallenbach (1924) provided initial evidence that offline sleep 

influenced memory processing: participants showed superior memory retention following 

sleep versus following an equal period of wakefulness. More recently it has become widely 

accepted that sleep plays an important role in consolidating and transforming memories 

(Diekelmann & Born, 2010; Inostroza & Born; 2013; Rasch & Born, 2013; Stickgold & 

Walker, 2013). For example, it has been reported that sleep can stabilize memories and 

render them more resistant to retroactive interference (Ellenbogen, Hulbert, Stickgold, 

Dinges & Thompson-Schill, 2006), and that sleep can promote integration of newly learnt 

information into existing memory schema (Tamminen, Payne, Stickgold, Wamsley & 

Gaskell, 2010). Moreover, motivation also shapes sleep-based memory consolidation, given 

the demonstrated influence of emotion, reward, and future relevance on retention (Fischer & 

Born, 2011; Payne et al., 2015; Wilhelm, Diekelmann, Molzow, Ayoub, Molle & Born, 

2011).

One plausible mechanism supporting sleep-based memory consolidation is that prior 

learning experiences are spontaneously reactivated during sleep. Techniques such as single-

unit recording, scalp electroencephalography (EEG), positron emission tomography (PET), 

and functional magnetic resonance imaging (fMRI) allow researchers to observe brain 

activity during post-learning sleep. Specifically, brain activity related to wakeful encoding 

can spontaneously re-emerge during subsequent sleep, possibly indexing memory 

reactivation given that the magnitude of such responses can predict post-sleep memory 

performance (Deuker et al., 2013; Peigneux et al., 2004). These studies relied on 
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spontaneous memory reactivation and did not directly manipulate memory reactivation 

during sleep. Compelling evidence for causal relationships between sleep-based memory 

reactivation and improved memory performance could be attained using methods to allow 

memory reactivation to be externally initiated and guided.

As shown in Figure 1a, TMR paradigms are characterized by three core components: First, 

specific learning episodes are designed so that strong associations are formed between 

certain sensory stimuli and learned information. In some cases, the stimuli are the main 

focus of learning. Secondly, previously learned sensory cues are presented to participants 

during sleep, usually during specific sleep stages identified by standard polysomnographic 

methods. Steps are taken to avoid arousal from sleep (e.g., sounds delivered at a low 

intensity over a white-noise background). Critically, re-exposure to sensory cues is intended 

to reactivate previously learned information. The last component consists of a post-sleep test 

upon waking. By comparing performance change scores between reactivated and non-

reactivated memories, researchers can isolate the TMR effects due to the reactivation 

manipulation.

Although the term TMR was coined only recently (Oudiette & Paller, 2013), research using 

memory reminders during sleep was evident since at least the 1950s and has been 

periodically documented since (e.g., Aarons, 1976; Dillon & Bowles, 1976; Fox & Robbins, 

1952; Guerrien et al., 1989; Hars et al., 1985; Hars & Hennevin, 1987; Oswald, Taylor & 

Treisman, 1960; Tilley et al., 1979; Smith & Weeden, 1990, Wood, Bootzin, Kihlstrom & 

Schacter, 1992; for a review and discussions of these early studies, see Oudiette & Paller, 

2013). These earlier studies not only aimed to reactivate prior learning established during 

wakefulness, but in some cases also tried to produce novel learning using sensory cues 

during sleep. Many of these studies were controversial and regularly dismissed on 

methodological grounds (e.g., Bruce, Evans, Fenwick & Spencer, 1970). However, after 

Rasch, Buchel, Gais, and Born (2007) and Rudoy, Voss, Westerberg and Paller (2009) 

published their seminal experiments, this line of research has grown considerably; Figure 1b 

documents this growth in publications on TMR.

An Overview of TMR Research

In Rasch et al. (2007), the researchers paired an olfactory cue with two learning tasks: a 

declarative, spatial location task and a procedural, finger-tapping task. Compared with 

various control conditions, re-exposure of the same olfactory cue during subsequent SWS 

improved spatial recall, but not finger-tapping performance. Improvement of spatial recall 

was limited to cueing during SWS, in that cueing during REM or wakefulness did not 

produce noticeable change. Odor-induced memory reactivation during SWS was additionally 

supported by fMRI findings showing that exposure to task-relevant odors during SWS 

elicited hippocampal activity.

Rudoy and colleagues (2009) similarly reactivated spatial memories during SWS but with a 

set of low-intensity sounds instead of a single odor. These sounds had been presented during 

learning, each with an image of a semantically related object. Post-sleep results showed that 

TMR altered memories during SWS, as locations of cued objects were recalled more 
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accurately than were locations of uncued objects. This experiment thus made two unique 

contributions. First, it demonstrated that reactivation during SWS can be provoked through 

the auditory modality. Prior thinking was that such auditory input would largely be 

prevented from reaching the cortex due to gating at the thalamus, whereas olfactory 

processing does not pass through the thalamus (Zelano & Sobel, 2005). Second, it showed 

that reactivation with TMR can influence a select subset of specific memories formed during 

a learning episode.

These and other TMR studies enabled researchers to make strong causal inferences linking 

offline, sleep-based reactivation to subsequent memory performance. Furthermore, 

additional insights were provided about the roles of distinct sleep stages and sleep-

physiology signals in relation to memory consolidation. Investigating cue-elicited brain 

activity during sleep can enable researchers to pinpoint neural mechanisms contributing to 

memory change (Ai et al., 2018; Antony et al., 2018b; Belal et al., 2018; Cairney et al., 

2018; Farthouat, Gilson & Peigneux, 2017; Schreiner, Doeller, Jensen, Rasch & Staudigl, 

2018; Schreiner, Lehmann & Rasch, 2015; Shanahan et al., 2018). Identifying relevant 

neural signals (e.g., slow oscillations, spindles, other brain rhythms, and fMRI activations) 

has now become the target of many creative experimental manipulations. Moreover, 

oscillatory stimulation can also be used to entrain brain rhythms to shed further light on their 

roles in memory (e.g., Antony & Paller, 2017; Ngo et al., 2013; for a recent review on 

different stimulation methods, see Cellini & Mednick, 2018).

Given that translating basic science research to applications outside the lab setting can be 

advantageous, TMR provides new opportunities to boost learning beyond ordinary sleep 

(Diekelmann, 2014; Paller, 2017). For example, Diekelmann, Biggel, Rasch and Born (2012) 

reported that a 40-min sleep with TMR enhanced memory when compared with the same 

length of sleep without TMR (see also Schönauer, Geisler, & Gais, 2014). Another 

intriguing possibility is that the benefits of TMR are cumulative and, when applied over 

longer periods of time, could help those who suffer from more severe memory difficulties 

such as neurodegenerative diseases (e.g., Westerberg et al., 2012). TMR might also aid 

approaches in clinical psychotherapy (Oudiette, Antony & Paller, 2014), as using TMR 

during sleep could reactivate skills from a prior therapy session, helping those who suffer 

from PTSD, anxiety, depression, among other disorders (Paller, 2017).

To date, TMR research has been studied with many different sorts of learning. As shown in 

Table 1, this list includes learning paradigms such as word associative learning, visual-

spatial memory, emotional memory, skill learning, vocabulary learning, grammar learning, 

fear conditioning/extinction, and so on. Notably, TMR has also been combined with 

innovative learning tasks that are not typically studied in memory research, such as phobia-

exposure therapy, counter-stereotype learning, multisensory integration, value-based 

decision making, and so on (e.g., Ai et al., 2018; Honma et al., 2016; Hu et al., 2015; Rihm 

et al., 2016). Outside of human evidence, TMR has also been conducted with non-human 

animals including rats, mice, and even with invertebrates such as honeybees (Bender & 

Wilson, 2012; Purple, Sakurai & Sakaguchi, 2017; Rolls et al., 2013; Rothschild, Eban & 

Frank, 2017; Zwaka et al., 2015). These cross-species studies provide converging evidence 

that memory processing can be manipulated during sleep.
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A Quantitative Assessment of TMR

To date, over 90 TMR experiments have been performed on humans. These studies can 

inform our current understanding of what domains of learning are especially amenable to 

benefit from sleep reactivation. In addition, certain experimental factors may influence the 

effectiveness of TMR, including sleep stage when sensory cues are presented (SWS vs. 

REM, Lehmann et al., 2016; Rasch et al., 2007; N2 vs. REM, Laventure et al., 2016; 

Sterpenich et al., 2014; N2 vs. SWS, Belal et al. 2018), memory strength prior to sleep 

(Cairney, Lindsay, Sobczak, Paller & Gaskell, 2016; Creery et al., 2015), amount of prior 

knowledge (Groch, Schreiner, Rasch, Huber & Wilhelm, 2017), and degree of competition 

between memories (Antony et al., 2018a; Oyarzún et al., 2017). Review articles by Oudiette 

and Paller (2013), Schouten and colleagues (2017), Cellini and Capuozzo (2018), and Paller 

and colleagues (in press) have aptly summarized the breadth of topics investigated using the 

procedure, yet no quantitative summary of experimental effects exists. Narrative reviews 

typically adopt a vote-counting approach in summarizing existing evidence, taking TMR 

results as either significant or not (Cellini & Capuozzo, 2018, Table 1; Schouten et al., 2017; 

Tables 2–4). Despite its appealing simplicity, this vote-counting approach can be misleading 

because null results and inconsistent findings are attributed to sampling errors or procedural 

variations in a descriptive rather than in a quantitative manner (Siddaway, Wood & Hedges, 

2018). In contrast, meta-analytic approaches synthesize all available effect sizes, while 

taking statistical power and precision of estimates into consideration to quantitatively 

estimate the effectiveness of specific procedures. Moreover, by partitioning effect sizes into 

different categories, moderator analyses in a meta-analysis can advance theoretical 

understanding of how experimental factors may influence memory consolidation, such as 

sleep stages (NREM vs. REM), learning types (declarative vs. skill learning), and how 

learning outcomes are measured (recall vs. recognition etc.).

Here, we aggregated all available datasets to provide evidence relevant for assessing the 

effect size of memory benefits produced by TMR. First, we aimed to provide an overall 

estimate of the TMR effect. We then planned a series of moderator analyses to address the 

aforementioned questions. Our foremost research question concerns whether TMR is 

specific to certain cueing stages, such as N2, SWS, REM, and wakeful states. Another 

potentially important question never directly examined in any single study is whether TMR 

effectiveness varies as a function of sleep duration (ranging from 0.67 hours to 8 hours). 

This variable can be examined in a meta-analysis because it aggregates studies with different 

sleep durations.

We compared effects on different types of learning, based on current theorizing in memory 

research. Learning tasks were categorized into either declarative memory, skill acquisition, 

conditioning, or other types of learning. The last category includes studies that cannot easily 

be grouped into conventional categories, such as phobia-exposure therapy, social learning, 

multisensory integration, value-based decision making, etc. In addition to learning tasks, we 

coded how TMR may differentially influence various outcome measurements such as 1) 

recall that relies on cued or free recall testing, 2) recognition in discriminating old and new 

items, 3) behavioral performance when memory is not explicitly probed, such as speed and 

accuracy during RT-based tasks, or problem solving, 4) subjective ratings when participants 
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are asked to self-report how they feel and think regarding mnemonic materials, and 5) skin 

conductance response, SCR.

In another analysis, we investigated whether TMR effects varied as a function of within- 
versus between-subject designs, and whether TMR effectiveness differed as a function of 

sensory stimulation modality (auditory_verbal, auditory_nonverbal, or olfactory cues). Our 

hope is that the results from these analyses will serve as a resource for future parameter 

selection and lessen ambiguity concerning boundary conditions of effective TMR 

application.

Lastly, acknowledging that learning tasks vary, we conducted focal analyses to examine 

subsets of studies with homogeneous learning tasks combined with NREM TMR. We 

identified the following topics: spatial learning, associative learning, language 
acquisition, false memories, and skill learning. We additionally investigated cognitive bias 
modifications, emotional memories, and fearful memories, given the potential clinical 

benefit of improving symptoms associated with mood- and trauma-related disorders. For 

example, because TMR can reactivate and bias memories regarding potential interpretation 

of ambiguous scenes (Groch et al., 2016; Groch et al., 2017), it may be useful for reducing 

habitual negative biases observed in depressive and anxiety disorders (Hallion & Ruscio, 

2011). Compared with overall analyses that span a range of different tasks and conditions, 

focal analyses with relatively homogenous procedures can be advantageous because 

estimated effect sizes can help guide future research on similar topics.

Method

We relied on two meta-analysis handbooks, Lipsey and Wilson (2001) and Borenstein, 

Hedges, Higgins and Rothstein (2009), as our primary references in each stage of 

implementing the meta-analysis. We also followed the Preferred Reporting Items for 

Systematic Reviews and Meta-Analyses (PRISMA) statement of Moher et al. (2009) and 

their 27-item meta-analysis checklist to guide our meta-analysis and preparation of the 

manuscript (see supplementary online materials SOM for the PRISMA statement).

Literature Search

Figure 2 depicts a PRISMA flowchart of the literature search. To strive for an exhaustive list 

of datasets, we followed three steps. First, we conducted searches with online databases 

including Web of Science, PsycINFO (via ProQuest, including journals/books/dissertations/

theses), PubMed, and bioRxiv/PsyArxiv through June, 2019 with key words referring to 

memory reactivation and sleep. Exact key words using Boolean operators are (targeted 
memory reactivation OR memory reactivation OR memory cueing OR memory replay) 
AND (sleep OR N2 OR slow-wave sleep OR SWS OR NREM OR REM). In this way, we 

collected (1) peer-reviewed published and in-press research articles, (2) unpublished 

dissertations/theses, and (3) preprints uploaded to repositories (i.e., bioRxiv, PsyArxiv). 

Unpublished dissertations and preprints were included to attempt to weigh against 

publication bias. In the second step, we contacted researchers who had previously published 

on TMR or on sleep and memory consolidation to solicit unpublished datasets and under-

review manuscripts. We included these identified unpublished datasets and manuscripts in 
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the meta-analysis (some of the manuscripts were either subsequently published or 

overlapping with unpublished dissertations identified earlier). In Step 3, we checked the 

reference sections from related review articles to identify missing references (Aarons, 1976; 

Cellini & Capuozzo, 2018; Diekelmann & Born, 2010; Oudiette & Paller, 2013; Rasch & 

Born, 2013; Schouten, Pereira, Tops & Louzada, 2017; Stickgold & Walker, 2013). All 

authors checked and agreed on the final reference list.

Inclusion/Exclusion Criteria—We applied the following inclusion/exclusion criteria to 

select studies for this meta-analysis. First, sensory stimulation must have been applied to 

reactivate prior learning instead of inducing novel learning or EEG activity change (e.g., 

Arzi et al., 2012; Arzi et al., 2014; Antony & Paller, 2017; Dillon &Bowles, 1976; Ngo et 

al., 2013; Züst, Ruch, Wiest & Henke, 2019). Second, given that our primary research 

question concerns sleep TMR, we excluded articles that only examined wake TMR (Alm, 

Ngo & Olson, 2019; Schreiner & Rasch, 2015; Tambini, Berners-Lee & Davachi, 2017). 

Third, we only included studies that used human participants, excluding the few nonhuman 

animal TMR studies that have been published (e.g., Barnes & Wilson, 2014; Bender & 

Wilson, 2012; Purple, Sakurai & Sakaguchi, 2017; Rolls et al., 2013). Fourth, studies must 

have reported behavioral effects, excluding articles that only examined neural mechanisms 

of TMR (e.g., Batterink, Creery & Paller, 2016). Lastly, sufficient statistical details must 

have been available to extract relevant effect sizes (means, SD, F, and t). When statistical 

details were not reported in the text, we either contacted corresponding authors to request 

relevant data or extracted needed data from published figures in the article using 

“metaDigitise” (Pick, Nakagawa & Noble, 2018).

Coding of Study Characteristics

Coding was conducted by the first author and double-checked by the second author. 

Disagreements were resolved through discussions. Interrater reliability was calculated with 

Cohen’s Kappa coefficient (Cohen, 1960), using “ICC” package in R (Wolak, 2015). In 

general, raters showed high consistency, with a range of κ from 0.94 to 1.00. We coded each 

experiment based on three aspects: publication status, sample characteristics, and 

experimental design characteristics. For publication status, we coded each experiment with 

1) publication year, 2) publication type (peer-reviewed journal article, dissertation, 

conference abstract, preprint, and unpublished dataset), and 3) publication status (journal 

articles coded as published, with all remaining coded as unpublished). Regarding sample 

characteristics, we coded each experiment with 1) sample size, 2) gender ratio, 3) mean 
age, and 4) country of origin.

Regarding experimental design characteristics, we first coded each experiment based on 

TMR cueing stages, such that whether TMR was administered during N2, SWS, REM, 

unspecified (i.e., when TMR was administered without EEG monitoring), or wakefulness. 

If cues were delivered during both N2 and SWS, the study was coded as SWS, and all N2 

and SWS TMR studies were further combined as NREM. We then coded sleep duration as 

a continuous variable on how long participants were given to sleep, ranging from 0.67 to 8 

hours.
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Learning tasks used in each experiment were categorized as declarative memory, skill 
learning, conditioning, and other types of learning. We then examined each outcome 

measurement, and coded them into one of five categories: recall, recognition, behavioral 
performance, subjective ratings, and SCR.

Lastly, we coded whether TMR was administered using a between- or a within-subject 
design, and which sensory modality was used in TMR cueing, including 

auditory_nonverbal vs. auditory_verbal vs. olfactory cues.

Following moderator analyses, we conducted focal analyses based on tasks and 

experimental conditions of interest, as opposed to the all-inclusive nature of the main 

analyses. Specifically, we selected TMR studies focusing on spatial learning that used 

spatial object-location tasks and navigation tasks (e.g., Rasch et al., 2007; Rudoy et al., 

2009; Shanahan et al., 2018; Shimizu et al., 2018). A second topic covered associative 
learning tasks in which participants learned stimuli pairings (e.g., spoken words/sounds to 

be paired with words/pictures, e.g., Cairney, Sobczak, Lindsay & Gaskell, 2017; Cairney et 

al., 2018; Fuentemilla et al., 2013). A third topic included TMR studies that examined 

language learning, including foreign vocabulary acquisition, grammatical learning, and 

generalization (e.g., Batterink & Paller, 2017; Cordi, Schreiner & Rasch, 2018; Schreiner & 

Rasch, 2015a, 2017). For false memories, identified tasks typically used either Deese-

Roediger-McDermott procedures or reality monitoring tasks (Cousins, 2014, unpublished 

dissertation; Rihm, Diekelmann, Born & Rasch, unpublished dataset; Vargas, 2018 

unpublished dissertation). In addition to these analyses focused on declarative memories, we 

examined studies involving skill learning because of their implications in enhancing motor 

performance and thus motor rehabilitation. We planned to focus on performance measures of 

reaction speed and accuracy (e.g. Antony et al., 2012; Cousins et al., 2016; Laventure et al., 

2016), as well as explicit knowledge of motor sequences in skill learning (e.g., Cousins et 

al., 2014; Diekelmann et al., 2016). Lastly, we synthesized effect sizes from studies with 

translational implications in clinical settings, namely cognitive bias modification (e.g., 

Groch et al., 2016; Groch et al., 2017), emotional memories (e.g., Ashton et al., 2018; 

Cairney et al., 2014; Lehmann et al., 2016; Rihm & Rasch, 2015), and fearful memories 
(e.g., Ai et a., 2015; Hauner et al., 2013; He et al., 2015). Coding of study characteristics and 

categorization of focal analyses can be found in Table 1 and in SOM.

Effect Size Calculation

To calculate effect sizes, we used equations recommended in Dunlap, Cortina, Vaslow and 

Burke (1996), Lakens’s (2013, with spreadsheet available at https://osf.io/vbdah/), and 

Morris and DeShon (2002). In TMR research, effect sizes are best captured by comparing 

post-minus-pre-sleep performance changes between cued versus uncued conditions in terms 

of standardized mean differences (i.e., the Cohen’s d family). For both within- and between-

subject designs, we calculated effect sizes based on mean and SDs as a common metric to 

(a) allow direct comparisons and moderator analyses across within- and between-subject 

designs and (b) avoid the risk of inflated effect sizes and false-positive rates (Dunlap et al., 

1996; Lakens, 2013, Table 1; Morris & DeShon, 2002). Across the whole sleep TMR 

dataset, 96.7% (205 out of 212) of effect sizes were calculated based on means and SDs.
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In a within-subject TMR study, participants receive both cued and uncued treatments within 

a single sleep session (e.g., Rudoy et al., 2009), or in two sleep sessions if the design calls 

for counterbalanced sleep manipulations (Rasch et al., 2007). For within-subject designs, we 

searched for post- minus pre-sleep memory change scores for cued and uncued conditions 

and their associated SDs, respectively. Means and associated SDs for cued and uncued 

conditions’ change scores were used to calculate the TMR cueing effect in terms of Cohen’s 

dav, as recommended for meta-analyses (Lakens, 2013, Formula 10 and Table 1). If means 

and S.D.s (or S.E.s) were not reported nor available, then we searched for statistical tests 

that examined the effects. Such statistical tests can be reported in one of the three following 

forms: 1) a within-subject ANOVA that reported a 2 (pre- vs. post-sleep) by 2 (cued vs. 

uncued) interaction; 2) a paired-sample t-test that compared changes in memory scores (over 

sleep) for cued and uncued items; or 3) a paired-sample t-test that compared cued vs. uncued 

post-sleep memory scores (in these cases, the post-sleep memory performance was scaled to 

the corresponding pre-sleep memory performance, see Rasch et al., 2007). Based on these 

statistics, we transformed the reported F-values from the two-way interaction (with one-

degree of freedom tests), or the t-values from the paired-sample t-tests to Cohen’s dz (see 

Lakens, 2013, Formula 7; Morries & DeShon, 2002, p118, Formula 28).

When a between-subject design was used, participants in the experimental TMR group 

received sensory cues to reactivate prior learning, whereas participants in the control group 

received learning-incongruent sensory cues or no cues at all (e.g., He et al., 2015; Rihm, 

Diekelmann, Born & Rasch, 2014; Sterpenich et al., 2014). Here, to calculate TMR effect 

sizes, we preferentially chose the incongruent cue control group over the no-stimulation 

group to make sensory stimulation constant between groups. The no-stimulation group was 

used when this was the only control group available, or when there were multiple TMR 

experiments and thus multiple control groups were needed (as in Sterpenich et al., 2014, 

when both N2 and REM TMR were examined). For between-subject TMR studies, we 

searched for the pre- vs. post-sleep memory change scores from the experimental and 

control group and their associated S.D.s. The change scores and the associated S.D.s for 

experimental and control groups were used to calculate effect size in terms of Cohen’s ds 

(Lakens, 2013, Formula 1). When means and S.D.s/S.E.s were not reported in the article, we 

again searched for key statistical tests that examined TMR effects. Here, the effect could be 

tested in a mixed 2 (between-subject variable: TMR vs. control groups) by 2 (within-subject 

variable, pre- vs. post-sleep) ANOVA. Alternatively, the TMR effect could be derived from 

an independent sample t-test comparing post-sleep memory performance between the 

experimental and control groups, or comparing pre- vs. post-sleep memory change scores 

between the two groups. We then transformed the F- and the t-values from these statistical 

tests to calculate effect sizes in Cohen’s ds (Lakens, 2013, Formula 2; Morries & DeShon, 

2002, p118, Formula 27).

Lastly, as effect sizes in Cohen’s d are upward biased with small samples (Cummings, 2012; 

Lakens, 2013, p.5), we employed Hedges’ g correction function to all individual effect sizes: 

Hedges’ g = Cohen’s d * (1-(3/(4*df-1))), where df denotes degree of freedom reported in 

the statistical test (Hedges, 1981, see also Borenstein et al., 2009; Formula 4.22).
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Publication Bias Analyses

We employed a variety of methods to investigate how publication bias may influence the 

estimated effect sizes from sleep TMR research. We first used a funnel plot to display effect 

sizes against their standard errors. According to Egger and colleagues (Egger, Smith, 

Schneider & Minder, 1997), existence of publication bias can be detected through an 

asymmetric funnel plot because low-powered positive findings are more likely to be 

published than equally powered negative findings.

Second, we employed the Trim-Fill method (Duval & Tweedie, 2000), which imputes 

artificial effect sizes to make the funnel plot symmetric, and then calculated corrected effect 

sizes. Third, we used publication status (published vs. unpublished) as a categorical 

moderator to assess whether published studies have significantly larger effect sizes than 

unpublished studies.

Fourth, we chose the three-parameter likelihood selection model (Iyengar & Greenhouse, 

1988), which extends the original selection model proposed by Hedges (1984) in estimating 

and correcting publication bias. The three-parameter model includes not only the 

synthesized effect size as a parameter, but also considers the heterogeneity across effect 

sizes, and the probability of nonsignificant studies to be published calculated by the 

maximum likelihood function. In the current study, the three-parameter selection model was 

set as a one-tailed model with the probability of publishing nonsignificant studies with a step 

function cut-off at p = .025 by maximum likelihood, following the assumption that 

directionally consistent and statistically significant studies are more likely to be published. 

Notably, this three-parameter selection model shows promising performance to adjust effect 

size in conditions varying in the synthesized effect size, heterogeneity, sample size, and the 

extent of publication bias across different simulation studies (Carter et al., 2019; McShane, 

Böckenholt, & Hansen, 2016).

Fifth, we employed a selection model with a priori weight functions that could model four 

different scenarios of publication biases: moderate one-tailed selection, severe one-tailed 

selection, moderate two-tailed selection, and severe two-tailed selection (Vevea & Woods, 

2005). This analysis is advantageous because it shows how estimated effect size may change 

based on the different magnitudes of publication biases. The specification of priori weights 

follows the implementation of Vevea and Woods (2005).

Meta-analytic Procedure

We chose a three-level random-effects model over a fixed-effects model. This choice of 

model is based on the following reasoning.

First, TMR research is characterized by experimental procedures with particular memory 

tasks administered in conjunction with TMR during different sleep stages. Therefore, we 

expected considerable heterogeneity across studies.

Second, a random-effects model assumes heterogeneity due to systematic variance among 

studies, above and beyond sampling error. A random-effects model will thus generate larger 
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standard errors than fixed-effects models, which will lead to more conservative findings and 

reduced false positives in both overall effect-size estimates and moderator analyses.

Third and most importantly, many TMR experiments have reported more than one measure 

of memory performance, which violates the key assumption of data independence in typical 

random-effect models (Borenstein et al., 2011; Lipsey & Wilson, 2001). As an extension of 

the random-effects model, multilevel modelling can model both within- and between-study 

variance and thus can address the issue of dependencies (Van den Noortagte & Onghena, 

2003). In short, we employed the multilevel modelling to model three levels of variance: 1) 

variances due to sampling error, 2) within-study variances among multiple effect sizes from 

the same experiment, and 3) between-study variances among different experiments.

Meta-analytical Computation

Individual effect sizes and corresponding variance measures at an outcome level were 

calculated in the Comprehensive Meta-analysis software Version 3.3.070 (Biostate, 

Englewood, NJ, 2014) in Hedges’ g. These values were then fed into the multilevel 

modelling using R package “metaphor” (Viechtbauer, 2010). To examine how much effect 

sizes varied from each other in the multilevel modelling, we used Cochran’s Q statistic to 

test whether individual effect size would vary significantly across the whole dataset (i.e., 

heterogeneity, Borenstein et al., 2011; Cheung, 2014). A significant Q statistic indicates 

significant heterogeneity across studies that cannot be explained by sampling error. We 

report between-studies I2 that denotes that among observed variance across the whole 

dataset, how much variance in proportional terms is due to differences in true effect sizes 

between studies rather than sampling error (Higgins & Thompson, 2002). We report τ2 that 

denotes the variance of estimated effect sizes at an experiment level, with τ indicates 

standard deviation.

Results

The search and selection process of applicable datasets are shown in the Figure 2 PRISMA 

flowchart. Included articles can be found in the reference section and are marked with 

asterisks. Sample and experimental characteristics of included experiments are shown in 

Table 1, with corresponding effect sizes provided in both Table 1 and Figure 3. All study 

information and the associated effect size at an outcome level are available in SOM. All data 

and analysis code can be found in https://osf.io/kg8y3/.

Study and Sample Characteristics

We collected 73 articles/abstracts/datasets, which contain n=91 experiments with 111 

independent samples. The total number of participants was 2004. This dataset contributed 

k=212 effect sizes to the meta-analysis, with each experiment contributing 2.33 effect sizes 

on average. Across the whole dataset, the mean sample size for each experiment was 22, 

with an average age of 23 years old. The mean age within single experiments ranged from 

13- to 71-year-old populations, thus covering adolescent, adult, and aging populations. Of 

these experiments, 51 were conducted in Europe, 31 in North America, 5 in Asia, and 1 in 
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South America. Neither age (β=−0.003, 95% CI: [−0.020, 0.015], p=.747) nor female: male 

ratio (β=−0.443, 95% CI: [−0.940, 0.055], p=.081) had a significant impact on TMR effects.

Overall Sleep TMR Effects and Publication Bias Analyses

Across all TMR sleep experiments/conditions, sleep TMR showed a significant effect 

influencing learning with Hedges’ g= 0.29, 95% CI: [0.21, 0.38], Z=6.711, p<.001. Despite 

this significant TMR effect, there was considerable heterogeneity across effect sizes as 

revealed by heterogeneity analysis, Q(211)= 588, I2=71%, p<.001, with τ2 =0.112 at an 

experimental level (i.e., between-experiment, level-3), τ2=0.031 at an outcome level (i.e., 

within-experiment, level-2). This heterogeneity across studies, and the finding that 71% of 

variances reflects true differences across effect sizes instead of sampling errors, strongly 

suggests that TMR effects must be compared across experimental conditions.

Regarding publication biases, Egger’s test showed that the funnel-plot was significantly 

asymmetric, Z= 8.489, p<.001, indicating the existence of publication biases (Figure 4). 

With the Trim-and-Fill method, 17 artificial effect sizes were imputed to adjust for potential 

biases. For the overall sleep TMR effect, the adjusted effect size was still significantly above 

zero, Hedges’ g=0.18, 95% CI: [0.06, 0.30], Z=2.944, p=.003.

When publication status (yes vs. no) was examined in the moderator analysis, we found that 

publication status did not significantly influence effect sizes Q(1)=1.005, p=.316, with 

unpublished studies (k=26) associated with a positive yet nonsignificant effect size, Hedges’ 

g=0.18, 95% CI: [−0.06, 0.42], Z=1.447, p=.148, while published studies (k=186) had a 

significant effect size, Hedges’ g=0.31, 95% CI: [0.22, 0.41], Z=6.563, p<.001.

Results from the three-parameter selection model again showed a significant adjusted effect 

size, with Hedges’ g= 0.13, 95% CI: [0.06, 0.21], Z= 3.472, p<.001. Lastly, employing the 

selection models with a priori weight functions to model different magnitudes of publication 

selection processes (Vevea & Woods, 2005), we found that sleep TMR appeared smaller, but 

remained significant under various scenarios of publication biases: Hedges’ g=0.21 for 

moderate two-tailed selection; g=0.17 for severe two-tailed selection; g=0.15 moderate one-

tailed selection, except in the severe one-tailed selection: g=−0.05.

Moderator Analyses

Because moderator and focal analyses will have fewer effect sizes available, potential 

outliers and influential cases may significantly influence results. We thus excluded data 

designated as statistical outliers (studentized residuals smaller or larger than 3, k=4, with 2 

from SWS TMRs and 2 from REM TMRs, with all outliers’ studentized residuals larger than 

3, i.e. significantly larger TMR effects). We then conducted influential case analyses to 

identify effect sizes that exert considerable influence on the analyses (see Vechtbauer & 

Cheung, 2010). Influential cases (k=2) matched those designated as statistical outliers. This 

left 208 effect sizes in the sleep TMR analysis. In wake TMR, two influential cases were 

identified and were excluded from the subsequent analyses. Outliers and influential case 

analyses can be found in SOM.
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TMR cueing stage—Our first question concerns whether the TMR effect was specific to 

certain cueing stages. As described in the Methods section (see also Table 1), we coded 

TMR cueing stages into five categorical moderators: N2 (k=13), SWS (k=174), REM 

(k=15), unspecified (k=6), and wake (k=30). Results show that cueing stage had a significant 

influence on TMR effects Q(4)=10.744, p=.03. Specifically, TMR was only significant 

during the two NREM stages: N2 and SWS. In contrast, TMR was ineffective when cueing 

was administered during REM, or when TMR was not supervised by EEG monitoring, or 

during wakefulness (see Table 2a, Figure 5a).

Sleep duration—We then coded sleep duration as a continuous variable, ranging from 

0.67 hours’ nap to 8 hours’ overnight sleep. We entered sleep duration as a predictor, with 

TMR effect as the dependent variable in a meta-regression model. Results showed that sleep 

duration did not significantly influence TMR effects, β=0.003, 95% CI [−0.022, 0.028], 

p=.795 (see Figure 6).

In the following moderator analyses, we further excluded 1) unspecified TMR experiments 

because procedurally, this line of research deviates significantly from other TMR 

experiments during which sleep is monitored by EEGs (k=6, Dillon & Babor, 1970; 

Donohue & Spencer, 2011; Göldi & Rasch, 2019; Ritter, Strick, Bos, van Baaren & 

Dijksterhuis, 2012), and 2) one tactile stimulation TMR study (k=2, Pereira et al., 2017) 

because it is the only tactile TMR study available, which limits conclusions concerning 

comparisons with other TMR studies.

Learning types—Following current theories regarding memory systems, we categorized 

learning tasks into four categories: declarative memory (k=153), skill learning (k=25), 

conditioning (k=10), and the other types of learning (k=12). Descriptions of memory tasks 

and their assigned categories can be found in Table 1. Results showed that TMR effects 

varied significantly among different learning types; Q(3)=8.056, p=.045. Specifically, TMR 

influenced all types of learning except for conditioning (see Table 2b, Figure 5b).

Outcome measurements—Based on how TMR research measured behavioral outcomes, 

we categorized each outcome into the following categories: recall (k=103), recognition 

(k=14), performance (k=46), SCR (k=4), and subjective ratings (k=33). Specific outcomes 

and their assigned categories can be found in the SOM. Results showed that TMR effects 

varied significantly depending on how outcomes were assessed, Q(4)=11.132, p=.025. 

Specifically, TMR had a significant effect on recall and performance measurements, while it 

had a nonsignificant effect on recognition, SCR, and subjective ratings (see Table 2b, Figure 

5c).

TMR design—There was no significant difference between these two types of design, 

Q(1)=0.055, p=.814. Both between- and within-subject designs were associated with 

significant and highly comparable TMR effects (see Table 2c, Figure 5d).

Cueing modality—All three TMR cueing modalities—auditory_nonverbal, 

auditory_verbal, and olfactory cues—were associated with significant and comparable TMR 

effects: Q(2)=0.688, p=.709 (see Table 2c, Figure 5e).
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Focal Analyses

In this section, we present a set of analyses that segregated subsets of relatively homogenous 

TMR studies in terms of sleep cueing stages and memory tasks. Because only N2 and SWS 

TMR effects were significant, we combined these experiments as NREM TMR (note that the 

two outliers from NREM TMR and the tactile N2 TMR study was not included in focal 

analyses). Focal analyses includes the following categories: spatial learning (k=43), 

associative learning (k=30), language acquisition (k=13), false memories (k=7), skill 

learning (k=23), cognitive bias modification (k=36), emotional memories (k=12), and fearful 

memories (k=4). Results are displayed in Figure 7. Studies included can be found in Table 1, 

with effect sizes at an outcome level reported in SOM. We present these analyses in a 

descriptive manner rather than making strong conclusions.

Spatial memories—In spatial learning tasks, participants learned spatial locations of 

objects on a 2-D grid and practiced placing the objects on the grid followed by feedback 

(e.g., Rasch et al., 2007; Rudoy et al., 2009). We identified 26 experiments and 43 effect 

sizes. For this category, TMR during NREM significantly enhanced spatial memories, 

Hedges’ g=0.30, 95% CI [0.17, 0.44], Z=4.439, p<.001 (see Table 3, Figure 7a).

Associative learning—Associative learning tasks involve learning associations between 

two stimuli (e.g., word/sound-word/picture pairings). Participants memorized associations 

between two stimuli and then attempted to recall the second member of a pair given the first 

(Cairney et al., 2018; Fuentemilla et al., 2013). We found that TMR during NREM sleep 

significantly improved associative learning in these tasks, Hedges’ g=0.17, 95% CI [0.03, 

0.30], Z=2.354, p=.019 (see Table 3, Figure 7a).

Language acquisition—This analysis included two lines of research. For vocabulary 

acquisition, participants memorized novel words (e.g., from a second language) that were 

paired with words from participants’ native language. During sleep, the second-language 

words were presented to reactivate the associated memories (e.g., Batterink et al., 2017; 

Cordi et al., 2018; Schreiner & Rasch, 2015; Schreiner et al., 2015). For grammatical 

learning and generalization, participants extracted grammatical regularities by learning 

nonword sequences based on feedback (Batterink & Paller, 2017). Eight experiments 

reported nine effect sizes, and results suggest that TMR can significantly promote language 

acquisition in these circumstances, Hedges’ g=0.40, 95% CI [0.14, 0.65], Z=3.046, p=.002 

(see Table 3, Figure 7a).

False memories—For this category, TMR was used during sleep to determine whether 

cues could enhance false memories. We identified four experiments that examined this type 

of question (Rihm et al., 2014, unpublished dataset; Cousins, 2014, unpublished dissertation, 

Chapter 5, Experiments 1 and 2; Vargas, 2016, unpublished dissertation, Experiment 1). 

None of the single studies found a significant impact of TMR on false memories. Overall, 

TMR failed to influence false memories during sleep, Hedges’ g = −0.01, 95% CI [−0.20, 

0.18], Z=−0.103, p=.918 (see Table 3, Figure 7a).
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Skill learning—Studies typically included in the skill-learning category are included in 

this analysis. We focused on measures that sometimes are indicative of implicit 

performance, namely speed and accuracy, but the range of designs used does not permit any 

general claims about whether learning was implicit or explicit. Generally, a positive TMR 

effect would indicate faster or more accurate performance in a motor task. With 18 effect 

sizes, TMR during NREM enhanced motor performance with a Hedges’ g=0.54, 95% CI 

[0.38, 0.69], Z=6.782, p<.001. For comparison purposes, we also analysed TMR’s impact on 

explicit knowledge of skill learning as assessed by explicit memory of motor sequence. With 

five effect sizes, TMR significantly improved conscious recall of motor sequences with a 

Hedges’ g=0.41, 95% CI [0.04, 0.78], Z=2.156, p=.031 (see Table 3, Figure 7b).

Cognitive bias modifications—Employing a picture-word learning task in which words 

could be used to disambiguate interpretation of an ambiguous picture, Groch et al. (2016) 

investigated whether memories of positive or negative words could be reactivated during 

sleep, aiming to change interpretations of the ambiguous scenes. This procedure has been 

used in adolescents and adults, those who are healthy, and those with social anxiety (Groch 

et al., 2016; Groch et al, 2017). With 36 effect sizes, we found that TMR during NREM 

significantly changed participants’ memory biases with Hedges’ g = 0.18, 95% CI [0.06, 

0.31], Z=2.832, p=.005 (see Table 3, Figure 7b).

Emotional memories—TMR has been used to influence consolidation of emotional 

memories in both associative learning and spatial learning paradigms. In the current 

analyses, we did not find an overall effect of TMR on emotional memories: Hedges’ g = 

0.10, 95% CI [−0.12, 0.33], Z=0.905, p=.366 (see Table 3, Figure 7b).

Fearful memories—Researchers have employed TMR to modulate fear memories during 

NREM sleep. For example, TMR was applied to aid in fear extinction (Ai et al., 2015; 

Hauner et al., 2013) and exposure therapy for phobia (Rihm et al., 2016). In the current 

analyses, TMR did not induce fear extinction during sleep: Hedges’ g=0.02, 95% CI [−0.68, 

0.72], Z=0.059, p=.953(see Table 3, Figure 7b). Given that sleep could potentially influence 

fear learning either by strengthening associations or enhancing extinction, we also ran an 

analysis considering TMR effects irrespective of directions. Results showed that TMR 

significantly modulates fearful memories (Hedges’ g=0.44, Z=2.911, p=.004).

Discussion

Forming enduring memories may depend critically on brain mechanisms whereby learned 

information is spontaneously reactivated, such as during subsequent sleep (Paller et al., in 

press). Although spontaneous memory reactivation has been indirectly observed during 

human sleep (e.g., Deuker et al., 2013; Peigneux et al., 2004), methods to directly 

manipulate this reactivation should be utilized to promote further understanding, both in 

human and nonhuman experiments. The method of targeted memory reactivation (TMR), by 

altering memory processing during sleep, may not only advance our understanding of sleep-

based memory consolidation, but may also bear significant translational implications for 

enhancing various types of learning. For the first time, by collecting a comprehensive dataset 

of studies and conducting a multilevel random-effects meta-analysis, we have provided an 
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overall assessment of TMR’s effectiveness. In addition, because this dataset comprised 

studies using a variety of experimental manipulations, we were able to provide additional 

information by evaluating the influence of factors such as sleep cueing stages and learning 

types.

TMR Effect as a Function of Sleep Stage

First, sleep TMR was effective in influencing learning and was associated with a small-to-

moderate effect size: Hedges’ g= 0.29. TMR effects are likely not the same in sleep versus 

wake, as effect sizes from N2 and SWS TMR studies were significantly larger than those 

from REM and wake TMR studies. On the other hand, there are some reports of significant 

findings from REM and wake TMR (e.g., Oudiette et al., wake TMR group; Sterpenich et 

al., 2014 REM TMR group). Given the small number of these studies, additional research is 

likely to produce modified conclusions with respect to TMR during these two conditions.

Because a meta-analysis aggregates multiple TMR studies, we can investigate questions that 

would be difficult for a single study to address, such as whether sleep duration may 

differentially influence TMR effects. We found that sleep duration did not influence TMR 

effects; TMR benefits memory with cues presented during either afternoon or nocturnal 

NREM. Some have theorized that SWS followed by REM is helpful (see Batterink et al., 

2017; Tamminen et al., 2017), but further data are needed to substantiate this idea.

Because our primary research question concerns TMR during sleep, wake TMR conditions 

in the present analysis were selected from the identified sleep TMR studies, and they were 

typically matched with sleep TMR in experimental design features such as timing of cueing 

and time of testing. It should be noted that only a tiny proportion of the huge number of 

possible wake conditions have been studied: participants in wake TMR could concurrently 

perform a working memory task, read a book, watch a movie, rest while mind-wandering, or 

engage in numerous other activities during wakeful cueing periods. Furthermore, cueing 

could be followed by new interfering information, as in reconsolidation research that also 

involves memory reactivation (Forcato, Fernandez & Pedreira., 2014; Nader, Schafe & Le 

Doux, 2000; Nader & Hardt, 2009; Schiller et al., 2010). Another complication is to account 

for different types of memory that have been emphasized in such studies, from simple 

conditioning to complex episodic memory paradigms. All these factors pose challenges in 

generalizing about wake TMR results. In short, given that different experimental procedures 

with wake TMR can influence memory results (e.g., Tambini et al., 2017), it would be 

inappropriate to generalize from the small number of wake TMR findings included in this 

meta-analysis.

TMR’s Impact on Learning

Sleep has been implicated in many types of learning and memory, within both the 

declarative and nondeclarative categories (Korman et al., 2007; Plihal & Born, 1997, for 

comprehensive reviews see Diekelmann & Born, 2010; Rasch & Born, 2013; Walker & 

Stickgold, 2013). Accordingly, it may not be surprising that TMR during sleep can also 

influence multiple types of learning. However, individual studies varied greatly and many 

studies reported null or contradictory findings. For example, TMR failed to have a positive 
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impact on sequential finger tapping when olfactory cues were applied during SWS or REM 

sleep (Rasch et al., 2007). In contrast with these results, subsequent studies found that 

reactivating motor learning using auditory cues during N2 or SWS could improve 

performance (Antony et al., 2012, Cousins et al., 2014; Cousins et al., 2016, Laventure et al., 

2016; Schönauer et al., 2014). Importantly, different tasks were examined in these different 

studies, and further work is needed to clarify the relevance of various task factors.

By synthesizing available evidence from different learning tasks, the current meta-analysis 

shows that TMR can be effective across many types of learning including tasks of 

declarative memory, skill learning, other types of learning, but not with conditioning. The 

present meta-analysis also showed that TMR effects depend on how memories are assessed: 

TMR effects were significant in recall and performance measures, but appeared less 

effective using recognition, SCR, and subjective ratings. Subsequent focal analyses showed 

that TMR during NREM significantly influenced associative learning, spatial memories, 

language acquisition, cognitive bias modification, and skill learning. In contrast, TMR has 

not had a clear influence on false memories. In the current dataset, the Deese-Roediger-

McDermott and reality-monitoring paradigms were used to induce false memories. Both 

paradigms are well-established in inducing false memories during wakefulness (Gallo, 2010; 

Gonsalves & Paller, 2000; Gonsalves et al., 2004). However, the role of sleep in influencing 

false memories remains unclear, as sleep either enhanced or reduced false memories, with 

effects moderated by pre-sleep encoding quality and retrieval task (e.g., recognition vs. 

recall, Diekelmann, Landolt, Lahl, Born & Wagner, 2008; Fenn, Gallo, Margoliash, 

Roediger & Nusbaum, 2009; Pardilla-Delgado & Payne, 2017; Payne et al., 2009). By 

reactivating learning episodes during NREM, TMR might be expected to provide some 

clarification on this question. However, the experiments we included in the meta-analysis 

failed to further influence false memories during sleep.

The apparent inability of TMR to trigger false memory reactivation may be related to an 

emphasis on SWS. Previous reports suggested that SWS may play a detrimental role in the 

formation of false memories (Pardilla-Dalgardo & Payne, 2017; Payne et al., 2009), but on 

the other hand, Vargas (2016, Experiment 1) found a positive correlation between time in 

SWS and false memory performance. Whether false memories can be modulated by TMR 

during REM is currently unknown.

Notably, one recent study used TMR to alter memories to reverse prior learning (Simon et al. 

2018), which is in some ways akin to a false memory. A tone associated with forgetting was 

presented during sleep in conjunction with other sounds such that the associated object 

memories were weakened. In this way, TMR can be used to induce forgetting for specific 

memories formed previously.

TMR has also been used to enhance the rubber-hand illusion (Honma, Plass, Brang, 

Florczak, Grabowecky & Paller, 2016), whereby subjective ownership and proprioceptive 

drift of a rubber hand was impacted, likely via the integration of multisensory information. 

This phenomenon is similar to a false memory in the sense that both are illusory. In this 

case, integration between visual input of the rubber hand and tactile input to participants’ 

real hand was influenced by TMR during sleep.
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Methodological Implications, Statistical Power, and Publication Bias

The TMR methodology provides several advantages for understanding sleep-based memory 

consolidation. For example, previous research on sleep and memory emphasized 

comparisons between sleep and wakeful retention intervals to draw inferences about sleep’s 

influence. The waking condition could consist of an ordinary period of wakefulness or a 

night of total sleep deprivation. In either case, the waking condition does not provide an 

ideal contrast for the sleep condition because the two conditions can differ in circadian 

rhythms, sleep drive, and pre-/post-encoding interference (e.g., Pan & Rickard, 2015). In 

contrast, TMR’s key experimental manipulation occurs during a specific sleep stage while 

all other factors are held constant across cued and uncued conditions, including circadian 

influences and amount of pre- and post-encoding interference.

Furthermore, TMR can be advantageous in terms of statistical power given that memory 

reactivation can be manipulated during a single sleep session on a within-subject basis. Here, 

we presented analyses regarding experimental design and cueing modality factors. 

Regarding between- and within-subject designs, our meta-analysis revealed that both designs 

were associated with comparable effect sizes in influencing memory with TMR. On average, 

a between-subject design study would recruit 30 participants, whereas a within-subject 

design study would recruit 20 participants. This difference in sample size is in keeping with 

the general rule that within-subject designs provide greater statistical power than do 

between-subject designs.

Regarding cueing modality, we categorized stimulation into three types: auditory_nonverbal, 

auditory_verbal, and olfactory. Consistent with individual reports in which verbal and 

nonverbal cues were directly compared (e.g., Cairney et al., 2017; Batterink et al., 2017), 

cues from all modalities could impact learning. Interestingly, nonverbal and verbal cues tend 

to have the similar effect sizes: 0.26 vs. 0.23. The use of verbal cues may greatly expand 

TMR’s applicability in future studies.

Despite robust sleep TMR benefits across different memory types and experimental 

paradigms, inspection of the full dataset revealed that more than half of the reported results 

did not reach statistical significance at the conventional .05 false-positive rate: 72 of 212 

sleep TMR effect sizes were significant based on Hedges’ g and the associated 95% CIs. 

When constraining analyses to NREM TMR studies, 68 out of 189 effect sizes were 

significant. Given significant TMR effects for sleep and NREM conditions, and in moderator 

analyses, null results from individual studies can best be attributed to either moderator 

choices (e.g., cueing during REM, or when recognition or subjective rating was used) or low 

statistical power in single studies. In order for evidence to accumulate and guide future 

research effectively, we recommend that studies be designed with relatively high statistical 

power based on results provided in the current meta-analysis.

Publication bias can arise when significant findings consistent with researchers’ hypotheses 

are more likely to be published than nonsignificant findings, which poses threats for 

accurately estimating effect sizes (Rosenthal, 1979). In addition to our efforts to include 

unpublished datasets, we employed a variety of publication bias adjustment analyses (trim-

and-fill, 3-parameter selection model, and the a priori weight functions model) to evaluate 
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the possibility of overestimated effect sizes. Adjusted effect sizes across these analyses 

remained significant, except for the most extreme case (i.e., the severe, one-tail selection 

model). These results, when evaluated holistically, suggest that sleep TMR effects are robust 

against publication biases. However, as recent simulation studies on publication-bias 

analyses suggested (Carter et al., 2019; McShane et al., 2016), each analysis has limitations 

and relies on some assumptions. Given significant heterogeneity across effect sizes and the 

typical sample sizes involved in TMR research, we urge a continued evaluation of possible 

publication bias. Moreover, to accurately assess TMR in the future, high statistical power 

and pre-registration strategies are recommended. Lastly, all members of a scientific 

community, including researchers, reviewers, and journal editors, could work together to 

combat publication biases by encouraging publication of relevant nonsignificant findings.

Practical Implications

An intriguing possibility for sleep TMR is to complement wakeful learning to enhance 

cognition and performance (Diekelmann, 2014; Paller, 2017). Among the TMR studies 

reviewed here, a few topics bear high translational implications in educational and clinical 

settings. Boosting language acquisition can be particularly meaningful in educational 

settings. Our dataset included two different types of language studies: vocabulary learning 

(Batterink et al., 2017; Göldi & Rasch, 2019; Schreiner & Rasch, 2015a; Schreiner et al., 

2015) and grammatical learning (Batterink & Paller, 2017). In vocabulary learning, 

participants associated a foreign or a novel word with its translation in the participants’ 

native language. Newly learned words were subsequently replayed during sleep to reactive 

their associated meanings. In grammatical learning, participants viewed nonsense phrases 

and gradually acquired the underlying grammatical rules via trial-and-error. Generalization 

was assessed when participants were required to generate correct sequences with new 

nonsense words (Batterink & Paller, 2017). Overall, TMR during NREM sleep boosted 

language acquisition, with an effect size of 0.40. Future research could include different age 

groups, such as young children who are just beginning to gain competence in their native 

language and sleep a lot.

TMR’s effectiveness in facilitating skill learning has intriguing implications for motor 

rehabilitation. Individual studies reported that TMR could enhance participants’ speed 

and/or accuracy (Antony et al, 2012; Laventure et al., 2016), with explicit knowledge of 

motor sequences in some cases (Cousins et al., 2014; Diekelmann et al., 2016). Importantly, 

when all effect sizes were considered in the meta-analysis, TMR appeared effective in 

influencing both performance and knowledge of the learned motor sequences. Future studies 

can test TMR’s potential for facilitating motor or cognitive rehabilitation among patient 

populations in clinical settings.

TMR may also hold promise for complementing psychotherapy. In the present meta-

analysis, we found that TMR was effective in changing memories with respect to ambiguous 

scenes (e.g., Groch et al., 2016), but did not influence emotional memories or weaken fearful 

memories. However, evidence on whether TMR may influence emotional memories and fear 

extinction was highly mixed (Ai et al., 2015; Ashton et al., 2018; Hauner et al., 2013; He et 

al., 2015; Lehmann et al., 2016). Results have also been mixed in TMR fear extinction 
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studies in rodents (Barnes & Wilson, 2014; Purple et al., 2017; Rolls et al., 2013). Given the 

potential clinical relevance, future TMR studies with these types of memory are warranted.

Neural Mechanisms and Theoretical Implications

Investigating TMR-elicited neural activity with EEG and fMRI can help researchers 

delineate neural mechanisms of memory reactivation and consolidation during sleep. By 

employing time-frequency analyses to decompose EEG responses, researchers have 

produced evidence implicating theta rhythms and thalamo-cortical spindle oscillations in 

memory reactivation and consolidation (e.g., Antony et al., 2018b; Belal et al., 2018; 

Cairney et al., 2018; Cox et al., 2014; Farthouat et al., 2017; Groch et al., 2017; Laventure et 

al., 2016; Schreiner et al., 2015; Schreiner et al., 2018; Wang et al., 2019). In particular, 

decoding cue-elicited brain activities during both wakeful learning and sleep TMR suggests 

that TMR involves neural patterns resembling prior, wakeful learning content (Belal et al., 

2018; Schreiner et al., 2018; Shanahan et al., 2018;). During sleep, TMR-related neural 

activity could distinguish between distinctive memory representations at a categorical level, 

with such activity predicting post-sleep memory improvement (Cairney et al., 2018; Wang et 

al., 2019).

In addition to examining neural activity during sleep (Berkers et al., 2018; Diekelmann, 

Büchel, Born, & Rasch, 2011; Rasch et al., 2007; Shanahan et al., 2018, von Dongen et al., 

2012), researchers also investigated task-related neural activity following sleep TMR. For 

example, reactivating motor learning during SWS enhanced functional connectivity between 

caudate nucleus and hippocampus when participants were re-tested on the motor task 

(Cousins et al., 2016).

In short, beyond behavioral results obtained from the current meta-analysis, neural results 

can provide additional evidence that TMR promotes consolidation via reactivating prior 

learning experiences, as described in the active system consolidation hypothesis (Rasch & 

Born, 2013). Specifically, during NREM sleep, characterized by cortical slow oscillations 

and thalamocortical spindles, covert memory reactivation can transform newly acquired, 

hippocampus-dependent learning such that neocortical representations become more stable 

and resistant to interference.

More research is needed to understand why memory reactivation during sleep is associated 

with consolidation. Some intriguing clues about relevant neural mechanisms have been 

obtained to date. For example, TMR cues were found to be more effective when delivered 

just after spindle refractory periods (Antony et al., 2018b), and less effective when cues were 

presented closely together (Farthouat et al., 2017; Schreiner et al., 2015). Regarding REM’s 

role in memory consolidation, although the present meta-analysis did not find a significant 

REM TMR effect, it remains possible that REM may aid consolidation following 

reactivation during NREM (Batterink et al., 2017; Tamminen et al. 2017), as proposed in the 

two-stage sequential processing account (Giuditta, 2014). REM sleep may play an important 

role for specific types of processing, such as with distant associations, information 

integration, and emotional memories (Cai et al., 2009; Sterpenich et al., 2014; Tamminen et 

al., 2017; Wassing, Lakbila-Kamal, Ramautar, Stoffers, Schalkwijk & Van Someren, 2019). 

Additional studies are warranted to explore the impact of REM sleep on memory processing.

Hu et al. Page 20

Psychol Bull. Author manuscript; available in PMC 2021 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



TMR and Reconsolidation

Wake TMR studies resemble reconsolidation studies as both procedures involve encoding, 

presentation of memory reminders during wakefulness, and subsequent testing. On the other 

hand, there are notable differences. First, in wake TMR studies memories are typically 

reactivated shortly after encoding (e.g., within minutes or hours), whereas reconsolidation 

paradigms tend to reactivate memories following longer delays. Second, wake TMR studies 

often aim to test whether reactivation during wakefulness stabilizes memories, whereas 

reconsolidation designs introduce interfering information to modify original memories 

(Elsey, Van Ast, & Kindt, 2018; Forcato et al., 2014; Kredlow, Unger, & Otto, 2016; Nader 

et al., 2000; Nader & Hardt, 2009; Schiller et al., 2010). For both types of studies, it is of 

course essential to consider whether results vary depending on the type of memory 

examined (e.g., declarative memory vs. conditioning).

Although reactivation could render memories labile and make them susceptible to interfering 

information, caution must be exercised before inferring that memories were made labile by 

the experimental manipulation. This issue may be particularly relevant for declarative 

memories, which may remain modifiable indefinitely (Dudai, 2012). As a case in point, 

Diekelmann and colleagues (2011) studied TMR followed by interference and found 

memory impairment after wake TMR, in contrast to the usual memory strengthening effect 

after NREM TMR. An alternative interpretation for the memory impairment, however, is 

that wake TMR in this study functioned to blur the temporal distinctiveness of the original 

information versus the interference information, as odor presentation bridged the two task 

periods. If the original and interfering information were less temporally distinct in this 

condition, poorer memory performance would be expected. Therefore, such results do not 

necessarily provide support for the idea of converting declarative memories into a labile 

form or for conventional reconsolidation models. Nevertheless, further integration between 

TMR and reconsolidation research could deepen our understanding of the mechanisms of 

memory processing, including reactivation, consolidation, and updating.

Limitations and Ethical Concerns

Meta-analysis provides a powerful tool to quantitatively estimate the strength of 

experimental manipulations, but results that aggregate and summarize a diverse set of 

paradigms may not be adequate for guiding specific research questions. To overcome this 

limitation, in addition to presenting syntheses of TMR effects across all experiments and 

broadly defined topics, we included focal analyses based on selected homogenous 

manipulations (e.g., NREM only) and learning topics (e.g., associative learning, spatial 

learning, false memory). These focal analyses could be valuable for providing effect-size 

estimates pertaining to specific research questions.

Another limitation relates to the way memory tasks were categorized in the learning-type 

moderator analyses. Many tasks used in TMR studies could not be unambiguously 

categorized (e.g., trust learning, counter-stereotype learning, multisensory integration, value-

based decision making). Furthermore, some tasks placed in one learning category may 

engage processing that depends on multiple memory systems operative concurrently. For 

example, artificial grammar learning and other types of statistical learning may involve both 
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implicit learning and declarative memory (e.g., Batterink, Reber, Neville, & Paller, 2015). 

Some skill learning may engender explicit remembering of motor sequences (i.e., declarative 

memories) and may engage hippocampal contributions (e.g., Antony et al., 2012; Cousins et 

al., 2016). It is possible that the combination of explicit and implicit learning of motor 

sequences makes them more susceptible to memory reactivation during SWS, with 

corresponding changes in hippocampal-striatal networks (Albouy et al., 2008; Cousins et al., 

2016; Walker, Stickgold, Alsop, Gaab & Schlaug, 2005). Acknowledging this limitation, we 

present individual effect size and variance data for currently available TMR studies with 

which researchers can re-analyze the data based on any categorization.

TMR may be applicable for many beneficial purposes, but can it also be employed 

maliciously for mind control? Here it is important to distinguish between new learning and 

prior learning. People may be able to acquire new information while asleep, but perhaps 

only in restricted circumstances (e.g., Andrillon et al., 2017; Arzi et al., 2012; Züst et al., 

2019). In the case of conditioning during sleep, the idea of introducing new associations 

without the individual’s awareness parallels the idea of subliminal conditioning while 

awake. Although the term “sleep learning” usually has the connotation of acquiring new 

information, the typical process of learning that begins during wakefulness may continue 

during sleep, in which case sleep is indeed relevant for learning. The effectiveness of TMR 

is generally contingent on prior learning and associations made with specific cue stimuli 

(Cairney et al., 2016; Creery et al., 2015). When the learning occurs with a person’s full 

knowledge and compliance, concerns about mind control are mitigated. However, variants of 

TMR could be used in future research to attempt to selectively weaken memories (as in 

Simon et al., 2018), or to change memories, perhaps to the point of creating a false memory 

or providing a conditioned association that was not present during waking. We thus advocate 

for the continuing evaluation of ethical concerns as research in this area continues to expand.

Unanswered Questions and Future Directions

Although our results showed that TMR could significantly modify memory processing 

during NREM sleep, effect sizes varied across studies and tasks, as evidenced by observed 

heterogeneity. The overall effect size was small to moderate in Cohen’s terms (Cohen, 

1988). Thus, one future direction is to investigate how to improve TMR effects. Recent 

findings indicate that the timing of cue presentation relative to spindles and to the phase of 

slow oscillations can be critical to the degree of reactivation and consolidation (Antony et 

al., 2018b; Batterink et al., 2016; Göldi et al., 2019; Shimizu et al., 2018). Thus, a promising 

research direction will be to test the timing of cueing in relation with slow oscillations 

and/or spindles via techniques such as closed-loop stimulation.

One intriguing yet unanswered question regards whether targeted and spontaneous memory 

reactivation entail the same or qualitatively different neural mechanisms. Cueing may simply 

bias spontaneous reactivation (e.g., Bendor & Wilson, 2012), but there may be important 

differences. Because neural signals that completely and unequivocally indicate memory 

reactivation during sleep have not yet been established, this question remains open. Future 

research could address this question by comparing neural activity associated with targeted 

versus spontaneous reactivation using various memory paradigms.
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Another question about TMR is whether it impacts other learning. That is, if TMR improves 

memory for cued information, does it harm memory consolidation for information acquired 

via other recent learning? If some information is reactivated, other information may be less 

likely to be reactivated. Investigations are limited in that they cannot measure all memories 

that people recently acquired that might be influenced by TMR. One sense in which memory 

reactivation can have additional effects is in terms of interrelationships among memories. 

That is, memory storage may normally involve competition, such that enhanced storage of 

some information would be expected to have repercussions (Norman, Newman, & Detre, 

2007; Paller et al., in press). In this regard, TMR research has begun to examine how 

competing memories interact during sleep (Antony et al, 2018a; Oyarzún et al. 2017), with 

evidence showing that competition may weaken memories that are tightly interrelated with 

cued information.

Many other questions remain to be tested in relation to potential applications of TMR 

outside the laboratory. One recent study investigated TMR for vocabulary learning in a 

naturalistic home sleep setting (i.e., unsupervised TMR) using auditory cues presented 

without EEG monitoring (Göldi & Rasch, 2019). TMR benefits were achieved only among 

participants for whom sleep was not disturbed by the cues. These results underscore the 

importance of avoiding arousal from sleep for memory improvement to be observed. Finally, 

whereas lab TMR studies generally include only one period of sleep with TMR, it will be 

important to determine whether TMR can have cumulative effects across multiple sleep 

sessions.

Conclusion

To conclude, by aggregating effect sizes across a comprehensive dataset of TMR research, 

we present the first quantitative synthesis of the effectiveness of TMR under various 

conditions. Despite some inconsistent results from single studies, meta-analytical results 

provide compelling evidence that applying sensory cues during NREM sleep can reactivate 

associated memories and promote memory consolidation. TMR effects are found across a 

range of learning domains, including but not limited to declarative memory and skill 

learning. Whether TMR can be meaningfully beneficial in educational and clinical settings 

can only be answered via future studies in such settings. We hope this review and meta-

analysis will facilitate new studies to advance this exciting field.
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Refer to Web version on PubMed Central for supplementary material.

Acknowledgements

We thank all investigators who contributed data to the project. The project is supported by the National Natural 
Science Foundation of China (No. 31700953), Early Career Schema (No. 27610617), and General Research Fund 
(No. 17601318) of Hong Kong Research Grants Council to X.H., and by the US National Science Foundation 
grants BCS-1461088 and BCS-1829414, NIH/NINDS grant R01-NS112942, and the Mind Science Foundation.

Hu et al. Page 23

Psychol Bull. Author manuscript; available in PMC 2021 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



References

Articles included in the meta-analysis are marked with an asterisk.

Aarons L (1976). Sleep-assisted instruction. Psychological Bulletin, 83(1), 1–40. 
10.1037/0033-2909.83.1.1 [PubMed: 1019279] 

*Ai SZ, Chen J, Liu JF, He J, Xue YX, Bao YP, … Shi J (2015). Exposure to extinction-associated 
contextual tone during slow-wave sleep and wakefulness differentially modulates fear expression. 
Neurobiology of Learning and Memory, 23, 159–167. doi:10.1016/j.nlm.2015.06.005

*Ai SZ, Yin Y, Chen Y, Wang C, Sun Y, Tang X, … & Shi J (2018). Promoting subjective preferences 
in simple economic choices during nap. eLife, 7, e40583. doi: 10.7554/eLife.40583 [PubMed: 
30520732] 

Albouy G, Sterpenich V, Balteau E, Vandewalle G, Desseilles M, Dang-Vu T, … & Peigneux P (2008). 
Both the hippocampus and striatum are involved in consolidation of motor sequence memory. 
Neuron, 58(2), 261–272. 10.1016/j.neuron.2008.02.008 [PubMed: 18439410] 

Alm KH, Ngo CT, & Olson IR (2019). Hippocampal signatures of awake targeted memory 
reactivation. Brain Structure and Function, 224(2), 713–726. 10.1007/s00429-018-1790-2 [PubMed: 
30478610] 

Andrillon T, Pressnitzer D, Léger D, & Kouider S (2017). Formation and suppression of acoustic 
memories during human sleep. Nature Communications, 8(1), 179 10.1038/s41467-017-00071-z

*Antony JW (2015). Mechanisms of memory reactivation during sleep. (Unpublished doctoral 
dissertation). Northwestern University, Evanston, Illinois, U.S.A.

*Antony JW, Cheng LY, Brooks PP, Paller KA, & Norman KA (2018a). Competitive learning 
modulates memory consolidation during sleep. Neurobiology of Learning and Memory, 155, 216–
230. doi:10.1016/j.nlm.2018.08.007 [PubMed: 30092311] 

*Antony JW, Gobel EW, O’Hare JK, Reber PJ, & Paller KA (2012). Cued memory reactivation during 
sleep influences skill learning. Nature Neuroscience, 15(8), 1114–1116. doi:10.1038/nn.3152 
[PubMed: 22751035] 

Antony JW, & Paller KA (2017). Hippocampal contributions to declarative memory consolidation 
during sleep In Hannula D & Duff M (Eds.), The Hippocampus from Cells to Systems (pp. 245–
280): Springer. doi:10.1007/978-3-319-50406-3_9

*Antony JW, Piloto L, Wang M, Pacheco P, Norman KA, & Paller KA (2018b). Sleep spindle 
refractoriness segregates periods of memory reactivation. Current Biology, 28(11), 1736–1743 
e1734. doi:10.1016/j.cub.2018.04.020 [PubMed: 29804809] 

Arzi A, Holtzman Y, Samnon P, Eshel N, Harel E, & Sobel N (2014). Olfactory aversive conditioning 
during sleep reduces cigarette-smoking behavior. Journal of Neuroscience, 34(46), 15382–15393. 
doi: 10.1523/JNEUROSCI.2291-14.2014 [PubMed: 25392505] 

Arzi A, Shedlesky L, Ben-Shaul M, Nasser K, Oksenberg A, Hairston IS, & Sobel N (2012). Humans 
can learn new information during sleep. Nature Neuroscience, 15(10), 1460–1465. doi: 10.1038/
nn.3193 [PubMed: 22922782] 

*Ashton JE, Cairney SA, & Gaskell MG (2018). No effect of targeted memory reactivation during 
slow‐wave sleep on emotional recognition memory. Journal of Sleep Research, 27(1), 129–137. 
doi: 10.1111/jsr.12542 [PubMed: 28493346] 

*Bar E, Arzi A, Perl O, Livne E, Sobel N, Dudai Y, & Nir Y (2019). Local Targeted Memory 
Reactivation in Human Sleep. bioRxiv, 539114 10.1101/539114

Barnes DC, & Wilson DA (2014). Slow-wave sleep-imposed replay modulates both strength and 
precision of memory. Journal of Neuroscience, 34(15), 5134–5142. 10.1523/
JNEUROSCI.5274-13.2014 [PubMed: 24719093] 

Batterink LJ, Creery JD, & Paller KA (2016). Phase of spontaneous slow oscillations during sleep 
influences memory-related processing of auditory cues. Journal of Neuroscience, 36(4), 1401–
1409. doi:10.1523/JNEUROSCI.3175-15.2016 [PubMed: 26818525] 

*Batterink LJ, & Paller KA (2017). Sleep-based memory processing facilitates grammatical 
generalization: Evidence from targeted memory reactivation. Brain and Language, 167, 83–93. 
doi:10.1016/j.bandl.2015.09.003 [PubMed: 26443322] 

Hu et al. Page 24

Psychol Bull. Author manuscript; available in PMC 2021 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Batterink LJ, Reber PJ, Neville HJ, & Paller KA (2015). Implicit and explicit contributions to 
statistical learning. Journal of Memory and Language, 83, 62–78. doi: 10.1016/j.jml.2015.04.004 
[PubMed: 26034344] 

*Batterink LJ, Westerberg CE, & Paller KA (2017). Vocabulary learning benefits from REM after 
slow-wave sleep. Neurobiology of Learning and Memory, 144, 102–113. doi:10.1016/
j.nlm.2017.07.001 [PubMed: 28697944] 

Belal S, Cousins J, El-Deredy W, Parkes L, Schneider J, Tsujimura H, … Lewis P (2018). 
Identification of memory reactivation during sleep by EEG classification. Neuroimage, 176, 203–
214. doi:10.1016/j.neuroimage.2018.04.029 [PubMed: 29678758] 

Bendor D, & Wilson MA (2012). Biasing the content of hippocampal replay during sleep. Nature 
Neuroscience, 15(10), 1439–1444. doi:10.1038/nn.3203 [PubMed: 22941111] 

Berkers RM, Ekman M, van Dongen EV, Takashima A, Barth M, Paller KA, & Fernández G (2018). 
Cued reactivation during slow-wave sleep induces brain connectivity changes related to memory 
stabilization. Scientific Reports, 8(1), 16958. doi: 10.1038/s41598-018-35287-6 [PubMed: 
30446718] 

Borenstein M, Hedges LV, Higgins JP, & Rothstein HR (2011). Introduction to meta-analysis: John 
Wiley & Sons., Ltd.

Bruce DJ, Evans CR, Fenwick PB, & Spencer V (1970). Effect of presenting novel verbal material 
during slow-wave sleep. Nature, 225(5235), 873–874. [PubMed: 5415124] 

*Cairney SA, Durrant SJ, Hulleman J, & Lewis PA (2014). Targeted memory reactivation during slow 
wave sleep facilitates emotional memory consolidation. Sleep, 37(4), 701–707. 10.5665/
sleep.3572 [PubMed: 24688163] 

*Cairney SA, Guttesen AAV, El Marj N, & Staresina BP (2018). Memory consolidation is linked to 
spindle-mediated information processing during sleep. Current Biology, 28(6), 948–954. 
doi:10.1016/j.cub.2018.01.087 [PubMed: 29526594] 

*Cairney SA, Lindsay S, Sobczak JM, Paller KA, & Gaskell MG (2016). The benefits of targeted 
memory reactivation for consolidation in sleep are contingent on memory accuracy and direct cue-
memory associations. Sleep, 39(5), 1139–1150. doi:10.5665/sleep.5772 [PubMed: 26856905] 

*Cairney SA, Sobczak JM, Lindsay S, & Gaskell MG (2017). Mechanisms of memory retrieval in 
slow-wave sleep. Sleep, 40(9). doi:10.1093/sleep/zsx114

Carter EC, Schönbrodt FD, Gervais WM, & Hilgard J (2019). Correcting for bias in psychology: A 
comparison of meta-analytic methods. Advances in Methods and Practices in Psychological 
Science, 2(2), 115–144. 10.1177/2515245919847196

Cellini N, & Capuozzo A (2018). Shaping memory consolidation via targeted memory reactivation 
during sleep. Annals of The New York Academy of Sciences, 1426, 52–71, doi:10.1111/
nyas.13855

Cellini N, & Mednick SC (2019). Stimulating the sleeping brain: Current approaches to modulating 
memory-related sleep physiology. Journal of Neuroscience Methods, 316, 125–136. 10.1016/
j.jneumeth.2018.11.011 [PubMed: 30452977] 

Cheng LY, Che T, Tomic G, Slutzky MW, & Paller KA Practice in your sleep: Targeted memory 
reactivation enhances execution of continuous motor skill. Unpublished dataset.

Cheung MW (2014). Modeling dependent effect sizes with three-level meta-analyses: a structural 
equation modeling approach. Psychological Methods, 19(2), 211–229. doi:10.1037/a0032968 
[PubMed: 23834422] 

Cohen J (1960). A coefficient of agreement for nominal scales. Educational and Psychological 
Measurement, 20, 37–46. 10.1177/001316446002000104

*Cordi MJ, Diekelmann S, Born J, & Rasch B (2014). No effect of odor-induced memory reactivation 
during REM sleep on declarative memory stability. Frontiers in Systems Neuroscience, 8, 157 
10.3389/fnsys.2014.00157 [PubMed: 25225474] 

*Cordi MJ, Schreiner T, & Rasch B (2018). No effect of vocabulary reactivation in older adults. 
Neuropsychologia, 119, 253–261. 10.1016/j.neuropsychologia.2018.08.021 [PubMed: 30153450] 

*Cousins JN (2014). The role of post-learning reactivation in memory consolidation. (Unpublished 
doctoral dissertation). The University of Manchester, Manchester, UK.

Hu et al. Page 25

Psychol Bull. Author manuscript; available in PMC 2021 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



*Cousins JN, El-Deredy W, Parkes LM, Hennies N, & Lewis PA (2014). Cued memory reactivation 
during slow-wave sleep promotes explicit knowledge of a motor sequence. Journal of 
Neuroscience, 34(48), 15870–15876. doi:10.1523/JNEUROSCI.1011-14.2014 [PubMed: 
25429129] 

*Cousins JN, El-Deredy W, Parkes LM, Hennies N, & Lewis PA (2016). Cued reactivation of motor 
learning during sleep leads to overnight changes in functional brain activity and connectivity. 
PLOS Biology, 14(5), e1002451. doi:10.1371/journal.pbio.1002451 [PubMed: 27137944] 

*Cox R, Hofman WF, de Boer M, & Talamini LM (2014). Local sleep spindle modulations in relation 
to specific memory cues. Neuroimage, 99, 103–110. 10.1016/j.neuroimage.2014.05.028 [PubMed: 
24852461] 

*Creery JD, Oudiette D, Antony JW, & Paller KA (2015). Targeted memory reactivation during sleep 
depends on prior learning. Sleep, 38(5), 755–763. doi:10.5665/sleep.4670 [PubMed: 25515103] 

Deuker L, Olligs J, Fell J, Kranz TA, Mormann F, Montag C, … & Axmacher N (2013). Memory 
consolidation by replay of stimulus-specific neural activity. Journal of Neuroscience, 33(49), 
19373–19383. doi:10.1523/JNEUROSCI.0414-13.2013 [PubMed: 24305832] 

Diekelmann S (2014). Sleep for cognitive enhancement. Frontiers in System Neuroscience, 8, 46. 
doi:10.3389/fnsys.2014.00046

Diekelmann S, Biggel S, Rasch B, & Born J (2012). Offline consolidation of memory varies with time 
in slow wave sleep and can be accelerated by cuing memory reactivations. Neurobiology of 
Learning and Memory, 98(2), 103–111. doi:10.1016/j.nlm.2012.07.002 [PubMed: 22789831] 

Diekelmann S, & Born J (2010). The memory function of sleep. Nature Reviews Neuroscience, 11(2), 
114–126. doi:10.1038/nrn2762 [PubMed: 20046194] 

*Diekelmann S, Born J, & Rasch B (2016). Increasing explicit sequence knowledge by odor cueing 
during sleep in men but not women. Frontiers in Behavioral Neuroscience, 10, 74. doi: 10.3389/
fnbeh.2016.00074 [PubMed: 27147995] 

*Diekelmann S, Büchel C, Born J, & Rasch B (2011). Labile or stable: opposing consequences for 
memory when reactivated during waking and sleep. Nature Neuroscience, 14(3), 381–386. 
doi:10.1038/nn.2744. [PubMed: 21258327] 

Diekelmann S, Landolt HP, Lahl O, Born J, & Wagner U (2008). Sleep loss produces false memories. 
PLOS One, 3(10), e3512 10.1371/journal.pone.0003512 [PubMed: 18946511] 

*Dillon DJ, & Babor TF (1970). Intervening activity and the retention of meaningful verbal material. 
Psychonomic Science, 19(6), 369–370. https://link.springer.com/article/10.3758%2FBF03328864

Dillon DJ, & Bowles EG (1976). Learning of meaningful verbal material following pre-presentation 
during either REM or Non-REM sleep previous night. Research Communications in Psychology 
Psychiatry and Behavior, 1(2), 315–326.

*Donohue KC, & Spencer RM (2011). Continuous re-exposure to environmental sound cues during 
sleep does not improve memory for semantically unrelated word pairs. Journal of Cognitive 
Education and Psychology, 10(2), 167–177. doi: 10.1891/1945-8959.10.2.167 [PubMed: 
26435767] 

Dudai Y (2012). The restless engram: consolidations never end. Annual Review of Neuroscience, 35, 
227–247. 10.1146/annurev-neuro-062111-150500

Dunlap WP, Cortina JM, Vaslow JB, & Burke MJ (1996). Meta-analysis of experiments with matched 
groups or repeated measures designs. Psychological Methods, 1(2), 170–177. 
10.1037/1082-989X.1.2.170

Duval S, & Tweedie R (2000). Trim and fill: A simple funnel plot based method of testing and 
adjusting for publication bias in meta-analysis. Biometrics, 56(2), 455–463. 10.1111/
j.0006-341X.2000.00455.x [PubMed: 10877304] 

Egger M, Davey Smith G, Schneider M, & Minder C (1997). Bias in meta-analysis detected by a 
simple, graphical test. British Medical Journal BMJ, 315(7109), 629–634. doi: 10.1136/
bmj.315.7109.629 [PubMed: 9310563] 

Ellenbogen JM, Hulbert JC, Stickgold R, Dinges DF, & Thompson-Schill SL (2006). Interfering with 
theories of sleep and memory: sleep, declarative memory, and associative interference. Current 
Biology, 16(13), 1290–1294. 10.1016/j.cub.2006.05.024 [PubMed: 16824917] 

Hu et al. Page 26

Psychol Bull. Author manuscript; available in PMC 2021 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://link.springer.com/article/10.3758%2FBF03328864


Elsey JW, Van Ast VA, & Kindt M (2018). Human memory reconsolidation: A guiding framework and 
critical review of the evidence. Psychological Bulletin, 144(8), 797–848. 10.1037/bul0000152 
[PubMed: 29792441] 

*Farthouat J, Gilson M, & Peigneux P (2017). New evidence for the necessity of a silent plastic period 
during sleep for a memory benefit of targeted memory reactivation. Sleep Spindles & Cortical Up 
States, 1(1), 14–26. 10.1556/2053.1.2016.002

Faul F, Erdfelder E, Lang A-G, & Buchner A (2007). G*Power 3: A flexible statistical power analysis 
program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39, 175–
191. [PubMed: 17695343] 

Fenn KM, Gallo DA, Margoliash D, Roediger HL, & Nusbaum HC (2009). Reduced false memory 
after sleep. Learning & Memory, 16(9), 509–513. doi:10.1101/lm.1500808 [PubMed: 19706833] 

Fischer S, & Born J (2009). Anticipated reward enhances offline learning during sleep. Journal of 
Experimental Psychology: Learning, Memory, and Cognition, 35(6), 1586–1593. 10.1037/
a0017256

Forcato C, Fernandez RS, & Pedreira ME (2014). Strengthening a consolidated memory: the key role 
of the reconsolidation process. Journal of Physiology-Paris, 108(4–6), 323–333. 10.1016/
j.jphysparis.2014.09.001

Fox BH, & Robbin JS (1952). The retention of material presented during sleep. Journal of 
Experimental Psychology, 43(1), 75–79. 10.1037/h0057555 [PubMed: 14907994] 

*Fuentemilla L, Miró J, Ripollés P, Vilà-Balló A, Juncadella M, Castañer S, … & Rodríguez-Fornells 
A (2013). Hippocampus-dependent strengthening of targeted memories via reactivation during 
sleep in humans. Current Biology, 23(18), 1769–1775. 10.1016/j.cub.2013.07.006 [PubMed: 
24012316] 

Gallo DA (2010). False memories and fantastic beliefs: 15 years of the DRM illusion. Memory & 
Cognition, 38(7), 833–848. doi: 10.3758/MC.38.7.833. [PubMed: 20921097] 

*Gao C, Chapagain N, Terlizzese T, Zeter D, Fillmore P, & Scullin MK (2019). Classical music during 
slow wave sleep facilitates educational learning: A targeted memory reactivation experiment with 
immediate and 9-month follow-up testing. Sleep, 42(Supplement_1), A39–A39.

Giuditta A (2014). Sleep memory processing: the sequential hypothesis. Frontiers in Systems 
Neuroscience, 8, 219 10.3389/fnsys.2014.00219 [PubMed: 25565985] 

Gonsalves B, & Paller KA (2000). Neural events that underlie remembering something that never 
happened. Nature Neuroscience, 3(12), 1316–1321. [PubMed: 11100153] 

Gonsalves B, Reber PJ, Gitelman DR, Parrish TB, Mesulam M-M, & Paller KA (2004). Neural 
evidence that vivid imagining can lead to false remembering. Psychological Science, 15(10), 655–
660. 10.1111/j.0956-7976.2004.00736.x [PubMed: 15447635] 

*Göldi M, van Poppel EAM, Rasch B, & Schreiner T (2019). Increased neuronal signatures of targeted 
memory reactivation during slow-wave up states. Scientific Reports, 9, 2715, 10.1038/
s41598-019-39178-2. [PubMed: 30804371] 

*Groch S, McMakin D, Guggenbuhl P, Rasch B, Huber R, & Wilhelm I (2016). Memory cueing during 
sleep modifies the interpretation of ambiguous scenes in adolescents and adults. Developmental 
Cognitive Neuroscience, 17, 10–18. doi:10.1016/j.dcn.2015.10.006 [PubMed: 26588358] 

*Groch S, Preiss A, McMakin DL, Rasch B, Walitza S, Huber R, & Wilhelm I (2017a). Targeted 
reactivation during sleep differentially affects negative memories in socially anxious and healthy 
children and adolescents. Journal of Neuroscience, 37(9), 2425–2434. doi:10.1523/
JNEUROSCI.1912-16.2017 [PubMed: 28143960] 

*Groch S, Schreiner T, Rasch B, Huber R, & Wilhelm I (2017b). Prior knowledge is essential for the 
beneficial effect of targeted memory reactivation during sleep. Scientific Reports, 7, 39763. 
doi:10.1038/srep39763 [PubMed: 28051138] 

*Guerrien A, Dujardin K, Mandai O, Sockeel P, & Leconte P (1989). Enhancement of memory by 
auditory stimulation during postlearning REM sleep in humans. Physiology and Behavior, 45(5), 
947–950. 10.1016/0031-9384(89)90219-9 [PubMed: 2780879] 

Hallion LS, & Ruscio AM (2011). A meta-analysis of the effect of cognitive bias modification on 
anxiety and depression. Psychological Bulletin, 137(6), 940–958. 10.1037/a0024355 [PubMed: 
21728399] 

Hu et al. Page 27

Psychol Bull. Author manuscript; available in PMC 2021 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Hars B, & Hennevin E (1987). Impairment of learning by cueing during post-learning slow-wave sleep 
in rats. Neuroscience Letters, 79(3), 290–294. 10.1016/0304-3940(87)90446-0 [PubMed: 
3658221] 

Hars B, Hennevin E, & Pasques P (1985). Improvement of learning by cueing during postlearning 
paradoxical sleep. Behavioral Brain Research, 18(3), 241–250.

*Hauner KK, Howard JD, Zelano C, & Gottfried JA (2013). Stimulus-specific enhancement of fear 
extinction during slow-wave sleep. Nature Neuroscience, 16(11), 1553–1555. doi:10.1038/nn.3527 
[PubMed: 24056700] 

*He J, Sun HQ, Li SX, Zhang WH, Shi J, Ai SZ, … Lu L (2015). Effect of conditioned stimulus 
exposure during slow wave sleep on fear memory extinction in humans. Sleep, 38(3), 423–431. 
doi:10.5665/sleep.4502 [PubMed: 25348121] 

Hedges LV (1984). Estimation of effect size under nonrandom sampling: The effects of censoring 
studies yielding statistically insignificant mean differences. Journal of Educational and Behavioral 
Statistics, 9, 61–85. 10.3102/10769986009001061

*Hennies N, Lambon Ralph MA, Durrant SJ, Cousins JN, & Lewis PA (2017). Cued memory 
reactivation during SWS abolishes the beneficial effect of sleep on abstraction. Sleep, 40(8), 
zsx102 10.1093/sleep/zsx102

*Honma M, Plass J, Brang D, Florczak SM, Grabowecky M, & Paller KA (2016). Sleeping on the 
rubber-hand illusion: memory reactivation during sleep facilitates multisensory recalibration. 
Neuroscience of Consciousness, 1, 10.1093/nc/niw020

Hedges LV (1981). Distribution theory for Glass’s estimator of effect size and related estimators. 
Journal of Educational Statistics, 6(2), 107–128. 10.3102/10769986006002107

Hedges LV, & Olkin I (1985). Statistical models for meta-analysis. Orlando, FL: Academic Press.

Higgins JP, & Thompson SG (2002). Quantifying heterogeneity in a meta-analysis. Statistics in 
Medicine, 21(11), 1539–1558. doi:10.1002/sim.1186 [PubMed: 12111919] 

*Hu X, Antony JW, Creery JD, Vargas IM, Bodenhausen GV, & Paller KA (2015). Unlearning implicit 
social biases during sleep. Science, 348(6238), 1013–1015. doi: 10.1126/science.aaa3841 
[PubMed: 26023137] 

*Humiston GB, & Wamsley EJ (2019). Unlearning implicit social biases during sleep: A failure to 
replicate, 14(1), e0211416 10.1371/journal.pone.0211416

Inostroza M, & Born J (2013). Sleep for preserving and transforming episodic memory. Annual 
Review of Neuroscience, 36, 79–102. doi: 10.1146/annurev-neuro-062012-170429

Iyengar S, & Greenhouse JB (1988). Selection models and the file drawer problem. Statistical Science, 
3, 109–117.

Jenkins JG, & Dallenbach KM (1924). Obliviscence during sleep and waking. The American Journal 
of Psychology, 35(4), 605–612. 10.2307/1414040

Ji D, & Wilson MA (2007). Coordinated memory replay in the visual cortex and hippocampus during 
sleep. Nature Neuroscience, 10(1), 100–107. [PubMed: 17173043] 

*Johnson BP, Scharf SM, & Westlake KP (2018). Targeted memory reactivation during sleep, but not 
wake, enhances sensorimotor skill performance: A pilot study. Journal of Motor Behavior, 50(2), 
202–209. doi: 10.1080/00222895.2017.1327411 [PubMed: 28644921] 

*Klinzing JG, Kugler S, Soekadar SR, Rasch B, Born J, & Diekelmann S (2018). Odor cueing during 
slow-wave sleep benefits memory independently of low cholinergic tone. Psychopharmacology, 
235(1), 291–299. 10.1007/s00213-017-4768-5 [PubMed: 29119218] 

Korman M, Doyon J, Doljansky J, Carrier J, Dagan Y, & Karni A (2007). Daytime sleep condenses the 
time course of motor memory consolidation. Nature Neuroscience, 10(9), 1206–1213. 
doi:10.1038/nn1959 [PubMed: 17694051] 

Kredlow MA, Unger LD, & Otto MW (2016). Harnessing reconsolidation to weaken fear and 
appetitive memories: A meta-analysis of post-retrieval extinction effects. Psychological Bulletin, 
142(3), 314–336. doi: 10.1037/bul0000034 [PubMed: 26689086] 

Lakens D (2013). Calculating and reporting effect sizes to facilitate cumulative science: a practical 
primer for t-tests and ANOVAs. Frontiers in Psychology, 4, 863. doi:10.3389/fpsyg.2013.00863 
[PubMed: 24324449] 

Hu et al. Page 28

Psychol Bull. Author manuscript; available in PMC 2021 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Lau J, Ioannidis JP, Terrin N, Schmid CH, & Olkin I (2006). Evidence based medicine: The case of the 
misleading funnel plot. BMJ: British Medical Journal, 333(7568), 597. doi: 10.1136/
bmj.333.7568.597 [PubMed: 16974018] 

*Laventure S, Fogel S, Lungu O, Albouy G, Sevigny-Dupont P, Vien C, … Doyon J (2016). NREM2 
and sleep spindles are instrumental to the consolidation of motor sequence memories. PLOS 
Biology, 14(3), e1002429. doi:10.1371/journal.pbio.1002429 [PubMed: 27032084] 

*Lehmann M, Schreiner T, Seifritz E, & Rasch B (2016). Emotional arousal modulates oscillatory 
correlates of targeted memory reactivation during NREM, but not REM sleep. Scientific Reports, 
6, 39229. doi: 10.1038/srep39229 [PubMed: 27982120] 

Lewis PA, & Durrant SJ (2011). Overlapping memory replay during sleep builds cognitive schemata. 
Trends in Cognitive Sciences, 15(8), 343–351. 10.1016/j.tics.2011.06.004 [PubMed: 21764357] 

Lipsey MW, & Wilson DB (2001). Practical meta-analysis. Sage Publications, Inc.

McShane BB, Böckenholt U, & Hansen KT (2016). Adjusting for publication bias in meta-analysis: 
An evaluation of selection methods and some cautionary notes. Perspectives on Psychological 
Science, 11(5), 730–749. 10.1177/1745691616662243 [PubMed: 27694467] 

Moher D, Liberati A, Tetzlaff J, & Altman DG (2009). Preferred reporting items for systematic 
reviews and meta-analyses: the PRISMA statement. Annals of Internal Medicine, 151(4), 264–
269. doi: 10.1371/journal.pmed.1000097 [PubMed: 19622511] 

Morris SB, & DeShon RP (2002). Combining effect size estimates in meta-analysis with repeated 
measures and independent-groups designs. Psychological Methods, 7(1), 105–125. 
10.1037/1082-989X.7.1.105 [PubMed: 11928886] 

Ngo HV, Martinetz T, Born J, & Molle M (2013). Auditory closed-loop stimulation of the sleep slow 
oscillation enhances memory. Neuron, 78(3), 545–553. doi:10.1016/j.neuron.2013.03.006 
[PubMed: 23583623] 

Nader K, & Hardt O (2009). A single standard for memory: the case for reconsolidation. Nature 
Reviews Neuroscience, 10(3), 224–234. DOI: 10.1038/nrn2590 [PubMed: 19229241] 

Nader K, Schafe GE, & Le Doux JE (2000). Fear memories require protein synthesis in the amygdala 
for reconsolidation after retrieval. Nature, 406(6797), 722–726. doi: 10.1038/35021052 
[PubMed: 10963596] 

Norman KA, Newman EL, & Detre G (2007). A neural network model of retrievalinduced forgetting. 
Psychological Review, 114(4), 887–953. 10.1037/0033-295X.114.4.887 [PubMed: 17907868] 

Oswald I, Taylor AM, & Treisman M (1960). Discriminative responses to stimulation during human 
sleep. Brain, 83, 440–453. 10.1093/brain/83.3.440 [PubMed: 13731563] 

Oudiette D, Antony JW, & Paller KA (2014). Fear not: Manipulating sleep might help you forget. 
Trends in Cognitive Sciences, 18(1), 3–4. doi:10.1016/j.tics.2013.10.003 [PubMed: 24156930] 

*Oudiette D, Antony JW, Creery JD, & Paller KA (2013). The role of memory reactivation during 
wakefulness and sleep in determining which memories endure. Journal of Neuroscience, 33(15), 
6672–6678. doi: 10.1523/JNEUROSCI.5497-12.2013 [PubMed: 23575863] 

Oudiette D, & Paller KA (2013). Upgrading the sleeping brain with targeted memory reactivation. 
Trends in Cognitive Sciences, 17(3), 142–149. doi:10.1016/j.tics.2013.01.006 [PubMed: 
23433937] 

*Oyarzún JP, Morís J, Luque D, de Diego-Balaguer R, & Fuentemilla L (2017). Targeted memory 
reactivation during sleep adaptively promotes the strengthening or weakening of overlapping 
memories. Journal of Neuroscience, 37, 3537–3516. doi: 10.1523/JNEUROSCI.3537-16.2017

Paller KA (2017). Sleeping in a brave new world: Opportunities for improving learning and clinical 
outcomes through targeted memory reactivation. Current Directions in Psychological Science, 
26, 532–537. doi: 10.1177/0963721417716928 [PubMed: 29422722] 

Paller KA (2018). Do house-elves clean your brain while you sleep? Frontiers for Young Minds, 6, 23. 
doi:10.3389/frym.2018.00023

Paller KA, Mayes AR, Antony JW, & Norman KA (in press). Replay-based consolidation governs 
enduring memory storage In The Cognitive Neurosciences, 6th Edition (pp. 265–276), Gazzaniga 
MS, Mangun GR, & Poeppel D (Eds.), MIT Press.

Pan SC, & Rickard TC (2015). Sleep and motor learning: is there room for consolidation? 
Psychological Bulletin, 141(4), 812–834. doi: 10.1037/bul0000009 [PubMed: 25822130] 

Hu et al. Page 29

Psychol Bull. Author manuscript; available in PMC 2021 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Pardilla-Delgado E, & Payne JD (2017). The impact of sleep on true and false memory across long 
delays. Neurobiology of Learning and Memory, 137, 123–133. doi:10.1016/j.nlm.2016.11.016 
[PubMed: 27903437] 

Payne JD, Kensinger EA, Wamsley EJ, Spreng RN, Alger SE, Gibler K, … & Stickgold R (2015). 
Napping and the selective consolidation of negative aspects of scenes. Emotion, 15(2), 176–186. 
doi: 10.1037/a0038683 [PubMed: 25706830] 

Payne JD, Schacter DL, Propper RE, Huang LW, Wamsley EJ, Tucker MA, … & Stickgold R (2009). 
The role of sleep in false memory formation. Neurobiology of Learning and Memory, 92(3), 
327–334. doi: 10.1016/j.nlm.2009.03.007 [PubMed: 19348959] 

Peigneux P, Laureys S, Fuchs S, Collette F, Perrin F, Reggers J, … Maquet P (2004). Are spatial 
memories strengthened in the human hippocampus during slow wave sleep? Neuron, 44(3), 535–
545. doi:10.1016/j.neuron.2004.10.007 [PubMed: 15504332] 

*Pereira SIR, Beijamini F, Weber FD, Vincenzi RA, da Silva FAC, & Louzada FM (2017). Tactile 
stimulation during sleep alters slow oscillation and spindle densities but not motor skill. 
Physiology & Behavior, 169, 59–68. doi: 10.1016/j.physbeh.2016.11.024 [PubMed: 27887994] 

Pick JL, Nakagawa S, & Noble DW (2019). Reproducible, flexible and high-throughput data extraction 
from primary literature: The metaDigitise r package. Methods in Ecology and Evolution, 10(3), 
426–431. 10.1111/2041-210X.13118

Plihal W, & Born J (1997). Effects of early and late nocturnal sleep on declarative and procedural 
memory. Journal of Cognitive Neuroscience, 9(4), 534–547. doi:10.1162/jocn.1997.9.4.534 
[PubMed: 23968216] 

Purple RJ, Sakurai T, & Sakaguchi M (2017). Auditory conditioned stimulus presentation during 
NREM sleep impairs fear memory in mice. Scientific Reports, 7, 46247. doi:10.1038/srep46247 
[PubMed: 28401950] 

Rasch B, & Born J (2013). About sleep’s role in memory. Physiology Review, 93(2), 681–766. 
doi:10.1152/physrev.00032.2012

*Rasch B, Buchel C, Gais S, & Born J (2007). Odor cues during slow-wave sleep prompt declarative 
memory consolidation. Science, 315(5817), 1426–1429. doi:10.1126/science.1138581 [PubMed: 
17347444] 

*Rihm JS, Diekelmann S, Born J, & Rasch B (2014). Reactivating memories during sleep by odors: 
odor specificity and associated changes in sleep oscillations. Journal of Cognitive Neuroscience, 
26(8), 1806–1818. doi:10.1162/jocn_a_00579 [PubMed: 24456392] 

*Rihm JS, & Rasch B (2015). Replay of conditioned stimuli during late REM and stage N2 sleep 
influences affective tone rather than emotional memory strength. Neurobiology of Learning and 
Memory, 122, 142–151. 10.1016/j.nlm.2015.04.008 [PubMed: 25933506] 

*Rihm JS, Sollberger SB, Soravia LM, & Rasch B (2016). Re-presentation of olfactory exposure 
therapy success cues during non-rapid eye movement sleep did not increase therapy outcome but 
increased sleep spindles. Frontiers in Human Neuroscience, 10, 340. doi: 10.3389/
fnhum.2016.00340 [PubMed: 27445775] 

*Ritter SM, Strick M, Bos MW, Van Baaren RB, & Dijksterhuis AP (2012). Good morning creativity: 
task reactivation during sleep enhances beneficial effect of sleep on creative performance. Journal 
of Sleep Research, 21(6), 643–647. 10.1111/j.1365-2869.2012.01006.x [PubMed: 22404078] 

Rolls A, Makam M, Kroeger D, Colas D, de Lecea L, & Heller HC (2013). Sleep to forget: 
interference of fear memories during sleep. Molecular Psychiatry, 18(11), 1166–1170. 
doi:10.1038/mp.2013.121 [PubMed: 24081009] 

Rothschild G, Eban E, & Frank LM (2017). A cortical-hippocampal-cortical loop of information 
processing during memory consolidation. Nature Neuroscience, 20, 251–259. 10.1038/nn.4457. 
[PubMed: 27941790] 

Rosenthal R (1979). The file drawer problem and tolerance for null results. Psychological Bulletin, 
86(3), 638–641. 10.1037/0033-2909.86.3.638

*Rudoy JD, Voss JL, Westerberg CE, & Paller KA (2009). Strengthening individual memories by 
reactivating them during sleep. Science, 326(5956), 1079–1079. doi:10.1126/science.1179013 
[PubMed: 19965421] 

Hu et al. Page 30

Psychol Bull. Author manuscript; available in PMC 2021 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



*Schechtman E, Antony JW, Lampe A, Wilson BJ, Norman KA, & Paller KA (2019). Multiple 
memories can be simultaneously reactivated during sleep as effectively as a single memory. 
bioRxiv, 662015 10.1101/662015

Schiller D, Monfils MH, Raio CM, Johnson DC, LeDoux JE, & Phelps EA (2010). Preventing the 
return of fear in humans using reconsolidation update mechanisms. Nature, 463(7277), 49–53. 
doi:10.1038/nature08637. [PubMed: 20010606] 

*Schönauer M, Geisler T, & Gais S (2014). Strengthening procedural memories by reactivation in 
sleep. Journal of Cognitive Neuroscience, 26(1), 143–153. doi:10.1162/jocn_a_00471 [PubMed: 
23984946] 

Schouten DI, Pereira SI, Tops M, & Louzada FM (2017). State of the art on targeted memory 
reactivation: Sleep your way to enhanced cognition. Sleep Medicine Review, 32, 123–131. 
doi:10.1016/j.smrv.2016.04.002

Schreiner T, Doeller CF, Jensen O, Rasch B, & Staudigl T (2018). Theta phasecoordinated memory 
reactivation reoccurs in a slow-oscillatory rhythm during NREM sleep. Cell Reports, 25(2), 296–
301. doi:10.1016/j.celrep.2018.09.037 [PubMed: 30304670] 

*Schreiner T, Lehmann M, & Rasch B (2015). Auditory feedback blocks memory benefits of cueing 
during sleep. Nature Communications, 6, 8729. doi:10.1038/ncomms9729

*Schreiner T, & Rasch B (2015a). Boosting vocabulary learning by verbal cueing during sleep. 
Cerebral Cortex, 25(11), 4169–4179. 10.1093/cercor/bhu139 [PubMed: 24962994] 

Schreiner T, & Rasch B (2015b). Cueing vocabulary in awake subjects during the day has no effect on 
memory. Somnologie-Schlafforschung und Schlafmedizin 19(2), 133–140.

Schreiner T, & Rasch B (2017). The beneficial role of memory reactivation for language learning 
during sleep: A review. Brain and Language, 167, 94–105. doi:10.1016/j.bandl.2016.02.005 
[PubMed: 27036946] 

*Seibold M, Rasch B, Born J, & Diekelmann S (2018). Reactivation of interference during sleep does 
not impair ongoing memory consolidation. Memory, 26(3), 377–384. 
10.1080/09658211.2017.1329442 [PubMed: 28537468] 

*Shanahan LK, Gjorgieva E, Paller KA, Kahnt T, & Gottfried JA (2018). Odor-evoked category 
reactivation in human ventromedial prefrontal cortex during sleep promotes memory 
consolidation. eLife, 7, e39681 10.7554/eLife.39681.001 [PubMed: 30560782] 

*Shimizu RE, Connolly PM, Cellini N, Armstrong DM, Hernandez LT, Estrada R, … & Simons SB 
(2018). Closed-loop targeted memory reactivation during sleep improves spatial navigation. 
Frontiers in Human Neuroscience, 12, 28 10.3389/fnhum.2018.00028 [PubMed: 29467633] 

*Simon KC, Gómez RL, & Nadel L (2018). Losing memories during sleep after targeted memory 
reactivation. Neurobiology of Learning and Memory, 151, 10–17. 10.1016/j.nlm.2018.03.003 
[PubMed: 29555349] 

Siddaway AP, Wood AM, & Hedges LV (2019). How to do a systematic review: A best practice guide 
for conducting and reporting narrative reviews, metaanalyses, and meta-syntheses. Annual 
Review of Psychology, 70, 747–770, 10.1146/annurev-psych-010418-102803

*Smith C, & Weeden K (1990). Post training REMs coincident auditory stimulation enhances memory 
in humans. Psychiatric Journal of the University of Ottawa, 15(2), 85–90. [PubMed: 2374793] 

Steriade M (2003) The corticothalamic system in sleep. Frontiers in Bioscience, 8, d878–d899. 
[PubMed: 12700074] 

*Sterpenich V, Schmidt C, Albouy G, Matarazzo L, Vanhaudenhuyse A, Boveroux P, … Maquet P 
(2014). Memory reactivation during rapid eye movement sleep promotes its generalization and 
integration in cortical stores. Sleep, 37(6), 1061–1075, doi:10.5665/sleep.3762 [PubMed: 
24882901] 

Stickgold R, & Walker MP (2013). Sleep-dependent memory triage: evolving generalization through 
selective processing. Nature Neuroscience, 16(2), 139–145. doi:10.1038/nn.3303 [PubMed: 
23354387] 

*Strachan J, Guttesen AÁV, Smith AK, Gaskell MG, Tipper SP, & Cairney SA (2019). Investigating 
the formation and consolidation of incidentally learned trust. Journal of Experimental 
Psychology: Learning, Memory, and Cognition.

Hu et al. Page 31

Psychol Bull. Author manuscript; available in PMC 2021 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Tambini A, Berners-Lee A, & Davachi L (2017). Brief targeted memory reactivation during the awake 
state enhances memory stability and benefits the weakest memories. Scientific Reports, 7(1), 
15325 10.1038/s41598-017-15608-x [PubMed: 29127388] 

*Tamminen J, Lambon Ralph MA, & Lewis PA (2017). Targeted memory reactivation of newly 
learned words during sleep triggers REM-mediated integration of new memories and existing 
knowledge. Neurobiology of Learning and Memory, 137, 77–82. doi:10.1016/j.nlm.2016.11.012 
[PubMed: 27864086] 

Tamminen J, Payne JD, Stickgold R, Wamsley EJ, & Gaskell MG (2010). Sleep spindle activity is 
associated with the integration of new memories and existing knowledge. Journal of 
Neuroscience, 30(43), 14356–14360. 10.1523/JNEUROSCI.3028-10.2010 [PubMed: 20980591] 

*Tilley AJ (1979). Sleep learning during stage 2 and REM sleep. Biological Psychology, 9(3), 155–
161. 10.1016/0301-0511(79)90035-8 [PubMed: 232669] 

*van Dongen EV, Takashima A, Barth M, Zapp J, Schad LR, Paller KA, & Fernandez G (2012). 
Memory stabilization with targeted reactivation during human slow-wave sleep. Proceedings of 
the National Academy of Sciences USA, 109(26), 10575–10580. doi:10.1073/pnas.1201072109

*Vargas IM (2016). Induction and reduction of false memory during sleep using targeted memory 
reactivation. (Unpublished doctoral dissertation). Northwestern University, Evanston, Illinois, 
U.S.A.

*Vargas IM, Schechtman E, & Paller KA (2019). Targeted memory reactivation during sleep to 
strengthen memory for arbitrary pairings. Neuropsychologia, 124, 144–150. 10.1016/
j.neuropsychologia.2018.12.017 [PubMed: 30582944] 

Vevea JL, & Woods CM (2005). Publication bias in research synthesis: sensitivity analysis using a 
priori weight functions. Psychological Methods, 10(4), 428–443. 10.1037/1082-989X.10.4.428 
[PubMed: 16392998] 

Viechtbauer W (2010). Conducting meta-analyses in R with the metafor package. Journal of Statistical 
Software, 36(3). 1–48. 10.18637/jss.v036.i03

Walker MP, Stickgold R, Alsop D, Gaab N, & Schlaug G (2005). Sleep-dependent motor memory 
plasticity in the human brain. Neuroscience, 133(4), 911–917. 10.1016/
j.neuroscience.2005.04.007 [PubMed: 15964485] 

*Wang B, Antony JW, Lurie S, Brooks PP, Paller KA, & Norman KA (2019). Targeted memory 
reactivation during sleep elicits neural signals related to learning content. Journal of 
Neuroscience, 10.1523/JNEUROSCI.2798-18.2019

Wassing R, Lakbila-Kamal O, Ramautar JR, Stoffers D, Schalkwijk F, & Van Someren EJ (2019). 
Restless REM sleep impedes overnight amygdala adaptation. Current Biology, 29, 2351–2358.e4, 
10.1016/j.cub.2019.06.034 [PubMed: 31303489] 

Westerberg CE, Mander BA, Florczak SM, Weintraub S, Mesulam M-M, Zee PC, & Paller KA (2012). 
Concurrent impairments in sleep and memory in amnestic mild cognitive impairment. Journal of 
the International Neuropsychological Society, 18, 490–500. doi: 10.1017/S135561771200001X. 
[PubMed: 22300710] 

Wilhelm I, Diekelmann S, Molzow I, Ayoub A, Mölle M, & Born J (2011). Sleep selectively enhances 
memory expected to be of future relevance. Journal of Neuroscience, 31(5), 1563–1569. 10.1523/
JNEUROSCI.3575-10.2011 [PubMed: 21289163] 

Wilson MA, & McNaughton BL (1994). Reactivation of hippocampal ensemble memories during 
sleep. Science, 265(5172), 676–679. doi: 10.1126/science.8036517 [PubMed: 8036517] 

Wolak MM. 2015 Package “ICC”. Facilitating Estimation of the Intraclass Correlation Coefficient.

Wood JM, Bootzin RR, Kihlstrom JF, & Schacter DL (1992). Implicit and explicit memory for verbal 
information presented during sleep. Psychological Science, 3(4), 236–240. 10.1111/
j.1467-9280.1992.tb00035.x

Zelano C, & Sobel N (2005). Humans as an animal model for systems-level organization of olfaction. 
Neuron, 48(3), 431–454. 10.1016/j.neuron.2005.10.009 [PubMed: 16269361] 

Züst MA, Ruch S, Wiest R, & Henke K (2019). Implicit vocabulary learning during sleep is bound to 
slow-wave peaks. Current Biology, 29(4), 541–553. 10.1016/j.cub.2018.12.038 [PubMed: 
30713104] 

Hu et al. Page 32

Psychol Bull. Author manuscript; available in PMC 2021 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Zwaka H, Bartels R, Gora J, Franck V, Culo A, Gotsch M, & Menzel R (2015). Context odor 
presentation during sleep enhances memory in honeybees. Current Biology, 25(21), 2869–2874. 
doi:10.1016/j.cub.2015.09.069 [PubMed: 26592345] 

Hu et al. Page 33

Psychol Bull. Author manuscript; available in PMC 2021 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Public Significance Statements

Sensory cues can be used to reactivate associated memories during sleep and thus 

promote memory consolidation. This meta-analysis shows that targeted memory 

reactivation during sleep can improve memory performance with a small to moderate 

effect, and that this effect is most clearly evident when memories are reactivated during 

stages 2 and 3 of non-rapid-eye-movement (NREM) sleep.
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Figure 1. 
a: Schematic of the typical procedure in a TMR experiment (reprinted from Paller, 2018). 

1b: Number of TMR articles (including both human/non-human empirical studies and 

review articles) published by year since Rasch et al. (2007). The last data point represents 

the annualized number based on number of articles published from January to June 2019.
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Figure 2: 
A PRISMA flow chart of literature search and inclusion.
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Figure 3: 
A forest plot displaying sleep TMR effect sizes calculated from each experiment at a task 

level, matching descriptive from Table 1. The overall TMR effect was presented, calculated 

from a random effects model using task-level effect sizes from the forest plot and Table 1.
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Figure 4: 
A contour-enhanced funnel plot displaying all effect sizes at experiment levels (solid circles) 

from sleep TMR research. Y-axis indicates standard errors of effect sizes, x-axis indicates 

magnitudes of effect sizes in terms of Hedges’ g. Imputed effect sizes calculated from the 

Trim-and-Fill analysis are displayed in open circles.
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Figures 5: 
Results of moderator analyses from a) cueing stages; b) learning types; c) outcome 

measurements; d) experimental designs and e) cueing modalities. Each data point represents 

an individual effect size at an outcome level. Statistical outliers are the same as those 

indicated in Table 1 and are marked as triangles. The figure displays aggregated effect sizes 

from each moderator analyses, with error bars representing 95% CIs. The figure displays 

both results without outliers (solid lines with solid circles) and results including all data 

points (dashed lines with open circles).
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Figure 6: 
A meta-regression analysis revealed no relationship between sleep length and TMR effects. 

Statistical outliers are the same as those indicated in Table 1 and are marked as triangles. 

The regression line (the solid line) and its 95% confidence intervals (the dashed lines) were 

calculated from the meta-regression model without outliers.
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Figure 7: 
Results of focal analyses. Each data point represents an individual effect size at an outcome 

level. Statistical outliers are the same as those indicated in Table 1 and are marked as 

triangles. The figure displays aggregated effect sizes based on each focal analysis, with error 

bars representing 95% CIs. For fearful memories, the figure displays both result without 

outliers (the solid line with a solid circle) and result including all data points (the dashed line 

with an open circle).
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Table 2a.

Statistics from cueing stages moderator analyses.

Moderators n(N) k Hedges’ g 95% CI QB Z p

Cueing Stages 10.744 .030

N2 6 (165) 13 0.32 [0.04, 0.60] 2.232 .026

SWS 70 (1471) 174 0.27 [0.20, 0.35] 6.934 <.001

REM 7 (142) 15 −0.06 [−0.31, 0.18] −0.501 .616

Unspecified 4 (140) 6 0.26 [−0.11, 0.62] 1.383 .167

Wake 18 (366) 30 0.07 [−0.09, 0.23] 0.853 .394
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Table 2b.

Statistics from learning and outcome measurements moderator analyses.

Moderators n(N) k Hedges’ g 95% CI QB Z p

Learning Type 8.056 .045

Declarative 62 (1219) 153 0.23 [0.15, 0.31] 5.563 <.001

Skill 12 (283) 25 0.44 [0.25, 0.64] 4.438 <.001

Conditioning 4 (91) 10 −0.03 [−0.35, 0.29] −0.200 .841

Others 6 (191) 12 0.38 [0.13, 0.62] 2.991 .003

Outcome Measurements 11.132 .025

Recall 61 (1137) 103 0.24 [0.16, 0.33] 5.676 <.001

Recognition 9 (157) 14 0.18 [−0.04, 0.40] 1.619 .105

Performance 27 (673) 46 0.40 [0.27, 0.53] 6.103 <.001

SCR 4 (91) 4 −0.08 [−0.44, 0.28] −0.423 .672

Subjective Rating 8 (135) 33 0.11 [−0.05, 0.27] 1.355 .175
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Table 2c.

Statistics from experimental designs and cueing modalities moderator analyses.

Moderators n(N) k Hedges’ g 95% CI QB Z p

Experimental Design 0.055 .814

Within 68 (1303) 173 0.25 [0.17, 0.34] 6.192 <.001

Between 14 (446) 27 0.28 [0.07, 0.50] 2.595 .009

Cueing Modality 0.688 .709

Auditory_Verbal 25 (472) 74 0.26 [0.13, 0.39] 3.825 <.001

Auditory_Nonverbal 42 (956) 94 0.23 [0.13, 0.34] 4.365 <.001

Olfactory 17 (372) 32 0.32 [0.15, 0.50] 3.566 <.001

Notes: n, number of experiments/datasets; N, number of participants; k, number of effect sizes.
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Table 3.

Statistics from focal analyses.

Focal analyses n(N) k Hedges’ g 95% CI Z p

Spatial Learning 26 (553) 43 0.30 [0.17, 0.44] 4.439 <.001

Associative Learning 16 (320) 30 0.17 [0.03, 0.30] 2.354 .019

Language Acquisition 9 (158) 13 0.40 [0.14, 0.65] 3.046 .002

False Memories 4 (66) 7 −0.01 [−0.20, 0.18] −0.103 .918

Skill Learning 10 (229) 23 0.51 [0.37, 0.65] 7.108 <.001

Cognitive Bias Modification 4 (66) 36 0.18 [0.06, 0.31] 2.832 .005

Emotional Memories 5 (97) 12 0.10 [−0.12, 0.33] 0.905 .366

Fearful Memories 3 (97) 4 0.02 [−0.68, 0.72] 0.059 .953

Notes: n, number of experiments/datasets; N, number of participants; k, number of effect sizes.
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