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Abstract
Background. Melanoma brain metastases historically portend a dismal prognosis, but recent advances in immune check-
point inhibitors (ICIs) have been associated with durable responses in some patients. There are no validated imaging 
biomarkers associated with outcomes in patients with melanoma brain metastases receiving ICIs. We hypothesized that 
radiomic analysis of magnetic resonance images (MRIs) could identify higher-order features associated with survival.
Methods. Between 2010 and 2019, we retrospectively reviewed patients with melanoma brain metastases who 
received ICI. After volumes of interest were drawn, several texture and edge descriptors, including first-order, 
Haralick, Gabor, Sobel, and Laplacian of Gaussian (LoG) features were extracted. Progression was determined using 
Response Assessment in Neuro-Oncology Brain Metastases. Univariate Cox regression was performed for each 
radiomic feature with adjustment for multiple comparisons followed by Lasso regression and multivariate analysis.
Results. Eighty-eight patients with 196 total brain metastases were identified. Median age was 63.5 years (range, 
19–91 y). Ninety percent of patients had Eastern Cooperative Oncology Group performance status of 0 or 1 and 
35% had elevated lactate dehydrogenase. Sixty-three patients (72%) received ipilimumab, 11 patients (13%) re-
ceived programmed cell death protein 1 blockade, and 14 patients (16%) received nivolumab plus ipilimumab. 
Multiple features were associated with increased overall survival (OS), and LoG edge features best explained the 
variation in outcome (hazard ratio: 0.68, P = 0.001). In multivariate analysis, a similar trend with LoG was seen, but 
no longer significant with OS. Findings were confirmed in an independent cohort.
Conclusion. Higher-order MRI radiomic features in patients with melanoma brain metastases receiving ICI were 
associated with a trend toward improved OS.

Key Points

1. MRI radiomics are a potential biomarker of intratumoral heterogeneity.
2.  MRI radiomics are associated with survival in melanoma brain metastases treated with 

ICIs.
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Brain metastases are a leading cause of both neurological 
disability and death in patients with systemic malignan-
cies.1 Patients with melanoma have the highest risk of de-
veloping brain metastases among all patients with solid 
tumors.2–4 The incidence of melanoma brain metastases has 
been described as 40–60% at some point during the course 
of disease but may be as high as 70% at autopsy.4–6 Brain 
metastasis research has been inadequate over the years 
due to the exclusion of patients from clinical trials, inaccu-
rate assumptions about prognosis, unclear radiographic 
response criteria, and the poor understanding of drug pen-
etration across the blood–brain barrier.1,7 Fortunately, the 
discovery of immune checkpoint inhibitors (ICIs), including 
antibodies to cytotoxic T lymphocyte antigen 4 (CTLA-4; 
ipilimumab) and programmed cell death protein 1 (PD1) 
(pembrolizumab and nivolumab), has dramatically changed 
the prognosis and treatment of melanoma brain metas-
tases and has been a promising area of research.8–10 A re-
cent study evaluating the overall survival (OS) of patients 
who presented with cutaneous melanoma brain metas-
tases during 2010‒2015 using the National Cancer Database 
demonstrated a significantly improved median OS of 
12.4  months in patients with melanoma metastases both 
intracranially and extracranially, representing a shift from a 
historical OS of only 4 months.11 However, while a subset of 
patients respond to treatment with ICI and go on to achieve 
long-term remission, there persists a subset of patients who 
do not respond and have poor survival as a direct result of 
intracranial progression, creating an increasingly difficult 
clinical challenge of determining which patients should re-
ceive immunotherapy, concurrent radiation, and/or surgical 
resection. Given the heterogeneity in response to ICIs and 
the variation in the management of these patients, there is 
an increasing need for biomarkers that can predict thera-
peutic response and outcomes.

Genomic heterogeneity within a single brain metastasis 
has been hypothesized to be the most likely explanation 
for variations in response to ICIs, radiation, or surgery. This 
was exemplified by a recent study in which the authors 
conducted multiregion sampling of melanoma metas-
tases and demonstrated heterogeneous gene-expression 
patterns within single lesions.12,13 However, another study 
demonstrated that spatially and temporally separated 
brain metastatic lesions are genetically homogeneous, 
while distal extracranial metastases are highly divergent 
and genetically heterogeneous.14 The complex interplay 
of genes, proteins, and cellular microenvironments within 

each metastasis can dictate the aggressiveness of the 
cancer and each patient’s response to treatment.

In response to the dilemma as to managing melanoma 
brain metastases as described above, in this study we ex-
tracted radiomic texture and edge features from standard-
of-care magnetic resonance imaging (MRI) to produce a 
range of quantitative parameters (features) that charac-
terize the spatial variation of gray levels throughout an 
image.15,16 Radiomics have been applied in the context 
of several diseases to aid in diagnosis and assessment 
of response to treatment, characterize heterogeneity, and 
predict survival.17–31 In this study, we hypothesized that 
texture analysis of contrast T1-weighted MRI will identify 
higher-order features of melanoma brain metastases that 
are correlated with progression-free survival (PFS) and OS.

Materials and Methods

Study Data

This retrospective study was granted a waiver of informed 
consent by the institutional review board and was per-
formed in compliance with Health Insurance Portability and 
Accountability Act regulations. We identified 377 consecu-
tive patients with metastatic melanoma and brain metas-
tases who received ipilimumab with or without nivolumab, 
nivolumab, or pembrolizumab between 2010 and 2017. 
Inclusion criteria were (1) age greater ≥18 years, (2) biopsy-
proven metastatic melanoma, and (3) MRI of the brain with 
contrast performed within 3 months of developing brain me-
tastases and before receiving ICIs. Patients were excluded 
if (1) they received ICIs prior to the development of brain 
metastases, (2) they received radiotherapy to brain metas-
tases prior to the baseline MRI, or (3) brain metastases did 
not meet criteria for measurable disease per criteria of the 
Response Assessment in Neuro-Oncology Brain Metastases 
(RANO-BM) (<0.5 cm).32 Patients receiving planned concur-
rent stereotactic radiosurgery (SRS) or whole-brain radio-
therapy (WBRT) with ICI were included. Clinical data were 
collected such as age, sex, Eastern Cooperative Oncology 
Group (ECOG) performance status, lactate dehydrogenase 
(LDH) levels, planned treatment with ICI or radiation, prior 
systemic therapy for extracranial disease, driver mutational 
status, and melanoma subtype (summarized in Table 1). An 
additional independent cohort was obtained with similar 
methodology as above spanning 2017–2019.

Importance of the Study

Immune checkpoint inhibition has drastically changed 
the treatment and prognosis of patients with melanoma 
brain metastases. However, there remains a subset of 
patients who do not respond intracranially and require 
additional treatment with surgery and/or radiation, 
likely due to intratumoral heterogeneity. In this man-
uscript, we demonstrate that MRI radiomic features 

on baseline neuroimaging are associated with overall 
survival for patients with melanoma brain metastases. 
These data suggest that MRI radiomics can be used as 
a potential biomarker to predict intratumoral heteroge-
neity and risk of intracranial progression. Incorporation 
of MRI radiomic features into future clinical trials will 
help elucidate their utility in practice.
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MRI Acquisition

MRI was performed on 3T (n = 34) and 1.5T (n = 54) sys-
tems (750w/450w, GE Healthcare). Conventional MRI was 
acquired including axial contrast-enhanced T1-weighted 
images at 5 mm (n = 113), 4 mm (n = 2), or 3 mm (n = 3).

Image Segmentation

A maximum of 5 metastatic lesions were selected in pa-
tients with multiple metastases per RANO-BM guidelines.33 
If a patient had more than 5 metastatic lesions, the largest 5 

target lesions by volume were chosen. Metastasis segmen-
tation was manually performed by a trained operator (with 
1 year of experience) using ITK-SNAP version 3.4.0 (www.
itksnap.org).34 The volume of interest of each metastatic le-
sion was verified by an experienced neuroradiologist (with 
>20 years of experience). If a lesion had gross precontrast 
T1 hyperintensity, this area was not segmented and not in-
cluded in the analysis.

Radiomic Feature Analysis

First-order texture features, Haralick texture features, as 
well as Gabor, Sobel, and Laplacian of Gaussian (LoG) 
edge features were extracted from each metastatic le-
sion using the publicly available software Computational 
Environment for Radiotherapy Research (CERR)35; a total 
of 21 features were extracted per lesion from contrast-
enhanced T1-weighted images. Normalization of imaging 
was not done as to support easy replication of method-
ology and use only those texture features that are robust to 
variations in image acquisitions.

The histogram-based first-order texture features included 
the mean, standard deviation, skewness, and kurtosis of 
the signal intensity of the pixels enclosed in the region of 
interest. The Haralick texture features16 extracted in this 
study included energy, entropy, contrast, homogeneity, and 
correlation. The Haralick texture features, known also as 
second-order texture features, were computed from gray 
level co-occurrence matrices (GLCM) that described the 
spatial relationship of two pixels at a given offset and thus 
offered more information than first-order texture features. 
Thirteen directional offsets and a distance of 1 between 
the voxels were used for the 3-dimensional GLCM. One 
co-occurrence matrix was produced by combining the con-
tributions from all offsets and was used to calculate the 5 
textures. Further details on these features and the methods 
used to extract them have been published previously.30, 36

Gabor features are edge features computed to capture 
edges at different spatial scales and orientations.37 In 
Gabor texture feature extraction, a filter bank is used to de-
rive multiple filtered images from the original image. Each 
filtered image contains a subset of frequencies and orienta-
tions. In this study, one filter was used (bandwidth 2, angle 
0°) and then first-order features were calculated from the 
regions of interest, resulting in 4 Gabor texture features. 
In addition, Sobel and LoG edge features were computed 
to describe spatial discontinuities in image signal intensity. 
A default MATLAB kernel size of 3 × 3 was implemented 
for the aforementioned filters. In this study, 4 features were 
extracted from the Sobel- and LoG-filtered images, leading 
to a total of 12 edge detection features.

Outcomes

The primary outcomes were PFS and OS. OS was defined 
as the date of the start of the ICI to the date of the last fol-
low-up or the date of death. PFS was defined as the date of 
the start of ICI to the date of an unplanned change in treat-
ment—for example, progression of disease as determined 
based on RANO-BM guidelines, unplanned local therapy 

  
Table 1 Clinical characteristics

Clinical Characteristics N (%)

Age, years, mean (range) 63.5 (19–91)

Sex  

 Male 57 (65)

 Female 31 (35)

ECOG  

 0 49 (56)

 1 30 (34)

 2/3 9 (10)

LDH  

 Elevated 31 (35)

 Normal 37 (42)

 Unknown 20 (23)

Checkpoint inhibitor  

 CTLA-4 63 (72)

 PD1 11 (13)

 PD1+ CTLA-4 14 (16)

Concurrent radiation 69 (78)

 SRS 40 (45)

 WBRT 29 (33)

Prior systemic therapy 42 (48)

 BRAF ± MEK inhibitor 32 (36)

 Chemotherapy 10 (11)

Driver mutational status  

 BRAF V600E 37 (42)

 Ras 17 (19)

 NF1 4 (5)

 Other 3 (3)

 WT 16 (18)

 Unknown 11 (13)

Melanoma subtype  

 Cutaneous 60 (68)

 Unknown 20 (23)

 Mucosal 4 (5)

 Acral 4 (5)

Abbreviations: NF1, neurofibromatosis type 1; WT, wild type.

  

http://www.itksnap.org
http://www.itksnap.org
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such as surgery (with pathology confirmed as disease), or 
radiation with SRS or WBRT.

Statistical Analysis

To determine the radiomic features that are relevant for 
OS, a weighted average of each radiomic feature across 
each patient’s metastasis was taken. These averages 
were weighted by metastasis volume, which was calcu-
lated during segmentation. In other words, metastases 
with larger volumes were assigned a larger importance in 
deriving the radiomic features for each patient. This com-
putation was done to extract an overall summary hetero-
geneity measure across all the metastases. A  univariate 
Cox regression was employed to assess each radiomic 

feature as well as several clinical factors. A  subsequent 
false discovery rate (FDR) adjustment for multiple com-
parisons was applied to the radiomic features. Because 
several features achieved significance (P < 0.001) and were 
found to be highly internally correlative, Lasso regression 
was performed38 to reduce the number of features and to 
select a small set of features that are most relevant to OS.39

To determine the radiomic features relevant for PFS, pro-
gression analysis was conducted using a univariate com-
peting risks regression model with competing risk of death 
without progression of disease. A clustering effect at the 
patient level was assumed due to several patients having 
multiple lesions, and an FDR correction was applied to the 
radiomic features.

To determine the degree of variability or heterogeneity 
in radiomic signatures among patients with multiple 

  

Patients with brain metastases from
melanoma who were treated with ICIs at
Memorial Sloan Kettering Cancer Center
from 2010 to 2017 (n = 377)

Exclusion Criteria:

1) Received ICI prior to
the development of BM

2) Received
radiotherapy to BM
prior to baseline MRI

3) BM < 0.5 cm, not
measurable per RANO
BM

Patients who had measurable brain
metastases present when initially treated
with ICIs
       (n = 88 patients, 196 total metastases)

Volume of interests were drawn around up to
5 brain metastases per patient (n = 196 total
metastases)

OS: Date of ICI to date of
last follow-up/date of
death

PFS: RANO-BM and time
to change in treatment
(unplanned local
therapy like craniotomy
with viable disease,
unplanned SRS/WRBT)Haralick, Sobel, Gabor, and LoG edge texture

features were extracted for each lesion

PFS: Univariate competing risks regression model performed
OS: Univariate Cox regression was performed for each
texture with adjustment for multiple comparisons,
followed by lasso regression and multivariate analysis.

Fig. 1 CONSORT diagram.
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brain metastases (n =  45), the range of mean LoG was 
calculated in each patient with multiple lesions and re-
ported. Intrapatient variability was then compared with 
interpatient variability in the entire cohort.

Results

Clinical Characteristics

A total of 88 patients with 196 total metastases were in-
cluded in the study (Fig. 1). Table 1 summarizes the clin-
ical demographics of the study population. The median 
age in this retrospective study was 63.5  years (range, 
19−91 y) and 65% of patients were male (57/88). Most pa-
tients had an ECOG performance status of 0 or 1 (90%) 
and 35% had elevated LDH. Sixty-three patients (72%) 
received ipilimumab, 11 patients (13%) received PD1 
blockade in the form of monotherapy, and 14 patients 
(16%) received combination nivolumab plus ipilimumab. 
Most patients received planned concurrent radiation 
(78%). Forty-six patients (52%) were naïve to systemic 
therapy. Of those with prior systemic therapy, most re-
ceived targeted BRAF ± MEK inhibition (32 patients, 
36%). The most common driver mutation in our cohort 
was BRAF V600E, which was found in 37 patients (42%). 
Other relevant mutations seen were Ras in 17 patients 
(19%) and neurofibromatosis 1 in 4 patients (5%). The 
majority of patients had cutaneous melanoma (68%), but 
several patients were either unknown primary (23%) or 
mucosal (5%) or acral (5%).

MRI Radiomic Features

Table 2 summarizes the results of the univariate analysis 
to determine the impact of clinical variables on patient sur-
vival. Elevated LDH levels were found to be significantly 
associated with survival (P = 0.017). No other clinical vari-
ables were associated with survival, including age, ECOG 
performance status, elevated LDH, liver involvement, 
therapy type, radiation, or driver mutational status. Table 
3 summarizes the results of the univariate analysis to de-
termine the impact of radiomic features on patient OS. 
Multiple radiomic features were associated with increased 
OS. The mean LoG was the most relevant radiomic feature 
for explaining the variation in outcome (hazard ratio [HR]: 
0.68, P = 0.001). Table 4 shows the results of multivariate 
analysis including mean LoG, LDH level, and ECOG perfor-
mance status 0 versus ≥1. At multivariate analysis, a sim-
ilar trend for higher mean LoG and better OS was seen, 
but it was no longer statistically significantly associated 
with OS when LDH and ECOG performance status were 
incorporated into the analysis. There were no significant 
differences found in PFS for any of the radiomic features 
following FDR correction or for any of the clinical factors.

Figure 2 demonstrates a representative image of 2 brain 
metastases with varying outcomes to checkpoint inhibi-
tion. These metastases appear similar on T1-weighted im-
aging, but clear differences could be detected in mean LoG 
post filtering as well as entropy.

Variability in Radiomic Signatures

To better understand the variability in radiomic signatures 
among different metastatic lesions within the same patient, 
the LoG variability ranges were reported in the 45 patients 
with multiple metastatic lesions (Supplementary Table 1) 
with the minimum and maximum ranges (0.0144, 1.8489). 
While there is no clear texture feature that measures het-
erogeneity, these tight ranges suggest more homogeneity 
of lesions within the same patient, compared with lesions 
between different patients. Supplementary Fig. 1 shows 
intrapatient variability of the feature; mean LoG is lower in 
67% of the patients than the interpatient variability across 
the entire cohort.

Validation Cohort

To confirm the findings that mean LoG is an important 
radiomic feature, a new dataset (n =  17) was obtained 
at our institution. Using this independent dataset, the 
multivariate analysis findings were confirmed (Table 
5). Namely, ECOG was significantly associated with OS 
(P = 0.01). Additionally, LDH was also associated with OS 

  
Table 2 Univariate analysis of the impact of clinical variables on 
overall survival

 HR (95% CI) P-value

Age 1.0 (0.99, 1.02) 0.823

ECOG   

 0 1.00 0.255

 1 + 2 + 3 1.33 (0.82, 2.16)

Elevated LDH   

 N 1.00 0.017

 Y 1.96 (1.13, 3.4)

Liver involvement   

 N 1.00 0.173

 Y 1.43 (0.85, 2.4)

Checkpoint inhibitor   

 PD1 + CTLA-4 1.00 0.232

 CTLA-4 1.02 (0.5, 2.07)

 PD1 0.49 (0.17, 1.37)

Concurrent radiation   

 WBRT 1.00 0.23

 SRS 0.72 (0.42, 1.23)

Prior systemic therapy   

 Chemotherapy 1.00 0.943

 BRAF ± MEK inhibitor 1.03 (0.44, 2.32)

Prior BRAF inhibitor   

 No 1.00 0.17

 Yes 1.63 (0.81, 3.29)

Driver mutational status   

 BRAF V600E 0.73 (0.38, 1.42) 0.36

  

http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noz141#supplementary-data
https://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noz141#supplementary-data
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(P  =  0.03). Utilizing the optimal cutoff for mean LoG of 
2.89, higher mean LoG was significantly associated with 
OS (P = 0.003).

Discussion

This study analyzes higher-order MRI features in patients 
with melanoma brain metastases receiving ICIs. We found 
that several Haralick, Sobel, and Gabor radiomic features 
were associated with an improved OS; the results revealed 
potential associations between radiomic analysis and 
treatment response in this high-risk patient population. 

The association between the mean LoG feature and OS 
did not retain clinical significance on multivariate anal-
ysis incorporating LDH and performance status; however, 
the trend remained present. Additionally, mean LoG was 
confirmed to be significant in an independent dataset. 
Further analysis is required in larger, prospective cohorts 
of patients with melanoma brain metastases treated with 
more uniform therapies. This proof-of-concept study paves 
the way for further investigation, which may lead to a 
better understanding of the underlying biology evoked by 
radiomic features and the exact role they play in the man-
agement of patients.

  
Table 3 Univariate analysis of the impact of MRI radiomic features on overall survival

Feature Category Feature Name HR (95% CI) P-value

Haralick Entropy 0.33 (0.17, 0.64) 0.001*

LoG Mean 0.68 (0.54, 0.85) 0.001*

LoG Standard deviation 0.76 (0.65, 0.89) 0.001*

Gabor Mean 0.41 (0.24, 0.68) 0.001*

Sobel Mean 0.89 (0.83, 0.96) 0.002*

Sobel Standard deviation 0.86 (0.78, 0.95) 0.004*

First order Mean 0.93 (0.88, 0.98) 0.005*

Gabor Kurtosis 0.8 (0.68, 0.94) 0.007*

Haralick Contrast 0.92 (0.87, 0.99) 0.016*

First order Standard deviation 0.97 (0.95, 1.00) 0.019*

Gabor Standard deviation 0.95 (0.9, 0.99) 0.026*

First order Skewness 0.99 (0.98, 1.00) 0.0288

LoG Kurtosis 0.68 (0.48, 0.96) 0.0301

LoG Skewness 0.93 (0.86, 1.0) 0.036

Haralick Energy 0.91 (0.83, 1.0) 0.04

Sobel Kurtosis 0.87 (0.75, 1.0) 0.054

Sobel Skewness 0.64 (0.39, 1.04) 0.073

Haralick Correlation 0.9 (0.79, 1.03) 0.13

Haralick Homogeneity 0.94 (0.87, 1.02) 0.139

First order Kurtosis 1.02 (0.98, 1.06) 0.378

Gabor Skewness 1.0 (0.96, 1.06) 0.862

*Significant after FDR correction.

  

  
Table 4 Multivariate analysis of the impact of mean LoG, ECOG, and 
LDH elevation on OS

HR (95% CI) P-value

Mean LoG 0.79 (0.6,1.03) 0.078

ECOG = 0 Reference  

ECOG = 1, 2, 3 1.84 (0.83, 4.09) 0.136

No LDH elevation Reference  

LDH elevation 2.45 (1.16, 5.16) 0.019

ECOG * LDH elevation 0.41 (0.13, 1.3) 0.131

  

  
Table 5 Validation of model with an independent dataset

P-value

Mean LoGa,b 0.003

ECOG = 0 Reference

ECOG = 1, 2, 3 0.01

No LDH elevation Reference 

LDH elevation 0.03

aNote the optimal cutoff for mean LoG was determined via the original 
data. The optimal cutoff value was 2.89, so we dichotomized mean LoG 
at this value in the validation data. bUnivariate analysis was done due 
to the small sample size. 
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Although higher-order features were associated with 
OS at univariate analysis, it is notable that they were not 
associated with PFS. In this study, any unplanned radi-
ation, surgery, or change in targeted therapy due to an 
enlarging metastatic lesion was deemed progression, 
mimicking rules from prospective clinical trials. It is well 
described that some patients with melanoma brain me-
tastases treated with checkpoint inhibitors can live long 
after progression.9,10 We hypothesize that this apparent in-
consistency may reflect the inherent difficulty radiologists 
and oncologists have in predicting patient outcomes from 
standard MRI results. Based on initial size increase, phys-
icians may be utilizing stereotactic radiation prematurely 
in patients whose tumors possess higher-order texture 
features that would reflect a better long-term prognosis. 
This is particularly apropos in the patient who has possible 
pseudoprogression and other treatment changes; for ex-
ample, the RANO-BM group has declared in these settings 
that “standard MRI alone is insufficient.” 33 This study sug-
gests that higher-order features, if validated in a larger, pro-
spective cohort, could offer valuable insight to clinicians 
making difficult decisions on whether and when to add 
local radiation or change systemic therapy. Recently, com-
bined nivolumab plus ipilimumab without SRS was shown 
to result in intracranial response rates in over 50% of care-
fully selected patients.9,10 This underscores the importance 
of developing better imaging tools to distinguish whether 
a patient requires additional local or systemic therapy in 
the modern era of combination checkpoint inhibition.

While several studies have shown early promise for 
using radiomics in various malignancies,16–30 no study has 
attempted to use radiomics to identify radiomic features 

predicting outcomes in brain metastases. This is likely due 
to the difficulty in accounting for the spatial and temporal 
relationships between different metastatic lesions that 
are present on brain imaging in each patient. We gener-
ated quantitative features that were then averaged over 
all brain metastases. While our approach suggests high 
prognostic capability, further work is necessary to account 
for the presence of intertumor genetic and transcriptomic 
variability. While there are no standard criteria for meas-
uring heterogeneity in brain metastases with radiomics, 
we reexamined 45 patients who had multiple lesions and 
calculated the range of LoG within multiple lesions of each 
patient. Little variability was seen in patients with multiple 
lesions compared with between patients, consistent with 
genetic studies that report genetic homogeneity between 
patients with multiple metastatic lesions compared with 
the heterogeneous primary. Well-designed prospective 
studies that analyze brain metastases on a multidimen-
sional level are needed so that the meaningful integration 
of imaging, histopathology, and genomic and epigenomic 
analysis can be done.

Our study has several limitations. This was a retrospec-
tive study and the indication for the initial MRI varied 
among patients, reflecting varying biology. Texture anal-
ysis was retrospectively obtained on the initial MRI; to 
limit bias, the experienced user who extracted features 
was blinded to the clinical history and outcomes of each 
patient. Because the initial inclusion period chosen for the 
retrospective cohort in this study spanned a number of 
years from 2010, only a minority of patients received PD1-
based checkpoint inhibition, which is the current systemic 
therapy standard for patients with melanoma. Our smaller 

  

A B C

D E F

Fig. 2 MR images of a 56-year-old female patient with a left frontotemporal lobe melanoma brain metastasis that did not respond to ipilimumab and 
required unplanned radiation (upper panel), and a 75-year-old male patient with a right frontal lobe melanoma brain metastasis that had a complete 
response to ipilimumab (lower panel). Pretreatment post-contrast imaging is shown in (A) and (D) for each patient, respectively. Edge-filtered images 
for each metastatic lesion show that the LoG edges are more complex in the metastasis that progressed (B) compared with the metastasis that re-
sponded (E). Additionally, a representation of the extracted entropy feature shows there is higher entropy, highlighted by the increase in variation as 
well as disorder in the gray level distribution, in the progressing metastatic lesion (C) in comparison with the responding metastatic lesion (F).
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validation cohort consisted of patients treated since 2016, 
and therefore these reflected the current standard prac-
tice of PD1 inhibition. MRI type and acquisition parameters 
were variable in order to maximize sample size. A  more 
standardized approach for MRI acquisition should be con-
sidered in future studies for patients receiving frontline 
CTLA-4 and PD1-based therapy.

Several questions regarding the use of MRI radiomic fea-
tures in brain metastases remain. Further studies should 
focus on the role texture features play in progression and 
pseudoprogression, specifically in the setting of immuno-
therapy. Understanding how texture signatures change 
over time or during the course of treatment would be 
helpful. It would be interesting to know if multi-parametric 
data that use several other sequences on the MRI might 
further strengthen the statistical significance; however, 
this introduces variability across institutions. Furthermore, 
radiomic signatures of brain metastases from other can-
cers such as breast and lung should be pursued as they 
are likely to be very different from melanoma brain metas-
tases, which are often more hemorrhagic.

In summary, several Haralick, Gabor, and Sobel radiomic 
features were associated with an improved OS in patients 
with melanoma brain metastases receiving ICI. Additional 
prospective work is necessary to understand the ability 
of radiomic features to predict survival and to better un-
derstand the relationship between radiomic features and 
tumor heterogeneity.
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