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Abstract

This is a PLOS Computational Biology Education paper.

The idea that the brain functions so as to minimize certain costs pervades theoretical

neuroscience. Because a cost function by itself does not predict how the brain finds its min-

ima, additional assumptions about the optimization method need to be made to predict the

dynamics of physiological quantities. In this context, steepest descent (also called gradient

descent) is often suggested as an algorithmic principle of optimization potentially imple-

mented by the brain. In practice, researchers often consider the vector of partial derivatives

as the gradient. However, the definition of the gradient and the notion of a steepest direction

depend on the choice of a metric. Because the choice of the metric involves a large number

of degrees of freedom, the predictive power of models that are based on gradient descent

must be called into question, unless there are strong constraints on the choice of the metric.

Here, we provide a didactic review of the mathematics of gradient descent, illustrate com-

mon pitfalls of using gradient descent as a principle of brain function with examples from the

literature, and propose ways forward to constrain the metric.

Author summary

A good skier may choose to follow the steepest direction to move as quickly as possible

from the mountain peak to the base. Steepest descent in an abstract sense is also an appeal-

ing idea to describe adaptation and learning in the brain. For example, a scientist may

hypothesize that synaptic or neuronal variables change in the direction of steepest descent

in an abstract error landscape during learning of a new task or memorization of a new

concept. There is, however, a pitfall in this reasoning: a multitude of steepest directions

exists for any abstract error landscape because the steepest direction depends on how

angles are measured, and it may be unclear how angles should be measured. Many scien-

tists are taught that the steepest direction can be found by computing the vector of partial

derivatives. But the vector of partial derivatives is equal to the steepest direction only if the

angles in the abstract space are measured in a particular way. In this article, we provide a
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didactic review of the mathematics of finding steepest directions in abstract spaces, illus-

trate the pitfalls with examples from the neuroscience literature, and propose guidelines to

constrain the way angles are measured in these spaces.

Introduction

The minimization of costs is a widespread approach in theoretical neuroscience [1–5]. Cost

functions that have been postulated range from energy consumption, free energy, negative

entropy, and reconstruction error to distances between distributions that form representations

of the world [1–3, 5–18]. In some cases, cost as performance of a biological system is measured

in comparison to the absolute physical minimum [5] or an information theoretic optimum [1–

3] without addressing the question of how a solution at or close to the minimum can be found.

In other cases, cost is used to derive algorithms that move the system closer to the minimum

[6–20]. In the second case, predictions entail update rules of neuronal quantities, e.g., firing

rates of neurons [17, 18], or differential equations for the time evolution of synaptic weights

[6–16, 19, 20].

Optimization methods to train neural network models are often taken from machine learn-

ing, a field that has had intense interactions with theoretical and computational neuroscience

[21, 22]. A successful method in machine learning—despite its simplicity—has been the

method of (stochastic) steepest descent or gradient descent [23].

Gradient descent and steepest descent are the same because the negative gradient points in

the direction of steepest descent (see Eq 7). Often the direction of gradient descent is visualized

as a vector orthogonal to the contour lines of the cost function. The notion of orthogonality,

however, assumes a Riemannian metric (also known as inner product or scalar product in vec-

tor spaces). The Riemannian metric enters also in an alternative but equivalent definition of

the direction of steepest descent: the direction of steepest descent produces the greatest abso-

lute decrease of the cost function for a step of a fixed (and small) size, in which the step size is

determined by the choice of the Riemannian metric. Thus, a cost function by itself does not

predict the trajectories that lead to its minima through steepest descent; however, a cost func-

tion combined with a metric does (see Fig 1).

Why do we normally not think of the metric as an important and essential quantity? The

physical space that surrounds us, at the scales that we encounter in everyday life, is Euclidean.

Thus, a mountaineer who would like to determine the direction of steepest ascent of the terrain

refers to Euclidean geometry. In this case, the steepest direction is unambiguous because the

way to measure distances is intrinsic to the space and not merely an artifact of using a particu-

lar set of coordinates. On a map that faithfully represents Euclidean geometry, i.e., preserves

angles and lengths up to some scaling factor, the mountaineer may find the steepest direction

by drawing a curve that runs perpendicular to the contour lines (see Fig 2A, red route). But if a

wicked hotelier gave the mountaineer a map that does not faithfully represent Euclidean geom-

etry, another route would be chosen when planning the route as perpendicular to the contour

lines (see Fig 2B, blue route). We will refer to this as the “wicked-map problem” in the

following.

What may look obvious in the context of hiking maps can be confusing in contexts in

which it is less clear how to draw a sensible map, i.e., how to choose a natural parametrization

of an observed phenomenon. We will discuss how naive gradient ascent or descent as taught

in text books (e.g., [4, 23]) is susceptible to the wicked-map problem. Although it is simple to

display the same path in different maps by following standard transformation rules, the choice

of an appropriate metric remains a challenge. In other words, how should one know a priori
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which metric is most appropriate to predict a route with gradient ascent dynamics? We will

illustrate the problems around gradient ascent and descent with three examples from the theo-

retical neuroscience literature and discuss ways forward to constrain the choice of metric.

The gradient is not equal to the vector of partial derivatives

Given a cost function C(x) that depends on variables x = (x1,. . .,xN), where the variables xi
could be synaptic weights or other plastic physiological quantities, naive gradient descent

dynamics is sometimes written as [4, 23]

xi ! xi � ~Z
@CðxÞ
@xi

; ð1Þ

Fig 1. The main message of this text. (A) A cost function and a metric together determine a unique flow field and

update rule, given by gradient descent on the cost function in that metric. (B) For a given cost function, there are

infinitely many different flow lines and update rules (one for each choice of the metric) that lead to the minima of the

cost function by gradient descent.

https://doi.org/10.1371/journal.pcbi.1007640.g001

Fig 2. The wicked-map problem. (A) An ambitious mountaineer may follow the gradient in Euclidean metric to

reach the mountain top (red route from square to triangle). Because the map is plotted in Cartesian coordinates, the

route stands perpendicular to the contour lines. (B) If the ambitious mountaineer does not realize that a map given by

a wicked hotelier is sheared, the blue route would be chosen, as it is now the one that stands perpendicular to the

contour lines in the sheared map. The blue route corresponds to gradient ascent in another metric. Of course, each

route on the normal map could be transformed to the sheared map and vice versa, but what looks like naive

(Euclidean) gradient ascent in one map may look different in another map.

https://doi.org/10.1371/journal.pcbi.1007640.g002
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or in continuous time

d
dt

xiðtÞ ¼ � Z
@CðxÞ
@xi

; ð2Þ

where ~Z and η are parameters called learning rate. As we will illustrate in the course of this sec-

tion, this has two consequences:

• The wicked-map problem: the dynamics in Eq 1 and Eq 2 depend on the choice of the coor-

dinate system.

• The “unit problem”: if xi has different physical units than xj, the global learning rate η should

be replaced by individual learning rates ηi that account for the different physical units.

In the section “What is the gradient, then? How to do steepest descent in a generic parame-

ter space,” we will explain the geometric origin of these problems and how they can be solved.

The wicked-map problem often occurs in combination with the unit problem, but it is pres-

ent even for dimensionless parameters. The parameters or coordinates that are used in a given

problem are mostly arbitrary; they are simply labels attached to different points—whereas the

points themselves (for example, the position of the mountaineer) have properties independent

of the parameters chosen to represent them. For example, it is common to scale the variables

or display a figure in logarithmic units or simply display them in a different aspect ratio (trans-

formations like the shearing transformation in Fig 2). The predictions of a theory should be

independent of the choice of parametrizations, even if there seems to be a canonical choice of

parametrization, as in the case of hiking maps. In the example with the mountaineer, a theory

should either predict the blue path or the red path, independently of which map is used. Only

a deficient theory predicts the red path if one parametrization is used and the blue path if

another parametrization is used. Similarly, if the dynamics of a biological system can be writ-

ten as gradient descent on a given objective function, nature has chosen one specific metric,

and the predictions of our theories should not depend on our choice of the coordinate system.

However, as we will show below, a rule, such as Eq 2, that equates the time derivative of a coor-

dinate with the partial derivative of a cost function (times a constant) is not preserved under

changes of parametrization (see Fig 2A and 2B).

In order to address the unit problem, we can normalize each variable by dividing by its

mean or maximum so as to make it unitless. However, this merely replaces the choice of an

arbitrary learning rate ηi for each component by the choice of an arbitrary normalizing con-

stant for each variable.

Artificial examples

To illustrate the wicked-map problem, let us first consider the minimization of a (dimension-

less) quadratic cost C(x) = (x−1)2, where x>0 is a single dimensionless parameter. The deriva-

tive of C is given by C 0(x) = 2x−2. Naive gradient descent minimization according to Eq 2

yields Z� 1 d
dt xðtÞ ¼ � C

0ðxðtÞÞ ¼ 2 � 2xðtÞ with solution x(t) = 1+e−2ηt for initial condition

x(0) = 2.

Because x is larger than zero and dimensionless, one may choose an alternative parametri-

zation ~x ¼
ffiffiffi
x
p

. The cost function in the new parametrization reads ~Cð~xÞ ¼ ð~x2 � 1Þ
2
, and its

derivative is given by ~C 0ð~xÞ ¼ 4~xð~x2 � 1Þ. In this parametrization, it may be argued that a rea-

sonable optimization runs along the trajectory Z� 1 d
dt ~xðtÞ ¼ � ~C 0ð~xðtÞÞ ¼ � 4~xð~x2 � 1Þ with

solution ~xðtÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 1

2
e� 8Ztþ1

p for initial condition ~xð0Þ ¼
ffiffiffi
2
p

. After transforming this solution

back into the original coordinate system with parameter x, we see that the original dynamics
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x(t) = 1+e−2ηt and the new dynamics ð~xðtÞÞ2 ¼ 1

� 1
2
e� 8Ztþ1

are very different. This is expected

because the (one-dimensional) vector field −C 0(x) = 2−2x that is used for the first trajectory

should behave as � C 0ðxÞ ! � @~x
@x C

0ðxÞ ¼ 1
�x~ � ~x under a change of parametrization, which is

different from the vector field � ~C 0ð~xÞ ¼ � 4~xð~x2 � 1Þ that is used for the second trajectory.

This first, one-dimensional example shows that the naive gradient descent dynamics of Eq 2

does not transform consistently under a change of coordinate system.

As a second example, consider the minimization by gradient descent of the cost function

Cðm;sÞ ¼ DKLðN ðm0;s0ÞjjN ðm;sÞÞ, the Kullback–Leibler (KL) divergence from a fixed normal

distribution N ðm0;s0Þ to a normal distribution N ðm;sÞ parametrized by its mean μ and stan-

dard deviation σ. A naive gradient descent dynamics would be given by dm
dt ¼ �

@C
@m

and

ds
dt ¼ �

@C
@s

. The corresponding flow field is shown in Fig 3A.

Besides this parametrization, other equivalent ways to parametrize the normal distribution

are mean μ and variance s = σ2 or mean μ and precision τ = 1/σ2. Thus, the function C is

expressed in the other parametrizations as ~Cðm;sÞ ¼ Cðm;
ffiffi
s
p
Þ or �Cðm;tÞ ¼ Cðm; 1=

ffiffiffi
t
p
Þ. When

we apply the same recipe as before to the new parametrizations, we obtain the dynamics dm
dt ¼

� @ ~C
@m

and ds
dt ¼ �

@ ~C
@s and similar expressions for �C. The corresponding flow fields in Fig 3B and

3C differ from the one obtained with the initial parametrization (Fig 3A) and from each other.

This can also be seen by applying the chain rule to the two sides of ds
dt ¼ �

@ ~C
@s and comparing

the result to ds
dt ¼ �

@C
@s

, the dynamics in the original parametrization. On the left-hand side, we

get ds
dt ¼

@s
@s

ds
dt , i.e., a prefactor @s

@s
. On the right-hand side, we get � @ ~C

@s ¼ �
@s

@s
@C
@s

, i.e., a prefactor
@s

@s. If the dynamics in the new parametrization would be the same as the one in the initial

parametrization, the two prefactors would be the same (see section “Calculations for the artifi-

cial example in Fig 3” in S1 Appendix for details).

Despite the different looks of the flow fields resulting from the three different parametriza-

tions, all of them can be seen to describe dynamics that minimize the cost function (Fig 3).

However, this example illustrates an important geometrical property that we will come back to

later: the differential of a function f, i.e., the collection of its partial derivatives, does not trans-

form like a proper vector.

Gradient descent in neuroscience

In this section we present three examples from published works in which it is postulated that

the dynamics of a quantity relevant in neuroscience follows gradient descent on some cost

function.

In 2007, a learning rule for intrinsic neuronal plasticity has been proposed to adjust two

parameters a,b of a neuronal transfer function gab(x) = (1+exp(−(ax+b)))−1 [19]. The rule was

derived by taking the derivatives of the KL divergence DKL(fykfexp) between the output distri-

bution fy, resulting from a given input distribution over x and the above transfer function, and

an exponential distribution fexp with decay parameter μ>0. The flow field in Fig 1A of [19]

(here Fig 4A) is obtained with the Euclidean metric. If x is a current or a voltage, one would

encounter the unit problem because a and b would have different physical units; one may

therefore assume that x is normalized such that x, a, and b are dimensionless. The wicked-map

problem appears because it is unclear whether the Euclidean distance in the (a,b)-plane is the

most natural way to measure distances between the output distributions fy that are parame-

trized by a and b. In fact, in 2013 a different dynamics has been predicted for the same cost

function, but under the assumption of the Fisher information metric [24], which can be
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considered a more natural choice to measure distances between distributions than the Euclid-

ean metric (see Fig 4B). For further details about the Fisher metric, we refer to the section “On

choosing a metric”.

Similarly, it has been argued that the quantal amplitude q and the release probability Prel in

a binomial release model of a synapse evolve according to a gradient descent on the KL diver-

gence from an arbitrarily narrow Gaussian distribution with fixed mean φ to the Gaussian

approximation of the binomial release model [20]. To avoid the unit problem, the quantal

amplitude q was appropriately normalized. Because q and Prel parametrize probability distribu-

tions, one may also argue for this study that the Fisher information metric (Fig 4D) is a more

Fig 3. Minimizing the Kullback–Leibler divergence from a fixed normal distribution with mean 4 and standard

deviation 2 to a parametrized normal distribution. Equipotential curves in black; flow fields generated by gradient

descent in blue with (A) Euclidean metric in mean μ and standard deviation σ, displayed in μ−σ–plane (left) and μ−σ2–

plane (right); (B) Euclidean metric in mean μ and variance s = σ2, displayed in μ−σ–plane (left) and μ−σ2–plane

(right); and (C) Euclidean metric in mean μ and precision τ = 1/σ2, displayed in μ−σ–plane (left) and μ−σ2–plane

(right).

https://doi.org/10.1371/journal.pcbi.1007640.g003
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natural choice, a priori, than the Euclidean metric (Fig 4C), but the corresponding flow fields

are just two examples of the infinitely many possible flow fields that would be consistent with

gradient descent on the same cost function. Alternatively, one could, e.g., consider metrics

that depend on metabolic costs; it may be more costly to move a synapse from release probabil-

ity Prel = 0.9 to release probability Prel = 1.0 than from Prel = 0.5 to Prel = 0.6. If there is no fur-

ther principle to constrain the choice of metric, data itself may guide the choice of metric (see

the section “On choosing a metric”). Surprisingly, the available and appropriately normalized

experimental data are consistent with the Euclidean metric in Prel−q space [20], but there are

probably not sufficient data to discard a metric based on metabolic cost.

Gradient descent has been popular as an approach to postulate synaptic plasticity rules [7–

9, 11–16, 18]. As an example, minimizing by gradient descent the KL divergence from a target

distribution of spike trains to a model distribution of spike trains [15] is claimed to lead to a

specific plasticity rule with a constant learning rate η. This choice of a constant learning rate is

equivalent to choosing the Euclidean metric on the weight space. But there is no reason to

assume that the learning rate should be constant or the same for each parameter (synaptic

weight): one could just as well choose individual learning rates ηij(wij). This generalization cor-

responds still to the choice of a diagonal Riemannian metric. But although it is often assumed

that the change of a synapse depends only on pre- and postsynaptic quantities (but see [15]), it

could be that there is some cross talk between neighboring synapses, which could be captured

by nondiagonal Riemannian metrics. This example shows that gradient descent does not lead

to unique learning rules. Rather, each postulate of a gradient descent rule should be seen as a

Fig 4. Gradient descent flow fields in neuroscience. (A) Flow of intrinsic plasticity parameters a and b with

Euclidean metric (see Fig 1A in [19]) and (B) with Fisher information metric. (C) Flow of quantal amplitude q and

release probability Prel in a binomial release model of a synapse with Euclidean metric (see Fig 1D in [20]) and (D) with

Fisher information metric. For other choices still, see the section “On choosing a metric”.

https://doi.org/10.1371/journal.pcbi.1007640.g004
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family of possibilities: there is a different learning rule for each choice of the Riemannian

metric.

What is the gradient, then? How to do steepest descent in a generic

parameter space

In the preceding section, we have shown that the partial derivatives with respect to the parame-

ters do not transform correctly under changes of parametrization (i.e., not as we would expect

for the components of a vector or flow field). In order to work with generic spaces that may

carry different parametrizations, it is useful to apply methods from differential geometry.

A Riemannian metric on an N-dimensional manifold (an intrinsic property of the space)

gives rise to an inner product (possibly position dependent) on RN
for each choice of parame-

trization. The matrix representation of the inner product depends on the choice of parametri-

zation. However, the dependence is such that the result of an evaluation of the inner product is

independent of the choice of parametrization. When described in this language, the geometry

of the trajectories in the space is therefore independent of parameter choices.

To follow the main arguments of this section, it is not necessary to understand the more

detailed treatment of gradients on differentiable manifolds presented in the section “Steepest

descent on manifolds” in S1 Appendix. But the interested reader is invited to discover there

how the terms in Eq 2 are related to tangent vectors and cotangent vectors and how a gradient

can be defined on manifolds that are not vector spaces. In the following, we present a simpli-

fied treatment in vector spaces with an inner product.

For a function f : RN
! R and an inner product h�;�i : RN

� RN
! R, a common implicit

definition (e.g., [25]) of the gradient (rf)(x) of f at point x is

hðrf ÞðxÞ;ui ¼ lim
ε!0

f ðx þ εuÞ � f ðxÞ
ε

ð3Þ

for all nonzero vectors u6¼0; i.e., the gradient (rf)(x) is the vector that is uniquely defined by

the property that its product with any vector u is equal to the derivative of f in direction u.

With the Euclidean inner product hv;wiE ¼
XN

i¼1
viwi, it is a simple exercise to see that the

components of the gradient are the partial derivatives. However, with any other inner product

hv;wiGðxÞ ¼
XN

i;j¼1
viGijðxÞwj, characterized by the position-dependent symmetric, positive

definite matrix G(x), the gradient is given by

ðrf ÞðxÞ ¼ G� 1ðxÞ

@f
@x1

..

.

@f
@xN

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

; ð4Þ

i.e., the matrix product of the inverse of G(x) with the vector of partial derivatives. Note that

the inverse G−1(x) is also a symmetric, positive definite matrix. The inverse of G(x) automati-

cally carries the correct physical units and the correct transformation behavior under repara-

metrizations; i.e., the components of the matrix G(x) transform as ~Gij ¼
X

kl
@xk
@~xi

@xl
@~xj

Gkl under a

reparametrization from x to ~x such that the dynamics

d
dt

xðtÞ ¼ � Zðrf ÞðxðtÞÞ ð5Þ
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is invariant under a change of parametrization. Following standard nomenclature, we call the

gradient induced by the Riemannian metric G the Riemannian gradient.

The gradient is used in optimization procedures because it points in the direction of stee-

pest ascent. To see this, we define the direction of steepest ascent

sðxÞ¼: argmax
hu;ui¼1

lim
ε!0

f ðx þ εuÞ � f ðxÞ
ε

ð6Þ

as the direction u in which the change of the function f is maximal. Using the definition of the

gradient in Eq 3 and determining the maximum, we find

sðxÞ ¼ argmax
hu;ui¼1

hðrf ÞðxÞ;ui

¼
ðrf ÞðxÞ
jjðrf ÞðxÞjj

;
ð7Þ

where jj � jj ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
h � ; � i

p
denotes the norm induced by the metric h�,�i.

On choosing a metric

Given an arbitrary vector field, one may ask whether it is possible to represent it as a steepest

descent on some cost function with respect to some metric. It is well-known that gradient

dynamical systems have rotation-free vector fields that rule out periodic orbits [26]. Otherwise,

when the metric is already known, there is a systematic way to check whether the vector field

can be written as a gradient and to construct a suitable cost function. If the metric is unknown,

one may have to construct a metric that is tailored to the dynamical system. We refer to section

“Which dynamical systems can be regarded as a gradient descent on a cost function?” in S1

Appendix for further details.

Instead of constructing a custom-made metric for the dynamical system, it may be more

desirable (from the perspective of finding the most parsimonious description) to choose a met-

ric a priori and then check whether a given dynamical system has the form of a gradient

descent with respect to that metric. Such an a priori choice could be guided, e.g., by biophysical

principles and therefore becomes an integral part of the theory. For example, a metric could

reflect the equivalence of metabolic cost that is incurred in changing individual parameters.

Another example is Weber’s law, which implies that parameter changes of the same relative

size are equivalent. This would suggest a constant (but not necessarily Euclidean) metric on a

logarithmic scale. A third example is the homogeneity across an ensemble: if there are N neu-

rons of the same type and functional relevance, we may want to constrain the metrics to those

that treat all neurons identically when changing quantities such as neuronal firing thresholds

or synaptic weights.

Even if it does not fully determine the metric, a principle that constrains the class of metrics

is very useful when trying to fit the metric to the data (for a given cost function). Without any

constraints, the specification of a Riemannian metric for an n-dimensional parameter space

requires the specification of 1

2
nðnþ 1Þ smooth functions, i.e., the components of the matrix G

in some coordinate system; these components can be constant or position dependent.

If the parameter space describes a smooth family of probability distributions, the Fisher

information matrix provides a canonical Riemannian metric on this manifold. The special sta-

tus of the Fisher–Rao metric in statistics is due to the fact that it is the only metric (up to scal-

ing factors) that has a natural behavior under sufficient statistics (see, e.g., [27], Theorem 2.6

going back to Chentsov, 1972). Natural behavior of a metric (on the set of probability densi-

ties) in this context means informally that the sufficient statistics, viewed as transformations of
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the state space, induce a corresponding transformation of the probability densities that is dis-

tance preserving. The various versions of Chentsov’s theorem characterize the Fisher–Rao

metric essentially as the only one having this property. The Riemannian gradient with respect

to the Fisher–Rao metric is often called the natural gradient, and it has been applied in

machine learning [28–36] and neuroscience [24]. Due to Chentsov’s theorem, the Fisher infor-

mation metric is regarded as a natural choice, but some authors (including Amari in [27])

seem to use the term natural gradient to more broadly refer to a Riemannian gradient with

respect to some metric that obeys some invariance principle. Another metric on probability

distributions that has recently gained a lot of attention is the optimal transport or Wasserstein

metric [37–39]. However, despite the nice mathematical properties of such metrics and their

usefulness for machine learning applications, it is not clear why natural selection would favor

them. Therefore, the special mathematical status of those metrics does not automatically carry

over to biology or, more specifically, neuroscience.

Conclusions

The idea that biological systems are operating at some kind of optimality is old and is often

mathematically formalized as the minimization of a cost function. However, the process by

which a minimum is reached cannot be deduced from the cost function alone. The present

paper tries to explain that even the simplest dynamical system, steepest descent, depends on

the choice of a Riemannian metric (a type of ruler with which step sizes are measured). We

aim to draw the attention of the neuroscience community to this fundamental issue and its

implications on the widespread use and interpretation of steepest descent in normative or top-

down theories of brain function.

First, as we explain in the section “The gradient is not equal to the vector of partial deriva-

tives,” it is important to make the choice of metric an explicit and integral part of the theory.

When steepest descent dynamics are being postulated, such as for the dynamics of firing rates

or synaptic weights [7–9, 11–18], a Euclidean metric is often chosen implicitly by equating the

gradient and the vector of partial derivatives in some arbitrary parametrization. Because the

choice is inadvertent, an important part of the explanation of the dynamics is lacking; because

the cost function alone does not yield sufficient data to define a notion of steepest descent, a

full explanation must include the reason for choosing any specific metric (Euclidean or

otherwise).

Second, the Euclidean metric cannot simply be regarded as a default choice (wicked-map

problem), especially (but not only) for spaces of parameters that carry different physical units

(unit problem). In practice, the unit problem can be treated with a suitable normalization of

the measured quantities [19, 20]. The wicked-map problem, however, remains, and it may be a

matter of serendipity to select the parametrization in which naive gradient descent (i.e., using

an implicit default choice of the Euclidean metric in the parametrization at hand) is consistent

with experimental data.

Third, from the biological perspective, the choice of metric is important because it encodes

the relative cost of changing different parameters in the pursuit of an optimum and can signifi-

cantly alter the prediction of the model regarding the trajectories along which optimization

occurs (as opposed to just the targets of the optimization). This circumstance opens up diffi-

culties as well as new possibilities; of course, a pure data-driven inference about the optimality

principle (cost function and metric) is more difficult and requires more data if the metric is

treated as an unknown quantity as opposed to when it is assumed to be Euclidean. On the

other hand, as we argue in the section “On choosing a metric,” the additional freedom lets us

inform the modeling process by biophysical knowledge about the relative cost of altering
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physiological quantities. In addition, dynamics that may appear inconsistent with a steepest

descent in a Euclidean metric can be consistent with steepest descent dynamics in a different

(biophysically meaningful) metric. It will be interesting to uncover the metrics that are chosen

by biology, and to uncover the biophysical principles that underlie these choices.

Although the present article has been focused on steepest descent dynamics exclusively, this

is only one class of optimization algorithms, and alternative ones may have to be considered

for biological systems. However, the choice of metric (or other additional structures) is also

relevant for various other methods: for example, in Hamiltonian optimization methods and

gradient descent with momentum [40], the metric appears in the kinetic energy term of the

Hamiltonian function, which controls the “inertia” of the various directions in the parameter

space, and in second-order methods, a metric is usually required (but this can be relaxed some-

what) to define a coordinate-independent notion of Hessian. Thus, the basic point of this arti-

cle can be generalized to other forms of optimization: in order to be predictive of the dynamics

of physiological quantities, normative or top-down principles must include (besides a cost

function) additional structure on the parameter space, and this structure often appears in the

form of a Riemannian metric.

Supporting information

S1 Appendix. In S1 Appendix, we provide detailed calculations for the artificial example in

Fig 3. We give an introduction to steepest descent on manifolds, and we discuss briefly under

which conditions a dynamical system can be regarded as a gradient descent on a cost function.

(PDF)
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37. Ambrogioni L, Güçlü U, Güçlütürk Y, Hinne M, van Gerven MAJ, Maris E. Wasserstein Variational Infer-

ence. In: Bengio S, Wallach H, Larochelle H, Grauman K, Cesa-Bianchi N, Garnett R, editors. Advances

in Neural Information Processing Systems 31. Curran Associates, Inc.; 2018. p. 2473–2482.

38. Bernton E, Jacob PE, Gerber M, Robert CP. On parameter estimation with the Wasserstein distance.

arXiv e-prints. 2017; p. arXiv:1701.05146.

39. Arjovsky M, Chintala S, Bottou L. Wasserstein GAN. arXiv:1701.07875 [Preprint]. 2017.

40. Maddison CJ, Paulin D, Whye Teh Y, O’Donoghue B, Doucet A. Hamiltonian Descent Methods.

arXiv:1809.05042 [Preprint]. 2018.

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007640 April 9, 2020 13 / 13

https://doi.org/10.1371/journal.pcbi.1007640

