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ABSTRACT

Activating receptor tyrosine kinase RET (rarranged during transfection) gene alterations have been identified as
oncogenic in multiple malignancies. RET gene rearrangements retaining the kinase domain are oncogenic
drivers in papillary thyroid cancer, non–small-cell lung cancer, and multiple other cancers. Activating RET
mutations are associated with different phenotypes of multiple endocrine neoplasia type 2 as well as sporadic
medullary thyroid cancer. RET is thus an attractive therapeutic target in patients with oncogenic RET alterations.
Multikinase inhibitors with RET inhibitor activity, such as cabozantinib and vandetanib, have been explored in
the clinic for tumors with activating RET gene alterations with modest clinical efficacy. As a result of the
nonselective nature of thesemultikinase inhibitors, patients had off-target adverse effects, such as hypertension,
rash, and diarrhea. This resulted in a narrow therapeutic index of these drugs, limiting ability to dose for clinically
effective RET inhibition. In contrast, the recent discovery and clinical validation of highly potent selective RET
inhibitors (pralsetinib, selpercatinib) demonstrating improved efficacy and a more favorable toxicity profile are
poised to alter the landscape of RET-dependent cancers. These drugs appear to have broad activity across
tumors with activating RET alterations. The mechanisms of resistance to these next-generation highly selective
RET inhibitors is an area of active research. This review summarizes the current understanding of RET al-
terations and the state-of-the-art treatment strategies in RET-dependent cancers.
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INTRODUCTION

The receptor tyrosine kinase RET (rearranged during
transfection) plays an important role in the develop-
ment of the kidney and nervous system. When aber-
rantly activated, it can act as an oncogene in multiple
malignancies. RET fusions retaining the kinase do-
main are drivers of papillary thyroid cancer (PTC),
non–small-cell lung cancer (NSCLC), and other can-
cers. Activating RET mutations are associated with
different phenotypes of multiple endocrine neoplasia
type 2 (MEN2) as well as sporadic medullary thyroid
cancer (MTC). RET is thus an attractive therapeutic
target in patients with oncogenic RET alterations.
Multikinase inhibitors (MKIs) with ancillary RET in-
hibitor activity, such cabozantinib and vandetanib,
have been explored in the clinic for RET-driven can-
cers. The off-target adverse effects, such as hyper-
tension and diarrhea, have restricted the dosing that
patients can tolerate. In contrast, the recent discovery
and clinical validation of next-generation highly potent
selective RET inhibitors (pralsetinib/BLU667, selper-
catinib/LOXO-292) demonstrating improved efficacy
and a more favorable toxicity profile in registrational
clinical trials are poised to alter the landscape of RET-
altered cancers.1,2 This review summarizes the current
understanding of RET alterations and the state-of-the-
art treatment strategies in RET-aberrant cancers.

THE FUNCTION AND BIOLOGY OF RET

The proto-oncogene RET was identified in 1985 by
Takahashi et al3 as a transforming gene that was
derived by DNA rearrangement during transfection of
mouse NIH3T3 cells with human lymphoma DNA.
Therefore, it was designated RET. The RET gene
encodes a receptor tyrosine kinase (RTK) that contains
a large extracellular domain, a transmembrane do-
main, and an intracellular tyrosine kinase domain
(Fig 1).4 Studies from molecular modeling,5 electron
microscopy, and small-angle x-ray scattering6 revealed
the structure of the RET extracellular domain, including
four cadherin-like domains (CLD1-4), a calcium-binding
side between CLD2 and CLD3, and a conserved
cysteine-rich domain. After the transmembrane domain,
a juxtamembrane segment lies at the beginning of the
intracellular portion of RET and immediately adjacent to
the kinase domain. The C-terminal tail of RET has two
major forms, which diverge after residue G1063 because
of alternative splicing—a short 9–amino acid one (RET9)
and a long 51–amino acid one (RET51). Although the
two isoforms share a largely common sequence and are
coexpressed in many tissues, numerous studies have
demonstrated differences in their temporal and spatial
regulation of expression, cellular localization and traf-
ficking, and biologic functions. It has been suggested
that RET51 is the more prominent isoform in tumors.
RET51 is more effective than RET9 at promoting cell
proliferation, migration, and anchorage-independent
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growth.7,8 In addition, the transcripts of RET51 are more
abundant than those of RET9 in some MEN2 tumors.9 In
breast cancer cells, estrogen upregulates RET51 at a much
greater level compared with RET9.10 RET51 expression is
increased in 4 out of 5 stage IIB pancreatic tumors.11

The RET ligands include glial cell line–derived neurotrophic
factor (GDNF), neurturin, artemin, and persephin, all be-
longing to the GDNF family ligands (GFLs).12 These GFLs
do not directly bind to RET and instead bind to GDNF family
receptor-a (GFRa) coreceptors, which in turn recruit RET
for dimerization.6,13 Subsequently, autophosphorylation
on intracellular tyrosine residues of RET creates docking
sites for downstream signaling adaptors, leading to the
activation of multiple pathways (Fig 1).12 Phosphorylated
Y1062 is the key docking site for several adaptor proteins,
which can activate pathways such as Ras/MAPK, PI3K/AKT,
and JNK.14,15 Autophosphorylation of Y1096 on the RET51
isoform (and not on RET9) also contributes to the activation
of Ras/MAPK and PI3K/AKT pathways.14,16 Among other
autophosphorylation sites, Y1015 is involved in the activation
of protein kinase C signaling through binding of phospho-
lipase Cg (PLCg).17 Y752 and Y928 are STAT3 docking
sites.18 Phosphorylated Y687 and Y981 bind to tyrosine
phosphatase Shp2 and Src kinase, respectively.19,20

In addition, RET plays important roles in the development of
the kidney and nervous system. Studies in mouse models
have shown that RET and the phosphorylation of its docking
sites are critical for the growth and branching morpho-
genesis of ureteric bud cells from the metanephric
mesenchyme.21,22 RET is expressed in neural crest cells
and required for the proliferation, differentiation, and survival of

these cells.21,23 RET is also involved in motoneuron survival
and connectivity.24,25 In addition, RET signaling contributes
to the regulation and function of hematopoietic cells and
spermatogenesis.26,27 Loss-of-function RET mutations in
humans have been linked to Hirschsprung disease, con-
genital anomalies of kidney or urinary tract, and congenital
central hypoventilation syndrome.28

ONCOGENIC ACTIVATION OF RET

RET is activated in cancer mainly through chromosomal
rearrangements that generate fusion genes containing the
kinase domain of RET (Fig 2) and gain-of-function mis-
sense mutations in both the extracellular and cytoplasmic
regions of RET protein (Fig 3). Apart from these mecha-
nisms, the increased expression level of wild-type RET has
been linked to the pathogenesis of several cancer types.28

RET REARRANGEMENTS

Somatically occurring RET rearrangements involve the 39
sequence of RET that encodes the kinase domain and the
59 sequence of other partner genes. The chromosomal
breakpoints of RET often occur within intron 11 and lead to
fusions with only the cytoplasmic portion of RET. Occa-
sionally, some breakpoints occur within introns 7 and
10, creating chimeric proteins containing the RET trans-
membrane domain (Fig 2).29 To date, more than 35 genes
have been reported to form fusion genes with RET (Fig 2).
These partner genes can contribute dimerization domains
to the fusion proteins, such as the coiled-coil domain,30 the
Lis1 homology (LisH) domain,31 and the sterile a motif
(SAM) domain.32
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FIG 1. Schematic illustration of RET protein, its ligands, receptors, and signaling pathways. The numbers above the RET domains indicate amino acid
positions. The main RET phosphorylation sites are listed together with their binding proteins. CLD, cadherin-like domain; CRD, cysteine-rich domain;
GFLs, GDNF-family ligands; GFRa, GDNF-family receptor-a; JM, juxtamembrane; TM, transmembrane domain.
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RET fusions can activate downstream pathways through
multiple means. By fusing to the kinase domain of RET,
dimerization domains can mediate ligand-independent
constitutive activation of the RET kinase33,34 (Fig 4). RET
fusions can increase the expression of RET, as illustrated by
Kohno et al,35 who showed that KIF5B-RET resulted in 2- to
30-fold higher transcription of RET than normal lung tis-
sues. Altered function of the fusion partner may be another
factor. One such partner, PRKAR1A, is a tumor suppressor
gene that is inactivated in patients with Carney complex,
an autosomal dominant syndrome with an increased risk
of developing several types of tumors.36 PRKAR1A-RET
fusion may not only activate RET but also inactivate
PRKAR1A.

The molecular mechanism responsible for RET rear-
rangements is believed to be the unfaithful repair of
DNA double-strand breaks through nonhomologous end

joining, break-induced replication, and other complex
rearrangements.29,37 Various noncellular and cellular causes
can result in double-strand breaks, such as ionizing radiation
and fragile site induction by genotoxic chemicals or stress
factors (for instance, hypoxia and replication stress).38,39

In human cancers, RET rearrangement was initially iden-
tified in PTC in 1987.40 Recent clinical data suggest that
RET rearrangements occur in up to 10%-20% of PTCs. The
prevalence of RET rearrangements is much higher in
radiation-induced PTCs. As an example, these alterations
have been reported in approximately 50%-80% of patients
with PTC who were previously exposed to the Chernobyl
radioactive fallout or the atomic bomb in Japan.41-44 These
rearrangements are more frequently identified in children
than in adults with PTC, at least partially because of the
high proliferation rate of thyroid follicular cells in children
and consequently the increased susceptibility of these cells
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FIG 2. RET fusion. The chromosomal breakpoints of the RET gene often happen within intron 11 and occasionally in introns 7 and 10. The numbers
indicate exons in RET gene. The resulted fusion protein contains the dimerization domain (green) from the fusion partner and the kinase domain (blue) of
RET, or both the transmembrane (TM) domain (dark gray) and the kinase domain of RET. Reported fusion partner genes are listed in the figure.
Frequencies are derived from COSMIC database. NSCLC, non–small-cell lung cancer; PTC, papillary thyroid cancer.
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to DNA damage compared with adult cells. Among patients
with PTC, CCDC6-RET and NCOA4-RET are the most
common RET rearrangements,30 which are generated via
reciprocal or nonreciprocal paracentric inversion on the
long arm of chromosomal 10.45,46 RET rearrangements and
BRAFmutations are largely mutually exclusive in PTCs.47,48

In addition to PTC, RET rearrangements have been iden-
tified at much lower prevalence in other types of thyroid
cancer, such as anaplastic thyroid carcinoma, follicular
thyroid carcinoma, and medullary thyroid carcinoma.49-51

During the past decades, RET rearrangements have been
reported in a number of other cancer types, including, but
not limited to, NSCLC,52 Spitz tumors and spitzoid mela-
nomas,53 chronic myelomonocytic leukemia,54 colorectal
cancer,55 and breast cancer.56 RET rearrangements are
detected in approximately 1%-2% of NSCLCs, particularly
adenocarcinoma.57,58 The patients with NSCLC with these
rearrangements have shown unique clinicopathologic
characteristics: they were relatively younger (# 60 years),
had more poorly differentiated tumors, and had minimal or
no prior history of smoking.59,60 RET fusions have been
reported as a mechanism of acquired resistance to osi-
mertinib in EGFR-mutant NSCLC.61 It has been shown
clinically that this bypass track can be overcome by
combining RET inhibitor to EGFR inhibitor. Interestingly,

patients with RET-rearranged lung cancer generally showed
low levels of PD-L1 expression and low tumor mutational
burden and had poor outcome on immunotherapies.62

Another study demonstrated that RET-altered patients had
shorter median time to progression with immune checkpoint
inhibitors (ICIs) compared with non-ICI therapies.63

Despite that there is no universally accepted standard to
detectRET rearrangements, several methods are used in the
clinic. In general, immunohistochemistry is not reliable for
the detection of RET rearrangement. Reverse transcription
polymerase chain reaction (RT-PCR) and fluorescence in
situ hybridization (FISH) are both sensitive and effective
approaches. However, RT-PCR is insufficient to detect novel
fusion partners or isoforms. FISH with dual color break-apart
probe is unable to identify the specific fusion partner. Fur-
thermore, it has been shown that next-generation se-
quencing (NGS) can simultaneously detect both gene
fusions and somatic mutations in tumor samples. Targeted
RNAseq is also complementary to DNA-based sequencing,
as demonstrated by its ability to identify actionable alterations
that were missed by DNA-based sequencing.64

ACTIVATING MUTATIONS OF RET

More than 60 activating RETmutations have been reported
to date. Heritable activating mutations have been extensively
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studied in the MEN2 syndrome, an autosomal dominant
multitumor syndrome that is characterized by a high risk of
developing MTC (Fig 3).65 With novel detection technolo-
gies, especially NGS, somatic activating mutations of RET
have been discovered in multiple other cancer types.66 These
studies are outlined and discussed in the following sections.

GERMLINE MUTATIONS

Germline activating RET mutations are pathognomonic in
MEN2 (Table 3), which can be classified into three sub-
types depending on clinical features—MEN2A, MEN2B,
and familial medullary thyroid carcinoma (FMTC). MEN2A
is the most common subtype and affects 60%-90% of
MEN2 families. MEN2A is characterized by MTC in all
patients, pheochromocytoma in approximately 50% of
patients, and hyperparathyroidism and/or lichen planus
amyloidosis in up to one-third of patients.67,68 MEN2B
makes up 5% of MEN2 cases. It is the most aggressive

subtype and has a very early onset of MTC.69 In addition to
MTC (100% of cases) and pheochromocytoma (50% of
cases), patients with this subtype have no hyperparathy-
roidism but present with extraendocrine features, including
intestinal and mucosal ganglioneuromatosis, marfanoid
habitus, skeletal abnormalities, and delayed puberty.70,71

FMTC is the most indolent subtype of MEN2 and is
characterized by a later onset and MTC being the only
consistent clinical feature.69 It has been proposed that FMTC
should be considered a variant of MEN2A.72 Notably, pro-
phylactic thyroidectomy on the basis of genetic screening of
germline RET mutations has shown significant impact on
MEN2 families.73,74

Mutation hotspots in patients withMEN2A cluster within the
cysteine-rich domain of RET extracellular region. Sub-
stitutions at these cysteines (codons 609, 611, 618, and
620 in exon 10, and 630 and 634 in exon 11) occur in
. 95% of patients with the MEN2A subtype. Particularly,
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FIG 4. Oncogenic RET signaling and RET inhibitors.

TABLE 1. Mechanisms of Acquired Resistance to Multikinase Inhibitors and Selective RET Inhibitors
Mechanism Alteration/Pathway Source Resistant to Sensitive to

Secondary RET alterations RET S904F Patient sample Vandetanib —

RET I788N Preclinical model AD80, cabozantinib Ponatinib

RET V804L/M Preclinical model Cabozantinib, vandetanib BLU-667, LOXO-292

Patient sample

RET G810A Preclinical model Vandetanib Ponatinib, lenvatinib

RET G810S and G810R Preclinical model BLU-667, LOXO-292 TPX-0046

Acquired non-RET alterations MDM2 amplification Patient sample Cabozantinib AMG232, RG7388; AMG232 +
cabozantinib (all preclinical)

NRAS Q61K Preclinical model Ponatinib trametinib

Activation of bypass signaling Activation of MAPK Preclinical model AD80 AD80 + trametinib

Activation of EGFR Preclinical model Sunitinib, E7080,
vandetanib (partial),
sorafenib (partial)

Gefitinib or cetuximab +
sunitinib, E7080, vandetanib,
or sorafenib

Activation of EGFR and AXL Preclinical model Ponatinib, cabozantinib,
alectinib

Afatinib, gefitinib; afatinib +
cabozantinib or foretinib
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patients with C634 mutations account for approximately
85% of the population.75,76 These mutations replace cys-
teines with other amino acids and decrease the formation
of intramolecular disulfide bonds, promoting the formation
of RET homodimer through intermolecular disulfide bonds
between RET monomers. This results in ligand-independent
constitutive activation of RET.77,78

The MEN2B subtype is associated with the kinase domain
mutation M918T in . 95% of cases.75,79 Other mutations
identified in patients with MEN2B include A883F, which is
also located in the kinase domain of RET,79 and co-occurring
RET mutations involving V804M.80 These mutations can
change protein conformation, increase ATP binding affinity,
and decrease autoinhibition.77,81 A883F is linked with less-
aggressive phenotypes compared with M918T.82

Mutations of FMTC are found at not only the cysteine
residues but also other noncysteine residues in both the
extracellular and intracellular regions, such as G533, E768,
L790, V804, and S891.83,84 In addition, cysteine sub-
stitutions occur at different frequencies in FMTC, with
a much lower frequency of C634 substitutions and higher
frequencies of substitutions from other cysteines.75 Fur-
thermore, many of the noncysteine mutations are also
identified in patients with MEN2A.85

However, these genotype-phenotype correlations can be
confounded in some cases. For example, the poly-
morphism RET G691S, a modifying variant, enhances the
oncogenic activity of RET S891A in vitro. Patients with
FMTC harboring both variants demonstrated a trend toward
an earlier age of diagnosis.86 G691S is associated with
earlier onset of sporadic MTC.87 Several tandem mutations
involving V804M, such as V804M and Q781R, are found in
patients with an MEN2B phenotype instead of FMTC and
MEN2A.80 Although two homozygous carriers were di-
agnosed with MTC, other family members bearing het-
erozygous A883T were not affected.88 Moreover, a few
cysteine variants at codons 609, 611, 618, and 620 can
cause both gain-of-function and loss-of-function in differ-
ent tissues, thereby resulting in cosegregation of Hirsch-
sprung disease and MEN2 in some families.89-91

SOMATIC MUTATIONS

Point mutations, small deletions, and/or insertions involving
RET have been reported in both sporadic and familial MTC.
Somatic RET mutation is a hallmark of sporadic MTC.92,93

Among these alterations, M918T is the most frequently
reported mutation (Table 4). Other less-common somatic
mutations occur at residues C634, A883, C630, and
others.94 RET mutations have been found to be mutually
exclusive with HRAS and KRASmutations in sporadicMTC,
indicating RAS activation as a driver pathway in MTC.95,96 A
recent study used NGS to identify RETmutations in tumors
from 4,871 patients.66 The result showed that somatic RET
point mutations exist in a variety of cancer types, such
as breast carcinoma (C634R), colorectal adenocarcinoma
(V804M), GI stromal tumor (V804M), Merkel cell carci-
noma (E511K), and paraganglioma (M918T). However, the
functional effect of RET mutations on tumorigenesis in
these tumors remains to be elucidated.

TARGETED THERAPIES FOR RET

MKIs

As a tyrosine kinase receptor, RET shares similarities in the
sequence and structure of the kinase domain with other
tyrosine kinases.65,97 Many MKIs have demonstrated ac-
tivity against RET, such as cabozantinib, lenvatinib, sor-
afenib, vandetanib, ponatinib, sunitinib, and alectinib.28,98

Among them, cabozantinib and vandetanib are approved
for advanced MTC by both the US Food and Drug Ad-
ministration (FDA) and the European Medicines Agency
(EMA), although RETmutation is not required as a selective
biomarker. Data from the phase III trial of vandetanib in
advanced MTC (ZETA; ClinicalTrials.gov identifier:
NCT00410761)99 showed a predicted median progression-
free survival (PFS) of 30.5 months by the Weibull model in
the treatment group and a median PFS of 19.3 months in
the placebo group. The objective response rates (ORRs)
were 45% in the treatment group and 13% in the placebo
group. Although the subgroup analysis based on RET
mutation status is inconclusive, the patients whose cancers
harbored a RET M918T mutation had a higher ORR with

TABLE 2. Preclinical and Clinical Activity, IC50, and Efficacy of Multikinase Versus Selective RET Inhibitors

Drug

IC50, nM

RET ORR (%)

WT M918T V804L V804M CCDC6-RET VEGFR2 Thyroid NSCLC

Vandetanib 4 7 3,597 726 20 4 45 (MTC) 18, 53 (Japan)

Cabozantinib 11 8 45 162 34 2 28 (MTC) 28

LOXO-292 0.4 0.7 — 0.8 — 100 62 (RET fusion-positive thyroid) 68

56 (MTC)

BLU-667 0.4 0.4 0.3 0.4 0.4 35 56 (MTC) 58

Abbreviations: IC50, half maximal inhibitory concentration; MTC, medullary thyroid cancer; NSCLC, non–small-cell lung cancer; ORR,
objective response rates; WT, wild type.
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vandetanib than M918T-negative patients. In the phase III
trial of cabozantinib (EXAM; ClinicalTrials.gov identifier:
NCT00704730), the median PFS/ORR for cabozantinib
and placebo are 11.2 months/28% and 4 months/0%,
respectively.100 Retrospective analysis of the EXAM trial
demonstrated that cabozantinib had increased benefit in
patients with RET M918T than in patients without this
mutation in term of PFS, ORR, and overall survival
(OS).101,102 However, cabozantinib was favored for both OS
and PFS regardless of RET mutation status.102 The clinical
benefits were also not associated with RET mutation status
in a phase II trial of lenvatinib in MTC.103 The ongoing
observation study evaluating vandetanib in patients with
MTC with or without RET mutations (ClincalTrials.gov
identifier: NCT01945762), as well as future RET-directed
prospective trials, will further shed light on this matter.

Despite the fact that lenvatinib and sorafenib are approved
for radioactive iodine-refractory differentiated thyroid can-
cer (DTC) by the FDA and EMA, neither phase III trial that
led to their approval investigated the correlation between
RET rearrangement and the efficacy of the drugs.104,105

Several phase II trials involving sunitinib,106 dovitinib,107

and vandetanib108 in DTC did not explore this drug-
biomarker relationship.

Nevertheless, insights have been provided by an array of
clinical studies in RET-rearranged NSCLC. A phase II trial
evaluating cabozantinib was conducted in patients with
NSCLC with RET rearrangement. The ORR, median PFS,
and OS among 25 patients were 28%, 5.5 months, and 9.9
months.109 Vandetanib was subsequently assessed in
a Japanese phase II trial (LURET) and a Korean phase II
trial on NSCLC with RET rearrangements. The analysis of
the LURET trial showed 53% ORR, median PFS of 4.7
months, and median OS of 11.1 months.110 Even though
the 18% ORR of a separate South Korean phase II trial was
lower than that in LURET, the median PFS (4.5 months)
and median OS (11.6 months) were comparable with
LURET trial.111 In another phase II trial testing lenvatinib,
the ORR was 16% and the median PFS was 7.3 months.112

In addition, a global registry of RET-rearranged NSCLC
(GLORY) retrospectively reported 53 patients who were
treated with one or more MKIs. Within these patients, the
ORRs for cabozantinib, vandetanib, and sunitinib were
37%, 18%, and 22%, respectively. The median PFS and
median OS were 2.3 months and 6.8 months.113 A recent
phase I/Ib trial with RXDX-105 in RET fusion-positive
NSCLC showed that the ORR with RXDX-105 was
19%.114 Interestingly, what was observed was a striking
divergence in response to RXDX-105 dependent on the
gene fusion partner, as responses were observed only in
non-KIF5B upstream partners.114 The analysis of fusion
partner in the aforementioned trials of cabozantinib, vande-
tanib, and RXDX-105 suggested a tendency toward worse
clinical outcomes (ORR and PFS) in cancers with KIF5B-RET
comparedwith cancers with other knownRET fusion.109-111,115

Additional investigation is needed, considering that the
sample sizes were small in these trials, and the results of
GLORY study showed no significantly different clinical
outcomes in patients bearing different RET fusions.113

Although the data ofMKIs have demonstrated their clinical utility
in RET-driven cancers, the ORRs (16%-53%) and median
PFSs (2.3-7.3 months) in RET-rearranged NSCLCs are lower
than those seen in other patients with oncogene-driven NSCLC
receiving targeted tyrosine kinase inhibitors. As an example,
patients with NSCLC with EGFRmutation, ALK rearrangement,
or ROS1 rearrangement have ORRs of 56%-85% and median
PFS of 8-34.8 months with targeted therapies.116-119 The ret-
rospective analysis of the EXAM trial showed no difference of OS
between cabozantinib and placebo.102 The achievement of
complete response was also rarely reported in all clinical trials
mentioned previously. The limited efficacy of MKIs on RET-
driven cancers can be at least partially attributed to the off-target
activity of these inhibitors. MKIs can usually target a wide
spectrum of kinases besides RET. Particularly, because of the
high homology of the kinase domain between RET and
VEGFR2, many VEGFR2 inhibitors can also target RET with
a lower affinity, such as cabozantinib, vandetanib, and
lenvatinib.85,120-122 The off-target effect contributes to inferior
inhibition of RET, as well as drug-related toxicities, which can
in turn result in drug discontinuation and dose reduction,
further compromising the efficacy of these drugs. Moreover,
an inhibitormay have different efficacies against variousRET
mutations and RET rearrangements with different fusion
partners. For instance, cabozantinib and vandetanib can
effectively block the activity of RET M918T but fail to inhibit
the gatekeepermutationsRET V804M and V804L.123,124 The
two gatekeeper mutations and other mutations like S904F,
G810R, and I788Nmay emerge asmechanisms of acquired
resistance to the MKIs.125-127 In addition, acquired genomic
changes in other genes, such as NRAS Q61K or MDM2
amplification, can lead to resistance to these inhibitors.128,129

Another mechanism of acquired resistance is through the
activation of bypass signaling, including MAPK, EGFR, and
AXL pathways.125,128,130

The complexity of genomic changes in RET-driven cancers
also underlines the need for combination therapies. Acti-
vation or genomic alterations of other pathways can co-
occur with RET rearrangement. For example, concomitant
activating BRAF, KRAS, and NRAS mutations have been
identified in some RET-rearranged PTCs.131,132 AKT2
amplification was found to coexist with RET rearrangement
in a patient with lung adenocarcinoma, who responded
to the combination of vandetanib and everolimus with
a decrease in the intracranial disease burden.133 This
combination is being tested in a phase I trial (Clincal-
Trials.gov identifier: NCT01582191) and has demonstrated
antitumor activity in patients with both RET fusions and
mutations.134,135 In the aforementioned treatment-activated
bypass signaling, preclinical data have shown that the
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resistant cells remain sensitive to strategies combining
MKIs and MEK or EGFR inhibitors.125,128,130

Selective RET Inhibitors

In recent years, selective RET inhibitors have been de-
veloped to achieve higher potency and less toxicity. Two
such next-generation small molecular inhibitors, namely
pralsetinib (BLU-667) and selpercatinib (LOXO-292), have
been rapidly translated to clinic1,2 (Table 1). The functional
studies using various in vitro and in vivo models showed
that both inhibitors are capable of inhibiting a wide
spectrum of RET alterations, including M918T, C634W,
gatekeeper mutations V804L and V804M, KIF5B-RET, and
CCDC6-RET (Table 1).1,2 Importantly, LOXO-292 and BLU-
667 have much less activity against VEGFR2 relative toRET
alterations, potentially reducing toxicity.

The preliminary results from early-phase trials have dem-
onstrated such superior activity and tolerability with these
agents compared with MKIs that these agents have re-
ceived US FDA breakthrough designation and are on track
for registration (Table 1). In the recent update of the ARROW
trial (ClincalTrials.gov identifier: NCT03037385), pralsetinib
showed an ORR of 56% in RET-mutated MTC136,137 and
58% in RET fusion-positive NSCLC.138 Among these pa-
tients, the ORRs were 60% in patients with post-platinum
RET-fusion NSCLC and 63% in patients with RET-mutant
MTC previously treatedwithMKIs treated at the 400-mg daily
dosing. According to the registrational dataset analysis of
a phase I/II LIBRETTO-001 trial (ClincalTrials.gov identifier:
NCT03157128), selpercatinib showed an ORR of 68% in
RET fusion-positive NSCLC (85% in treatment-naı̈ve pa-
tients), 62% in RET fusion-positive thyroid cancer, and 56%
in RET-mutant MTC (59% in cabozantinib/vandetanib-naı̈ve
patients).2,139-141 The median duration of response (DOR)
and PFS were 20.3months and 18.4months in patients with
RET fusion-positive NSCLC but not reached in treatment-
naı̈ve patients with NSCLC.140 The median DOR and PFS
were not reached in RET-mutant MTC and RET fusion-
positive thyroid cancer.141 In the both trials, most adverse
events were grade 1 or 2, and only a few patients had
treatment discontinued because of treatment-related
adverse events (1.7% in NCT03157128, 2.9% in
NCT03037385).136,138,140,141 This favorably compares with
other MKIs such as vandetanib, cabozantinib, or lenvatinib
that showed a drug discontinuation rate of 21%, 8%, and

20%, respectively. Notably, antitumor activity was observed in
patients with brain metastases for both the selective RET
inhibitors.139-142

The “RET+ all-comer basket arms” of these clinical trials
are in active recruitment, and results from these arms may
inform tissue-agnostic development potential. Beyond
lung cancers and thyroid cancers, clinical activity of se-
lective RET inhibitors has been seen in patients with GI
cancers (pancreatic cancer and intrahepatic bile duct
carcinoma)138,139 as well as in pediatric patients with RET-
altered cancers (PTC, MEN2A MTC, infantile myofibroma,
congenital mesoblastic nephroma, infantile fibrosarcoma,
and lipofibromatosis).143

Newer Selective RET Inhibitors and Acquired

Mechanisms of Resistance

Several other selective RET inhibitors, BOS172738, TPX-
0046, and TAS0953/HM06, are also in early stages of
development.144,145 In addition to the RET V804M gate-
keeper mutation, several other acquired resistance mech-
anisms to MKIs have been reported (Table 2). Resistance
mechanisms to selective RET remains an active area of
research. A preclinical study has shown that novel solvent
front mutation KIF5B-RET G810Rmay develop as on-target
resistance to selpercatinib and pralsetinib but remains
sensitive to another selective RET inhibitor, TPX-0046,
designed with a macrocyclic structure targeting active RET
confirmation (Table 2).145

In conclusion, the role of RET activating mutations and
rearrangements in tumorigenesis has been established
during the past three decades. There is considerable ex-
citement in the RET field with the advent of highly selective
RET inhibitors. The next-generation selective RET inhibitors
selpercatinib and pralsetinib have demonstrated remark-
able clinical efficacy and safety in preliminary phase I/II
trials. Both agents have received US FDA breakthrough
designations. Unanswered questions remain as to what the
PFS, DOR, and OS with these agents would be; if all RET-
aberrant cancers respond similarly for a tissue-agnostic
indication; and what the acquired resistance mechanisms
to the potent RET inhibitors would be. In addition, com-
bination therapies exploring the concurrent inhibition of
RET and related pathways will provide insight into the
clinical utility of such strategies.
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