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Abstract

Plant innate immunity mostly relies on nucleotide-binding (NB) and leucine-rich repeat (LRR) intracellular receptors to detect

pathogen-derived molecules and to induce defense responses. A multitaxa reconstruction of NB-domain associations allowed us

to identify the first NB–LRR arrangement in the Chlorophyta division of the Viridiplantae. Our analysis points out that the basic NOD-

like receptor (NLR) unit emerged in Chlorophytes by horizontal transfer and its diversification started from Toll/interleukin receptor–

NB–LRRmembers.Theoperon-basedgenomic structureofChromochloris zofingiensisNLRcopies suggestsa functionaloriginofNLR

clusters. Moreover, the transmembrane signatures of NLR proteins in the unicellular alga C. zofingiensis support the hypothesis that

the NLR-based immunity system of plants derives from a cell-surface surveillance system. Taken together, our findings suggest that

NLRs originated in unicellular algae and may have a common origin with cell-surface LRR receptors.

Key words: R gene, NLR gene family, Viridiplantae, phylogenetic analysis, horizontal gene transfer, supra domain.

Introduction

Plant innate immunity relies on two protection levels to pre-

vent or control pathogen infections and requires pathogen

detection by either cell surface or intracellular receptors

(Dangl and Jones 2001; Jones and Dangl 2006; Jones et al.

2016). Cell-surface receptors include receptor-like kinases

(RLKs) and receptor-like proteins (RLPs) that are able to detect

pathogen-associated molecular patterns. Intracellular im-

mune receptors detect specific effector molecules or their

intermediates on host cell components (Andolfo and

Ercolano 2015). These intracellular immune receptors, often

encoded by R (resistance) genes, are modular proteins that

typically carry a nucleotide-binding (NB) and a leucine-rich

repeat domain (LRR) referred to also as NOD-like receptors

(NLRs) (Jones et al. 2016).

NLR proteins are grouped into two classes: Toll/interleukin

receptor (TIR)–NB–LRR proteins (TNLs) and non-TNL proteins.

These two subfamilies are distinguished by the presence/ab-

sence of an N-terminal signaling domain, namely the TIR/

resistance protein domain (McHale et al. 2006; Shao et al.

2016). Several non-TNL proteins possess a coiled coil (CC)

motif at the N-terminus and are thus known as CC–NB–LRR

proteins (CNLs) (Xiao et al. 2001). CNLs that contain an EDVID

amino-acid motif (CEDVIDNLs) or an RPW8-like protein

(CRPW8NLs, CCRPW8-NB–LRR) were also found (Xiao et al.

2001; Shao et al. 2014). In addition, the identification of

NLRs with integrated domains (IDs) that resemble pathogen

targets may suggest a convergent functional evolution (Cesari

et al. 2014; Sarris et al. 2016; Urbach and Ausubel 2017).

Recently, it was proposed that NLRs originated in green

algae chlorophytes (Shao et al. 2019) but it remains unclear

how the NB–LRR architecture was generated and scattered

across diverging lineages. Genomic sequence comparisons

across species have shown that proteins with the NB, LRR,

and TIR domains are widespread and that gene structure and

composition have been modified through time (Yue et al.

2012). Events such as gene fusion and fission play important

roles in generating novel genes and functions, as they are the
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primary source of new domain architectures and biological

innovation (Wu et al. 2012). Protein modifications occur pri-

marily to alter the molecule conformation to modulate protein

interactions, activity and stability (Bourne 1988; Müller 2018).

Eukaryotic algae evolved independently in different lineages

(Blaby-Haas and Merchant 2019). Phylogenetic analyses have

established that a primary endosymbiosis between a photosyn-

thetic cyanobacterium and a colorless eukaryotic host gave rise

to a plastid-harboring protist ancestor that, in turn, gave rise to

Rhodophyta, Glaucophyta, Chlorophyta, and Streptophyta

(Qiu et al. 2013; Jill Harrison 2017). Thus, the analysis of algal

genomes offers a valuable opportunity to follow the modular

organization assembled from a toolkit of domains such as NB,

LRR, and TIR. Several studies on the defense responses of algae

showed that they possess a cell surveillance system based on

sensor and signal transduction components. The molecular ba-

sis of pathogen recognition in algae is strikingly similar to those

found in animals and land plants, suggesting that the under-

lying biochemical machinery arose early in evolution (Potin

et al. 2002). In addition, some unicellular algae, including chlor-

ophytes, show characteristic apoptotic-like features (Segovia

et al. 2003). The intimate contact occurring in parasitism, sym-

biosis, pathogen, epiphyte, and entophyte interactions could

promote horizontal gene transfer (HGT), a major driver of ge-

nome evolution in bacteria and archaea, but more rare in eu-

karyote genomes (Gao et al. 2014; Soucy et al. 2015).

However, in few cases do HGT events appear to be important

for promoting genomic variation and biological innovation also

in plants (Rinerson et al. 2016). To date, no HGT events involv-

ing protists have been reported for NLR loci. Such gaps in

knowledge were the main drivers of our research.

In this study, we performed comparative genomic and phy-

logenetic analyses of NB-encoding genes with an emphasis on

the basal-branching of Viridiplantae to follow domain reor-

ganizations and to identify the first NB and LRR domain asso-

ciations. Chlorophyte genomes were further investigated to

evaluate the hypothesis that a horizontal transfer event in-

duced the assembly of the basic NLR protein unit (NB–LRR).

We looked into the structural and functional organization of

the model green alga genome (Chromochloris zofingiensis) to

obtain new insights into the evolution of immune receptors.

Our findings provide an innovative evolutionary vision on the

origin and diversification of LRR immune receptors in plants.

Materials and Methods

Taxa Data Set

To investigate the evolution of domain combinations of NLR

genes along the plant life tree, we used the genome sequen-

ces of 41 taxa (24 bacteria, 1 archaeon, 1 glaucophyte, 1

phaeophyte, 2 rhodophytes, 8 chlorophytes, 1 charophyte,

1 liverwort, 1 moss, and 1 lycopodiophyte). The strain

Chromochloris zofingiensis (Dönz) Fu�c�ıkov�a et Lewis (ACUF

684) and Klebsormidium flaccidum (Kützing) Silva P.C.,

Mattox K.R. et Blackwell W.H. (ACUF 065) were in the algal

collection of the Department of Biology, University Federico II

of Naples (www.acuf.net). The analyzed proteomes were

downloaded from Phytozome v11 (http://phytozome.jgi.

doe.gov/) and other genome websites (supplementary table

1, Supplementary Material online). The differences in genome

assembly can affect the number of NB genes identified. To

reduce the risk of bias in NLR identification, gene annotations

were conducted on the soft-masked versions of the most re-

cent genome assemblies (Bayer et al. 2018). However, small

inaccuracies could still be present in performed annotations.

Moreover, for comparative purposes we also added 70 well-

characterized cloned reference R genes identified in 20 tra-

cheophyte species (vascular plants) retrieved from PRGdb

(Osuna-Cruz et al. 2018) (supplementary table 2,

Supplementary Material online). The selected organisms cov-

ered a broad diversity of taxonomic groups tracing the evolu-

tion of higher plants (supplementary table 3, Supplementary

Material online).

Identification of NB-Encoding Genes

To identify NB-encoding genes, we scanned the proteome

data set (supplementary table 2, Supplementary Material on-

line) with the hidden Markov model of the NB domain (Pfam:

PF00931) using HMMER v3.0 with default parameters (Finn

et al. 2011). The seed sequence of the NB domain was re-

trieved from Pfam v31.0 (http://pfam.xfam.org). In addition, a

local BlastP search was performed by mapping R-gene motif

sequences to our protein data set (E value cutoff of 10).

The protein domain architecture of HMMER and BLAST

outputs was annotated using InterProScan (Jones et al.

2014) and conserved domain search (Marchler-Bauer et al.

2017) with default parameters.

BLASTp analyses, performed to identify the best hits and

the R-gene homologs of green algae NLR-like genes, were

implemented on the NCBI BLASTp website (http://blast.ncbi.

nlm.nih.gov), using default settings (supplementary table 3,

Supplementary Material online).

Sequence Alignments

Multiple alignment using fast Fourier transform v6.814b

(Katoh et al. 2002) was employed to align the NB Pfam do-

main of annotated proteins of NB-encoding genes, using the

L-INS-i algorithm. Green algae full-length protein sequences

were aligned with ClustalW (Larkin et al. 2007), using default

settings.

Multiple alignment of conserved genomic sequence with

rearrangements software package v2.2.0 (http://asap.ahabs.

wisc.edu/mauve) was used to align homologous regions

among two or more genome sequences. To determine a rea-

sonable value for the minimum locally collinear block (LCB)

weight, we performed an initial alignment with the default

value and then used the LCB weight slider in the mauve GUI
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to eliminate all spurious rearrangements. The sequences were

then realigned using the manually determined weight value.

Phylogenetic Analysis

Evolutionary analyses were conducted using MEGA7 (Kumar

et al. 2016). The phylogenetic relationships of annotated pro-

teins from NB-encoding genes (fig. 1), green algae NLR-like

proteins (fig. 2A), N-terminal regions (sequence upstream of

the NB Pfam domain) of green algae NLR-like and plant R

proteins, and C-terminal regions (LRR Superfamily domain:

SSF52058) of green algae NLR-like proteins were inferred us-

ing the maximum likelihood method based on Jones et al.

(1992) w/freq. model. The model with the lowest Bayesian

information criterion score was considered to better describe

the substitution pattern. The bootstrap consensus tree in-

ferred from 100 replicates was taken to represent the evolu-

tionary history of the sequences analyzed (Felsenstein 1985).

The trees were drawn to scale, with branch lengths measured

by estimating the number of substitutions per site. Duplication

events of green algae NLR-like genes were inferred using the

method described by Zmasek and Eddy (2001) and imple-

mented in MEGA7.

Evolutionary Divergence Estimation

The average evolutionary divergence was separately calcu-

lated on the N-terminal region upstream of the predicted

NB Pfam domain of 53 CNL R proteins, 14 TNL R proteins,

and 8 green algae TNL-like protein sequences. Analyses were

conducted using the JTT matrix-based model (Jones et al.

1992). All positions with less than 5% site coverage were

eliminated. Evolutionary analyses were conducted in

MEGA7 (Kumar et al. 2016).

De Novo Prediction of NB Encoding Gene Motifs

The multiple EM for motif elicitation (MEME) (http://meme-

suite.org/) algorithm (Bailey et al. 2009) was used to identify

motifs (supplementary table 4, Supplementary Material on-

line) in the NB Pfam domain (PF00931) of nucleotide binding

tetratricopeptide repeat (NB-TPR) genes grouped in clade I

(fig. 2A). The analysis was carried out using the default cutoff

value for statistical confidence. The Motif Alignment and

Search Tool (http://meme-suite.org/) was also used to confirm

the presence of MEME-motifs previously identified (supple-

mentary table 4, Supplementary Material online), using de-

fault settings.

Detection of Codon Usage Bias

The synonymous codon usage bias of C. zofingiensis NLR-like

(CzNLR) genes was determined with the web-application

E-CAI server (http://genomes.urv.es/CAIcal/E-CAI). The codon

adaptation index (CAI) value was calculated to measure the

synonymous codon usage bias. CAI values range from 0 to 1,

being 1 if a gene always uses the most frequently used codon

of a reference set (Puigb�o et al. 2008). Comparisons of codon

usage preferences were performed against reference sets from

C. zofingiensis (codon usage table of nuclear coding DNA

sequences, CDSs) (supplementary table 5, Supplementary

Material online) using the standard genetic code.

To evaluate the statistical support of the CAI values, we

defined a threshold value or expected-codon adaptation index

(e-CAI) by generating random sequences with Guanine–

Cytosine (GC) content, amino acid (AA) composition and se-

quence length similar to the query sequences (CzNLR genes).

CAI values above the e-CAI were interpreted as statistically sig-

nificant, meaning that codon similarity arose from codon pref-

erences rather than from internal biases (Puigb�o et al. 2008).

GC Content Profile

GC content profile along the Cz1030-34550 region of the

C. zofingiensis Un55705 chromosome was characterized us-

ing the GC-Profile webserver (http://tubic.tju.edu.cn/GC-

Profile/) with recommended values for halting parameter

(100) and minimum segment length (2,000 bp).

Detection of Horizontal Gene Transfer Events

To detect candidate HGT events, an alien index (AI) was cal-

culated as described by Gladyshev et al. (2008) and Flot et al.

(2013). All CzNLR proteins were compared with NCBI’s non-

redundant protein library using BLASTp, with kingdom and

taxon ID assignment, and an E value threshold of 1e�5. An AI

could only be calculated for a protein returning at least one hit

in either Viridiplantae or non-Viridiplantae species, as stated in

the following formula: AI¼ log ((Best E value for Viridiplantae)

þ e�200) – log ((Best E value for non-Viridiplantae) þ e�200).

When BLASTp results were not identified for either

Viridiplantae or non-Viridiplantae, the query sequence (NLR-

like proteins) was removed from downstream analysis.

BLASTp results in the phylum Chlorophyta (to which

C. zofingiensis belongs) were ignored for the calculation of

AI to allow the detection of putative HGT events that could be

shared with other related species.

An AI> 30 corresponded to a difference of magnitude e10

between the best non-Viridiplantae and best Viridiplantae

E values and it was estimated to be indicative of a potential

HGT event (Flot et al. 2013). Sequences with an AI > 30 and

>70% identity to a non-Viridiplantae sequence were consid-

ered putative contaminants and removed from further analy-

ses. The HGT prediction tool set is available at Github: https://

github.com/peterthorpe5/public_scripts/tree/master/Lateral_g

ene_transfer_prediction_tool.

Transcriptional Validation of CzNLR Genes

Nucleic acids (gDNA and RNA) were obtained from cultures of

C. zofingiensis grown in 100 ml of basal bold medium (Stein
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1973) at 24 �C with a photoperiod of 16 h light and 8 h dark.

Chromochloris zofingiensis culture with an optical density of

1.0 (k 600 nm) was left in the dark for 48 h. The growth

condition (48-h darkness) for CzNLR-operon validation was

selected on the basis of the FPKM-profile reported by Roth

et al. (2017) (supplementary table 6, Supplementary Material

online). Cells were collected by centrifugation at 4,000 rpm

for 15 min at 4 �C and the pellet was rinsed twice with cold

sterile MilliQ water (Millipore). The C. zofingiensis biomass

was rapidly frozen by immersion in liquid N2.

Total RNA was isolated from finely ground, frozen

C. zofingiensis biomass using the Spectrum Plant Total RNA

Kit (Sigma-Aldrich). Complete removal of traces of DNA was

performed using On-Column DNase I Digest Set (Sigma-

Aldrich). Reverse transcription was performed using the

SuperScript III Reverse Transcriptase kit (Thermo Fisher

Scientific) with oligo-dT primers. cDNAs were diluted (1:5)

with autoclaved distilled water and stored at �20 �C until

further analysis. Genomic DNA (gDNA) was obtained using

the DNeasy Plant Mini Kit (Qiagen). gDNA and RNA quantities

were determined by the NanoDrop ND-1000

Spectrophotometer (NanoDrop Technologies).

To evaluate the expression of NLR-like genes in

C. zofingiensis a PCR analysis was carried out on diluted

cDNAs using Takara LA Taq DNA polymerase (Cat. No.

RR002A). Reactions were prepared in a total volume of

25 ml and 0.2 mM pmol of target gene primers (supplementary

table 7, Supplementary Material online) and 1 ml of cDNA

template. PCR cycling conditions were as follows: 94 �C for

1 min, followed by 30 cycles of two steps: 98 �C for 10 s and

68 �C for 15 min followed by a single cycle of 68 �C for 8 min.

Primers designed on the housekeeping gene Cz05g19160

FIG. 1.—Natural diversification of the NB-encoding gene families retrieved from bacteria, archaea, glaucophytes, algae, and bryophytes. The evolu-

tionary history of 217 NB-encoding genes, harboring at least 50% of the NB Pfam domain, was used together with 70 well-characterized plant R genes to

perform a maximum likelihood analysis. Labels showing the bootstrap values higher than 50 (out of 100) are indicated above the branches. The taxa to which

the protein sequences belong are indicated by colored spots.
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locus (ACT) or a portion of actinA mRNA sequence (supple-

mentary table 7, Supplementary Material online) were used as

control reaction (Lee et al. 2015). For each primer set, the

control reactions, in which reverse transcriptase (but not

DNA polymerase) was omitted, showed that the product am-

plification was not due to DNA contamination. Two specific

couple of primers were tested on a gene–gene junction of the

OPERON-2 genomic region (supplementary table 7,

Supplementary Material online).

Prediction of a-Transmembrane Regions

Transmembrane (TM) domain (amino acidic region of single

alpha helix) detection of green algae NLR-like proteins was

implemented in PHOBIUS (http://phobius.sbc.su.se/), a trans-

membrane topology and signal peptide predictor. To verify

the putative TM-domains, we investigated the green algae

NLR-like proteins with six TM-predictors, based on physico-

chemical (DAS-TM: http://www.enzim.hu/DAS/DAS.html;

PRED-TMR: http://athina.biol.uoa.gr/PRED-TMR/input.html),

statistical (TMPRED: https://embnet.vital-it.ch/software/

TMPRED_form.html; SPLIT: http://splitbioinf.pmfst.hr/split/4/),

and machine learning (TMHMM2: http://www.cbs.dtu.dk/

services/TMHMM/; TOPCONS: http://topcons.cbr.su.se/)

methods (Venko et al. 2017).

Results

Tracing the NLR Evolution Routes

The evolutionary events responsible for the genesis of the NLR

proteins were inferred by analyzing the NB domain rearrange-

ments along the plant tree of life. The NB association paths

FIG. 2.—Maximum likelihood phylogenetic tree and genomic reshuffles of green algae NB-encoding genes. (A) The tree includes 13 genes and one

outgroup gene with an NB domain, the human APAF1. Clades were numbered with Roman numerals from I to III. Bootstrap values higher than 50 (out of

100 replicates) are indicated above the branches. (B) Identification of putative genomic reshuffles in a KfNLR locus (KFL00295_0030) is shown. The LCBs (red

boxes) are conserved segments, that appear to be internally free from gene rearrangements. Collinear blocks are connected by black-dotted lines, whereas

block boundaries indicate breakpoints.
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were traced by comparing over 700 NB protein-encoding

genes belonging to 41 taxa, including prokaryotic genomes

(supplementary tables 2 and 8, Supplementary Material on-

line), because a common bacterial ancestor gave rise to the

diversification of the metazoan NACHT and the plant NB

domains (Leipe et al. 2004). For comparative purposes 70

well-characterized plant R genes were also added to our

data set (supplementary table 9, Supplementary Material on-

line). The evolutionary architecture of NB-encoding genes re-

trieved in bacteria, archaea, glaucophyte, algae, and

bryophyte lineages, revealed a clear distinction among an-

cient-NB, NB–LRR, NB-armadillo repeat, NB-TPR, and nucleo-

tide binding WD40 repeat (NB-WD40) (fig. 1).

Despite prokaryotic NB-encoding genes showed a modular

domain organization (TIR–NB, NB-WD40, and NB-TPR) similar

to other analyzed organisms, they clustered separately in the

generated phylogenetic tree (gold clade in fig. 1). Only 9 out

of 25 analyzed prokaryote genomes included NB-encoding

genes. Over 40% (13 out of 31) of identified NB-encoding

genes in bacteria genomes presented a TPR domain (Pfam-

IDs: PF13424) and�35% (11 out of 31) were associated with

a WD40 domain (Pfam ID: PF00400). The LRR domain (Pfam

ID: PF13855) was found alone or associated with other

domains in Methanosarcina mazei (Archaeon). The first do-

main associations similar to the R genes (TIR–NB and TIR–LRR)

were observed in two bacteria species (Chloroherpeton tha-

lassium and Rhodopirellula baltica).

Moving within the Rhodophyta algae phylum (red clade in

fig. 1), the pluricellular red alga Chondrus crispus revealed a

total of 61 NB-encoding genes of which 95% (58 out of 61)

showed a NB-WD40 domain association and many of them (23

out of 58) included a TIR domain as well as a transmembrane

Dipeptidyl Peptidase-like Protein 6 domain involved in mem-

brane trafficking (Lin et al. 2014). In addition, three C. crispus

NB-WD40 proteins displayed a YVTN repeat-like domain

(IPR011044), typical of archaeal surface layer proteins (PMID:

12377130), and five C. crispus NB-encoding genes contained a

TBPIP domain (Pfam ID: PF07106) involved in viral interaction

(Ijichi et al. 2000). In contrast, Galdieria sulphuraria, an extrem-

ophilic unicellular species, included only five LRR-encoding

genes. The great majority of NB proteins revealed in brown

algae genomes contained a TPR domain at the C-terminal

and a transmembrane signature (brown clade in fig. 1).

Different NB domain arrangements were found in the

chlorophyte lineage. Notably, domain reshuffling was ob-

served in the unicellular green alga C. zofingiensis which

showed the most ancestral NLR-like genes. Moreover, seven

NB-encoding genes including atypical NLR assemblies were

found in Klebsormidium flaccidum, a charophyte multicellular

green alga more closely related to land plants. Several TNL

and CRPW8NL were identified in nonflowering plants (com-

mon liverwort: Marchanthia polymorpha; moss:

Physcomitrella patens) (blue and pink clades in fig. 1 and sup-

plementary fig. 1, Supplementary Material online). Over 350

NLR-like genes, including the kinase domain (Pfam ID:

PF00069) (green clade in fig. 1), TPR domain short residues,

ZZ zinc finger domain (Pfam ID: PF00569), and the LAZ5 do-

main (PANTHER ID: PTHR11017: SF181), were observed in

P. patens proteins. NB-encoding genes with an a/b hydrolase

N-terminal domain were observed in M. polymorpha (dark

green clade fig. 1) and NB proteins with the ARM domain

(Superfamily ID: SSF48371) were found in Selaginella moel-

lendorffii (lycophyte).

Back to the Origin of the Basic R-Gene Unit (NLR)

A detailed phylogenetic analysis performed on the green al-

gae K. flaccidum and C. zofingiensis NB-encoding genes

allowed three distinct branches to be visualized (fig. 2A).

Clade I included K. flaccidum genes with NB-TPR association

(red in fig. 2A). The NB Pfam domain (PF00931) of these

K. flaccidum members lacked the typical R protein signatures

(PRINTS ID: PR00364) and displayed other specific motifs (sup-

plementary table 4, Supplementary Material online). The

K. flaccidum NLR-like (KfNLR) genes, which showed a rela-

tively high homology with the TIR–NB region of the plant R

proteins, were grouped in clade II (fig. 2B; supplementary

table 2 and fig. 2, Supplementary Material online). These

observations suggested that a divergent evolution occurred

in the formation of the NB domain of members of clades I and

II. In contrast, CzNLR proteins grouped in clade III showed a

domain composition similar to the R genes of flowering

plants. Inference analysis of green alga NLR-like genes

revealed that fusion, fission, and duplication events (gray dia-

monds in fig. 2A) have considerably shaped their structure.

The architecture of KfNLRs (clade II) suggested that an event

of gene-fusion occurred between NB-encoding genes and

Sel1-like repeats (SLRs), adaptors for assembly macromolecu-

lar complexes found in bacterial proteins or in bacterial viru-

lence factors, including an outer dynein arm light (ODAL)

domain (Superfamily ID: SSF52075) showing LRR motifs.

Horizontal Transfer Promoted the Alien LRR Domain
Acquisition

The presence of bacteria-like domains (HTH cro/C1-type

domain-containing protein, NEL, novel E3 ligase; PSA, parasite

surface antigen glycoprotein) in the architecture of KfNLR genes

encouraged us to investigate whether these domains were ac-

quired by HGT events. To verify the full/partial transfer of NLR-

encoding regions, we analyzed their codon usage distribution,

GC content and the percent of identity to other species.

To verify the codon usage similarity of each CzNLR–CDSs

with the rest of the C. zofingiensis nuclear gene complement,

we performed an e-CAI analysis. The CzNLR–CDSs showed a

CAI value which was significantly different from the

C. zofingiensis e-CAI (table 1). This finding supported a

CzNLR atypical nucleotide composition and a putative hori-

zontal transmission (table 1). A strong deviation of GC
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content from the genomic average GC signature was ob-

served in the LRR-coding regions of four CzNLR genes

(fig. 3A). These DNA segments had a base composition that

diverged significantly from the overall base composition of the

chromosome UN55705 (fig. 3A), suggesting that a DNA in-

sertion from a distantly related organism had occurred

(Ravenhall et al. 2015). Finally, an AI analysis, based on e

values obtained from BLAST against the NCBI’s nonredundant

protein library, confirmed the acquisition of LRR-regions (ex-

cept for UNPLg00127, probably because of a short LRR-

region) by HGT of Kinetoplastida-origin in C. zofingiensis

(table 2).

The genomic organization of CzNLRs supported the hy-

pothesis that an HGT event lay at the basis of NLR unit origin.

Indeed, a fine gene annotation of the Cz1030-34550 region

(�34 kb) on UN55705-chromosome showed that five CzNLR

genes (red in fig. 3C) clustered in an operon-like structure

(fig. 3C). The six distinct genes (g00129, g00130, g00131,

g00133, g00134, and g00135), incorrectly divided in the of-

ficial annotation (Roth et al. 2017), were grouped into two

CzNLR genes (green in fig. 3C). In silico analyses showed that

the operon-like structures are transcribed together into two

mRNA strands. On the basis of domain characterization, gene

expression profile, and molecular validation, a new NLR

FIG. 3.—Prediction and horizontally transferred genes and genomic characterization of the two functioning units of C. zofingiensis genomic DNA

(operons). (A) The negative cumulative GC-profile (violet line) for the Cz1030-34550 region of C. zofingiensis Un55705 chromosome (corresponding to the

NLR-like gene cluster reported in panel C), marked with the segmentation points (green square) revealed. (B) Gel shows the genetic transcription of CzNLRs

and the molecular validation of two erroneously split CzNLR genes (g00129/g00130/g00131 and g00133/g00134/g00135). The primer pairs (green

triangles) designed in the Cz1030-34640 region are shown at the top. Control RT-PCRs amplifying a section of the Cz05g19160 locus (ACT) or a portion

of the actinA mRNA sequence are also shown (Lee et al. 2015). (C) A cluster of NLR genes (red arrows) containing the two operons located on the Cz1030-

34550 region of chromosome Un55705.
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annotation was proposed (light green arrows) (fig. 3B). It is

also worth noting that in this region we identified three en-

hanced disease susceptibility 1 genes, positive regulators of

innate immunity mediated by TNL resistance proteins

(Bhattacharjee et al. 2011) (striped cyan arrows in fig. 3C).

Transcriptome data reported by Roth et al. (2017) suggest

that operon genes are transcribed together into an mRNA

strand (violet and green arrows in fig. 3C). Molecular analysis

carried out in this study confirmed the transcription of

operon-like structures into two polycistronic mRNAs (supple-

mentary fig. 3 and table 10, Supplementary Material online).

Subcellular Localization of the NLR Proteins Progenitor

PHOBIUS prediction software detected several putative a-

transmembrane (a-TM) regions in five C. zofingiensis green-

algae NLR-like proteins (fig. 2A). To further investigate the

matter, we performed additional analyses with six TM-

predictors, based on physicochemical, statistical, and machine

learning methods (Venko et al. 2017). Comparative prediction

confirmed the presence of at least one a-TM region for each

analyzed NLR-like gene, suggesting cellular membrane local-

ization of R proteins progenitors (supplementary table 11,

Supplementary Material online). Figure 4 reports the predic-

tion of two highly probable a-TM encoding regions in

C. zofingiensis UNPLg00127 locus. Protein domain scanning

identified the presence of a Kidins220/ARMS/PifA-NTPase do-

main at the C-terminal including two/four transmembrane

helices to anchor proteins to the membrane (Aravind et al.

2004) that supported its putative TM-localization. Inference

analysis on the C-terminal regions (LRR Superfamily domain:

SSF52058) of green algae NLR genes underlined a greater

homology (bootstrap index ¼ 90) with the extracellular-LRR

domain of transmembrane receptors RLP and RLK (supple-

mentary fig. 4 and table 3, Supplementary Material online)

and with the intracellular-LRR domain of Arabidopsis TAO1

gene, a peripheral plasma membrane gene that confers resis-

tance to the effector AvrB of Pseudomonas syringae (supple-

mentary table 3, Supplementary Material online).

Discussion

The multitaxa investigation of NB-encoding genes performed

in this study allowed us to discover the evolutionary dynamics

that generated plant R genes. Taxon-specific rearrangement

in bacteria, fungi, plants, and animals originated, using a finite

Table 1

CAI Values for CzNLR–CDSs Compared against the Chromochloris zofingiensis Nuclear Genome Codon Usage Table

Gene IDa CAI (average) e-CAIb (a 5 0.05) Statistical Tests (a 5 0.05)

K–Sc v2 (confidence level)d (%)

UNPLg00136 0.606 0.664 0.032 100

UNPLg00133/134/135 0.621 0.683 0.028 100

UNPLg00039 0.614 0.676 0.034 100

UNPLg00138 0.616 0.678 0.032 100

UNPLg00127 0.614 0.674 0.030 100

UNPLg00129/130/131 0.611 0.675 0.021 100

NOTE.—For each CzNLR–CDS the CAI value, e-CAI value (determined by randomly generating 500 sequences with the same GC content and AA composition of CzNLR–CDSs)
and statistical parameters (chi-square, v2 goodness-of-fit test and Kolmogorov–Smirnov, K–S test) are reported.

aWith respect to the new NLR gene annotation performed in this study (see fig. 3C).
be-CAI is a threshold value for discerning whether the differences in the CAI value are statistically significant. The e-CAI value was calculated at a 95% level of confidence

using the Markov method.
cK–S test confirmed whether the CAI of the randomly generated sequences follow a normal distribution. K–S test values for each calculated e-CAI is always lower than of

critical value (0.061).
dA v2 test is conducted to compare the goodness-of-fit between the AA frequencies or GC content of each CzNLR–CDS and their mean values.

Table 2

List of HGT Events Occurring in the CzNLR Gene Family

Gene IDa AI Categoryb AI BLAST e Value % Identity Taxon

UNPLg00136 Very likely HGT 161.2 2.0E-126 40.4 Kinetoplastida

UNPLg00133/134/135 Very likely HGT 82.9 2.0E-89 45.0 Kinetoplastida

UNPLg00039 Very likely HGT 108.9 1.0E-105 43.0 Kinetoplastida

UNPLg00138 Possible HGT 23.6 5.0E-28 37.8 Kinetoplastida

UNPLg00129/130/131 Very likely HGT 105.9 3.0E-104 42.1 Kinetoplastida

NOTE.—For each gene the AI category, the AI value, the BLAST e value, the percentage of identity (% identity), and the taxonomic group of the candidate donor are indicated.
aIn respect of new NLR gene annotations performed in this study (see fig. 3C).
bBLAST results are classified in two categories: very likely HGT (AI > 30 and <70% identity to candidate donor) and possible HGT (AI > 0 and <70% identity to candidate

donor).
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library of domains, assorted NB proteins with different phys-

ical structures and functional activity (Sanseverino and

Ercolano 2012; Dyrka et al. 2014; Jones et al. 2016). The

evolutionary path from ancestral NB-encoding genes to plant

NLRs likely occurred via bacterial intermediaries, such as TIR–

NB- or TIR–LRR-encoding genes (Urbach and Ausubel 2017).

In bacteria and algae NB was preferentially associated with a

WD40 or TPR domain with or without transmembrane signa-

tures. NB-WD40 and NB-TPR proteins carry out essential roles

in many organisms, ranging from signal transduction to apo-

ptosis (Shakeri et al. 2017; Heller et al. 2018). Such domain

arrangements prove to be crucial in different recognition/

transduction events linked to responses to environmental

stimuli (Grove et al. 2008; Gao and Stock 2009; Zhou et al.

2018). The first NLR-domain associations found in algae chlor-

ophyte lineage date back over 3.5 billion years ago.

Independent NLR-domain associations have been found in

Chlorophyta algae and in Charophyta freshwater algae, a

paraphyletic group belonging to the Streptophyta lineage

(Sarris et al. 2016; Shao et al. 2016; Gao et al. 2018), indicat-

ing that convergent evolution may have generated similar

protein structures in separate lineages.

Combinatorial assembly of domains from nonhomologous

proteins and/or exchange of smaller polypeptide segments

defined the architecture of green plant NB-encoding genes

(Riechmann and Winter 2000). An intense reassembly activity

of NLR genes took place in primitive nonvascular plants under

the guidance of a scaffold, following a structural transition

and a series of smaller nondeleterious changes (Bornberg-

Bauer et al. 2010). In bryophytes (�400 million years ago) a

strong expansion of the NLR family consolidated the NB–LRR

domain association and promoted reshuffling at the N- and

C-terminal regions respectively, enhancing the functional spe-

cialization and the variability of proteins (Sarris et al. 2016;

Ortiz and Dodds 2018). The differences in genome assembly

of the species analyzed may influence the number of dupli-

cated genes identified because the NLR genes can collapse in

genome assemblies (Bayer et al. 2018). In future, the magni-

tude of bryophyte NLR expansions may require some

adjustments, but the variability observed at the N-terminal

in P. patens (kinase-NLR) and in M. polymorpha (a/b
Hydrolases-NLR) is well supported by previous findings (Ortiz

and Dodds 2018).

After the events described above, the NLR pairwise domain

combination became the “Supra-Domain” of the plant R-

gene family. Despite the plethora of NB domain associations

found across taxa, the NB–LRR domains unit was typical of

green plants. Indeed, the NLR-family of green plants was char-

acterized by a pairwise domain combination (NB and LRR)

which was highly duplicated and frequently linked to other

FIG. 4.—In silico validation of PHOBIUS a-TM regions in the C. zofingiensis UNPLg00127 locus. From top to bottom, we report the putative TM-region

predictions of DAS-TM, TMpred, and TMHMM software (Venko et al. 2017). A dashed black box underlines two PHOBIUS a-TM regions (ivory boxes), which

were confirmed by all the predictors used (green, blue, and red peaks of DAS-TM, TMpred, and TMHMM predictions, respectively).

Andolfo et al. GBE

3474 Genome Biol. Evol. 11(12):3466–3477 doi:10.1093/gbe/evz248 Advance Access publication November 15, 2019



partner domains (TIR, a/b Hydrolases, Kinase, RPW8, CC, and

ID). Events occurring at sublocus level, such as fusion and/or

fission, may have played an important role in shaping the

gene modular structure (Wu et al. 2012), although the rep-

ertoire of immune receptor domain combinations is not ran-

dom in nature (Sanseverino and Ercolano 2012). The

consolidation of NB–LRR coupling paved the way for the func-

tional specialization of plant R genes, enforcing evolutionary

paths that preserve the protein structure, despite the high

sequence divergence of single terminal domains (Gilson

et al. 2017). Several studies indicate that NLRs may have in-

tegrated new domains independently and frequently at vari-

ous locations in their architecture during evolution (Han

2019). The functional properties of new proteins led to the

selection of the most advantageous NB–LRR domain associa-

tion. Indeed, NB–LRR architecture can easily evolve new bind-

ing specificities under diversifying selection, without

sacrificing the stability of resistance supra-domain (R-SD)

(Urbach and Ausubel 2017).

The discovery of bacteria-derived domains (HCP, NEL, and

PSA) in the architecture of green algae NLR-like genes sug-

gests that horizontal transfer events contributed to the origin

of the plant NLR gene family. In eukaryotes, HGTs appear to

be rare, except for parasitic plants that enrich through HGTs

their host plants with defense proteins, including at least one

NLR (Yang et al. 2016). Urbach and Ausubel (2017) and Han

(2019) hypothesized a plausible acquisition by HGT of the NB

domain from a different kingdom. To verify the full/partial

transmission of CzNLR-encoding regions from Protista, we

analyzed their codon usage distribution, GC content and

the percent of identity against other species. e-CAI analysis

and GC-content performed in CzNLR–CDSs revealed a nucle-

otide composition that significantly diverged from the overall

base composition of the entire chromosome, suggesting that

a DNA insertion from a distantly related organism occurred

(Ravenhall et al. 2015). AI analysis confirmed the acquisition

of LRR-regions by HGT of Kinetoplastida-origin in

C. zofingiensis.

The Kinetoplastida is a group of protists involved in various

lateral gene transfer events with algal- and a-proteobacterial-

like endosymbionts (Hannaert et al. 2003). Dunin-Horkawicz

et al. (2014) hypothesized that the eukaryotic innate immu-

nity networks originated from their endosymbionts and that

network complexity increased with the emergence of multi-

cellularity. Interestingly, all alien domains found in this study

are involved in pathogen–host recognition. In particular, the

HCP motif of SLR bacterial proteins is involved in the signal

transduction pathways during the interaction between bacte-

rial and eukaryotic host cells (Mittl and Schneider-Brachert

2007). The ODAL domain (Superfamily ID: SSF52075) is highly

homologous to the NEL domain (PFAM ID: PF14496) found at

the C-terminus of bacterial virulence factors (Quezada et al.

2009; Singer et al. 2013). Likewise, the LRR domain

(Superfamily ID: SSF5205) of CzNLR was homologous to

PSAs that present a Thr-/Ser-rich site implicated in defense

mechanism (Lincoln et al. 2004).

HGT events in CzNLRs further supported that a convergent

evolution for these genes may have occurred. The identifica-

tion of a-TM-regions (Cosson et al. 2013) in the protein ar-

chitecture of NLR gene progenitors and a relatively high

homology of the LRR-region to extracellular RLK and RLP

receptors underpinned a putative cell-surface localization.

Convergent evolution may have originated homologous pro-

teins with slightly different domains to perform similar bio-

chemical functions in Chlorophyta and Streptophyta. A CzNLR

membrane localization in unicellular and filamentous algae

without differentiated or specialized cells could be important

to perform a putative surveillance activity. It is also plausible

that the subcellular translocation from plasma-membrane

(green algae NLR-like genes) to cytoplasm (R genes) originated

best suited proteins for the multilayered structure of the plant

immunity network (Jones and Dangl 2006; Kamoun et al.

2018).

Conclusions

The evolutionary divergence of NB-encoding proteins proved

to be mediated by dynamic structural transition paths from an

initial set of modular proteins. Cross species domain assem-

blies originated the first NLR genes identified in unicellular

green algae. In silico transmembrane localization of ancient

NLR genes is compatible with a “cell-surface surveillance”

function. Moreover, the operon-like organization of such

NLR members suggests that the plant R-gene clusters could

derive from functional units. Evolution of the sophisticated

NLR proteins occurring in Viridiplantae is based on the selec-

tion of an R-SD. The “pairwise unit” (NB–LRR) of R proteins

evolves through reshuffles with subsets of protein domains

that define specific protein structure and function in plant

immunity.
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