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Abstract

Parkinson’s disease is a heterogeneous disorder with both motor and non-motor symptoms that 

contribute to functional impairment. To develop effective, disease modifying treatments for these 

symptoms, biomarkers are necessary to detect neuropathological changes early in the disease 

course and monitor changes over time. Advances in MRI scan sequences and analytical techniques 

present numerous promising metrics to detect changes within the nigrostriatal system, implicated 

in the cardinal motor symptoms of the disease, and detect broader dysfunction involved in the non-

motor symptoms, such as cognitive impairment. There is emerging evidence that iron sensitive, 

neuromelanin sensitive, diffusion sensitive, and resting state functional magnetic imaging 

measures can capture changes within the nigrostriatal system. Iron, neuromelanin, and diffusion 

sensitive measures demonstrate high specificity and sensitivity in distinguishing Parkinson’s 

disease relative to controls, with inconsistent results differentiating Parkinson’s disease relative to 

atypical parkinsonian disorders. They may also serve as useful monitoring biomarkers, with each 

possibly detecting different aspects of the disease course (early nigrosome changes versus broader 

substantia nigra changes). Investigations of non-motor symptoms, such as cognitive impairment, 

require careful consideration of the nature of cognitive deficits to characterize regional and 

network specific impairment. While the early, executive dysfunction observed is consistent with 

nigrostriatal degeneration, the memory and visuospatial impairments, the harbingers of a dementia 

process reflect dopaminergic independent dysfunction involving broader regions of the brain.
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1. Introduction

Parkinson’s disease (PD) is the second most common age-related neurodegenerative 

disorder, with more than 6 million people currently diagnosed, a prevalence that has more 

than doubled between 1990 and 2015 [1,2]. Classically, PD is diagnosed by evaluating the 

presence of motor features, including bradykinesia (slow movement), rest tremor, muscle 
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rigidity, and gait abnormalities. Non-motor features, such as cognitive impairment, sleep 

disorders, and constipation are found early in the disease course and can significantly 

contribute to patient disability and even increase mortality [3,4]. To develop effective, 

disease-modifying treatments for both the motor and non-motor symptoms of PD, early, 

accurate diagnosis and prognostic/monitoring indicators are necessary. This is challenging as 

the onset and progression of motor and non-motor symptoms is variable [5,6] with certain 

subtypes of individuals exhibiting a more pronounced decline [7]. Diagnostically, it is 

informative to differentiate PD participants from controls. However, it is more difficult to 

clinically distinguish PD from atypical parkinsonian disorders (APD), including multiple 

system atrophy (MSA), progressive supranuclear palsy (PSP), and corticobasal degeneration 

(CBD); thus a true diagnostic biomarker needs to also differentiate PD from these APDs.

There are diverse approaches to biomarker investigation which include physiological/clinical 

assessments, genomic/proteomic/metabolomic/RNA methodologies (often collectively 

referred to as CSF and blood biomarkers) and imaging approaches [8]. CSF and blood 

biomarkers [9,10] and PET/SPECT Imaging biomarkers [11–13] have been reviewed at 

length elsewhere. There has recently been substantial developments in new MRI 

methodology. The current review aims to present the most promising imaging biomarkers. 

This is not intended to be an exhaustive review, but rather a practical overview that provides 

information for identifying the appropriate imaging metric for the question being asked and 

the utility of potential biomarkers to characterize specific aspects of the motor and non-

motor symptoms of PD.

2. Is the imaging metric appropriate for the question being asked?

Most imaging biomarkers have examined dysfunction of the nigrostriatal pathway as it is 

responsible for the cardinal symptoms of PD (bradykinesia, rigidity, tremor). The primary 

neuropathology includes the misfolding and aggregation of α-synuclein (α-Syn) in the 

substantia nigra (SN) and degeneration of nigrostriatal dopamine neurons. Motor symptoms 

emerge after 50-70% loss of the dopaminergic neurons in the SN [14,15] resulting in 

dopaminergic denervation of the striatum. It is thought that α-Syn aggregation typically 

begins in the caudal brainstem and progresses rostrally [16,17] (Fig. 1A), and the 

progression is found to correspond with increased non-motor symptoms, such as cognitive 

impairment [18]. Specifically, non-motor symptoms are not solely driven by the 

degeneration of the dopaminergic nigrostriatal system, but by multifocal involvement of 

broader network dysfunction depending on the symptomatic presentation [19]. 

Neuroimaging may be particularly useful to monitor regionally specific pathological 

progression and resultant dysfunction in both the motor and non-motor symptoms. To review 

the available MRI metrics and current research, the following sections focus on the specific 

imaging modalities that are sensitive to either structural or functional variations in the 1) SN 

(brainstem level neuropathology) and the basal ganglia and 2) limbic and neocortical 

regions. Within each of the following sections we introduce each imaging modality and the 

literature relevant to evaluate its utility as a diagnostic biomarker (e.g. can it differentiate PD 

from controls and APDs) and a monitoring biomarker (e.g. can it reliably measure disease 

progression). For biomarker definitions, please refer to Table 1.
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3. SN and basal ganglia

Recently, several scan sequences and analytic techniques have emerged that can detect PD 

associated changes in the SN and basal ganglia such as increased iron load, abnormal shape, 

abnormal diffusion, anatomical connectivity, and functional connectivity (Table 2). Each of 

these techniques provides distinct, but often complementary information regarding the SN 

and basal ganglia. The utility of these measures may vary depending on the stage of disease 

and the possible extent of dysfunction. For instance, the earliest dopaminergic neuronal loss 

within the substantia nigra occurs in the nigrosomes (clusters of dopaminergic neurons; N1 – 

N5) [14,20]; within A9 in the caudal and ventrolateral tier of substantia nigra pars compacta 

(SNc) and progresses to neighboring regions (A8 and A10; Fig. 1B) [15,19]. It is important 

to consider biomarkers with this in mind. Presumably, there may be a substantial loss of N1 

dopaminergic neurons early in the stage of the disease course, but this likely hits a “floor 

level” early on and therefore may not serve as a monitoring biomarker later in the disease 

course. Furthermore, patients with APDs typically have neuronal degeneration in the SN and 

other midbrain structures, but without the presence of Lewy bodies [21]. Diagnostically, it is 

critical to determine whether a biomarker can differentiate SN disruptions specific to PD 

rather than a general reduction seen across PD and ADPs.

3.1. Structural Morphometry

Conventional imaging can be used to quantify the volumes of subcortical structures 

(putamen, caudate, globus pallidus, thalamus; Fig. 2B) [22,23]. There are inconsistent 

findings regarding the ability of subcortical volumes to differentiate PD and controls [24,25]. 

However, the midbrain and putamen volume were found to differentiate PD from MSA or 

PSP was 97.4% [26]. Based on T1-weighted imaging, subcortical nuclei shape analysis of 

the putamen and caudate nucleus differentiate PD relative to controls and might relate to 

motor symptoms, suggesting shape may be more sensitive than volume to detect changes in 

PD [27]. Examination of the midbrain structures, such as the SN, is challenging due to the 

limitations of the contrasts of the conventional T1 and T2 images. Only recently, automated 

midbrain segmentation has been developed (midbrain, pons, medulla oblongata, superior 

cerebellar peduncle) [28]. Midbrain volumes characterized using this method were 

significantly lower in PSP patients relative to PD patients and controls, suggesting that it 

may be a useful measure for differentiating APD [29]. For a review of structural 

segmentation currently available see Ref. [30]. Together, these studies suggest that 

differences in structural morphometry are subtle in PD relative to controls, with more 

pronounced differences observed in MSA and PSP. There is some suggestion that shape 

analyses may be more sensitive to differentiate controls and PD and track disease 

progression. Overall, structural morphometry approaches have yielded inconsistent results 

and further research is necessary to understand the utility of these approaches.

3.2. Iron and neuromelanin sensitive MRI

T2* weighted Imaging—Histochemical studies have demonstrated elevated iron 

accumulation in the SN in PD patients [31]. MRI scan sequences can quantify iron due to its 

paramagnetic property which changes the relaxation behavior of tissue and introduces 

changes in susceptibility and microscopic field gradients [32,33]. Specifically, iron levels in 
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vivo cause signal changes in T2 and T2*, and can be quantified in a variety of ways [34,35], 

with initial focus on relaxation rates (R2* = 1/T2*; R2’ = R2*-R2 [36–38]), collectively 

referred to as relaxometry [39]. Using these early measures, PD demonstrated elevated iron 

levels in the SN [36,38,40,41]. Increased iron levels observed postmortem were related to 

the R2* values [31]. A combination of R2* measures and diffusion metrics (described 

below) have been helpful in differentiating PD and APD [42,43]. There have been mixed 

reports of whether R2* can capture PD progression [44–46].

The R2*contrast captures variance of the magnetic field that is generated by local as well as 

surrounding tissue susceptibility (capturing local and surrounding signal). This has led to the 

development of a novel MRI modality, quantitative susceptibility mapping (QSM) which 

removes the effects of susceptibility of the surrounding tissue through deconvolution, 

providing a superior measure of local tissue magnetic properties [47–49]. Both R2* and 

QSM have been found to be reliable [50]. QSM generally demonstrates a greater sensitivity 

to differentiate PD from controls relative to R2* methods [51–54]. Recently, examination of 

R2* and QSM obtained in vivo with postmortem pathological findings in the SN found that 

both measurements correlated positively with iron, however R2* was additionally associated 

with a-Syn aggregation and neither measure related to the presence of tau in the SN [55]. 

This is the first MRI measure that has been linked to α-Syn pathology in the same specimen. 

Longitudinal analysis of these same measures suggests that while both R2* and QSM were 

elevated in PD relative to controls, only the R2* measure changed longitudinally, but only in 

the “late” group which consisted of PD participants that had been diagnosed for greater than 

5 years [46].

Nigrosome Imaging—While the aforementioned studies typically examine the broader 

regions of the SN (e.g. the entire SN, or SNc), the increased spatial resolution obtained using 

higher magnetic field strength (7T; ultra-high field) allow for the examination of structures 

as small as the individual nigrosomes within the caudal and ventrolateral tier (A9) of the 

SNc (Fig. 1B), the regions affected earliest in PD [56]. Examination of the presence of N1 

(referred to as the swallow-tail sign) using T2*-weighted imaging at 7T provides high 

sensitivity (100%), specificity (87-100%), positive predictive value (91-100%), and negative 

predictive value (100%) in differentiating PD from controls [56–58]. However, similar rates 

of diagnostic differentiation were recently obtained using 3T MRI, suggesting that it is not 

necessary to obtain images at the ultra-high field strength [59–63]. The loss of nigrosome 

signal is common in APDs [64,65], indicating that this technique may not differentiate PD 

and APDs [66,67].

Neuromelanin Imaging—Neuromelanin is produced as oxidative products downstream 

from L-DOPA [68]. It accumulates inside specific autophagic organelles, accumulating over 

the lifespan in the soma of dopaminergic neurons in the SN [68,69]. It is only cleared from 

tissues following cell death via microglia, evident in PD [70,71]. Neuromelanin sensitive 

MRI (NM-MRI) relies on quantitative magnetization transfer (MT) and T1 effects and is 

sensitive to NM-positive dopamine neurons (T1-weighted fast spin echo; T1w FSE; 

[72,73]). Neuromelanin may be more sensitive to capturing the SNc whereas T2* better 

captures the SNr [74] (Fig. 2). NM-MRI is consistently decreased in the SN in PD patients 
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relative to controls [72,75–79]. Additionally, there is a decrease in neuromelanin 

concentration in postmortem SN tissue of PD patients relative to controls [80]. However, 

currently, the NM-MRI measurements’ specificity and sensitivity to differentiate between 

PD and APD [29,79,81,82] and essential tremor [83] warrants further investigation. 

Preliminary evidence suggests that longitudinal change in neuromelanin signal in PD could 

serve as a marker of disease progression [66,84].

In summary, all of these measures have high sensitivity and specificity in distinguishing PD 

relative to controls with inconsistent results differentiating PD from APD [66]. While 

nigrosome imaging is sensitive to changes early in the disease course [85], it may be limited 

changes after the initial decline early in the course of PD. In contrast, NM-MRI, T2* and 

QSM measures of the nearby regions may better characterize change over time [46] and 

serve as useful monitoring markers.

3.3. Diffusion MRI

Diffusion Tensor Imaging—Diffusion MRI is sensitive to the diffusion of hydrogen 

protons, modeled most commonly with the diffusion tensor model (DTI) [86,87]. Metrics 

derived include: mean diffusivity (MD) which reflects the diffusion in all directions within a 

voxel and fractional anisotropy (FA) which reflects the extent in which there is directional 

diffusion [88]. Hydrogen protons are widespread in the brain and therefore these metrics can 

examine not only iron-rich areas, but the entire brain. Interpretation therefore varies 

depending on which region of the brain. For instance, changes in DTI metrics in the SN 

(decreased FA and increased MD) indirectly measure neuronal degeneration as it likely 

results in a decrement of the microstructural integrity and diffusivity of water molecules 

[89]. Multiple meta-analyses indicate that PD patients exhibit significantly lower FA values 

and higher MD values in the SN [88,90,91]. These effects are observed in de novo patients, 

with reports of 100% sensitivity and specificity of differentiating PD from healthy controls 

[89].

Free Water Imaging—More recently, a novel bi-tensor diffusion analysis model (referred 

to as free water) can separate the diffusion properties of water in brain tissue from those of 

water in extracellular space [92]. All forms of parkinsonism exhibit elevated free water in 

the SN, however, MSA and PSP (and not PD) demonstrate a broad network of free water 

changes, suggesting this measure may be helpful in differentiating these disorders [93]. This 

approach typically uses microregions of interest within the SN, often 2 × 2 voxels in size 

that are hand-drawn. Nonetheless, free water values have been correlated with motor 

symptom severity [94,95], increase longitudinally within 1, 2, and 4 years of being 

diagnosed with PD [96–98], predict the rate of motor progression [96], and are not affected 

by antiparkinsonian medication [99] highlighting that they may be a useful monitoring 

biomarker.

Structural Connectivity—While FA, MD, and free water metrics characterize diffusion 

within individual voxels, diffusion imaging can also be used to quantify the integrity of the 

white matter fiber tracts in the brain [100]. This approach can be used to differentiate the 

parallel organization of functionally segregated basal ganglia and frontal cortex circuitry that 
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had been described anatomically [101] (Fig. 1C), with distinct parallel loops that included 

the posterior (sensorimotor), anterior (associative), and ventral (limbic) compartments [102]. 

Examination of structural connectivity in PD finds disruption in the motor loop, but it is 

unclear how well this information can differentiate PD from HC and APD, or how well it 

can track disease progression at this time [103]. Additional research is necessary to identify 

either network based metrics or individual connections that may serve as useful biomarkers 

of structural connectivity.

3.4. Resting state functional MRI (fMRI)

Resting state fMRI detects blood-oxygen-level-dependent (BOLD) low-frequency 

spontaneous fluctuations across the brain while an individual is at rest, and can be used to 

study functional connectivity within and across spatially distributed brain networks. The 

most validated analytical approach examines the resting state fMRI Parkinson’s Disease 

Related Pattern (fPDRP), which was initially characterized using PET [104–107]. Similar to 

PET, there are significant increases in fPDRP expression in PD relative to control subjects 

[108], however, further research is necessary to evaluate its utility as a diagnostic and 

monitoring biomarker. At this time, there are numerous additional analytical approaches 

taken to examine rs-fMRI in PD, that suggest widespread dysfunction in PD, but also 

numerous inconsistencies based on recent reviews [104,109]. This is partially related to the 

impact of various preprocessing approaches and observations showing rs-fMRI varies as a 

function of medication status [110]. Further, networks appear to dynamically adapt to 

disease progression and functional brain circuitry dysfunction may differ dependent on the 

nature of the motor symptoms [111]. Indeed, investigation of more targeted analytic 

approaches will be necessary to identify potential diagnostic and monitoring biomarkers, 

which is discussed further in the next section.

4. Limbic and neocortical regions

The aforementioned studies examine dysfunction of the nigrostriatal pathway. However, 

non-motor symptoms are driven by multifocal involvement of limbic and cortical regions 

depending on the nature of the symptoms [19]. Imaging characterization of regional changes 

associated with non-motor symptoms may serve useful as monitoring indicators and will 

help to better understand the mechanisms underlying divergent clinical presentations. An 

exhaustive review of this literature is beyond the scope of this article. Here, we briefly focus 

on imaging approaches to examine the cognitive dysfunction in PD as a means to illustrate 

how various imaging sequences and analytical approaches can be applied.

Cognitive dysfunction is a common and debilitating feature of PD, with approximately 20% 

of PD patients meeting criteria for mild cognitive impairment (MCI) at diagnosis, over 40% 

of patients developing MCI within 6 years [112], and 80% of those who survive two decades 

progressing to PD dementia [113,114]. These cognitive deficits change over the course of 

disease, with a variable progression impacting different regions of the brain. Unlike the clear 

role of the SN in motor symptoms, a “cognitive deficit” cannot be treated as uniform 

dysfunction of any single brain region, but rather there are domain-specific deficits that 

correspond to regional and network dysfunction. Examination of regional brain structure and 
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function related to specific cognitive domains is necessary to accurately characterize 

neuropsychiatric symptoms in PD.

Early in the disease course PD patients may not experience fully developed cognitive deficits 

but rather exhibit subtle executive dysfunctions, initially requiring highly sensitive tests to 

detect [115]. The executive dysfunctions observed in PD are characterized by deficits in 

internal control of attention, working memory, set shifting, planning, inhibitory control, dual 

task performance, and a range of decision--making and social cognition functions [116]. The 

emergence of these executive dysfunctions are thought to reflect the involvement of 

associative fronto-basal ganglia loops [117,118]. Deficits associated with this system are 

considered to be potentially dopamine dependent [119] and in some patients even mild 

levels of impairment might result in disability [120]. Task fMRI, which measures changes in 

the BOLD signal when an individual is engaged in a task, has yielded mixed results 

regarding the divergent functional activation patterns during executive functioning tasks 

[121]. However, there is an indication that PD patients can exhibit compensatory activation 

[122,123] prior to the development of the cognitive dysfunction, suggesting a possible 

avenue for future research and intervention.

Dopamine independent cognitive dysfunction, such as memory and visuospatial changes, are 

better predictors for future development of PD dementia [119,124]. These impairments are 

thought to reflect the progression of α-Syn from the brainstem to cortical regions, but may 

also be related to emerging age-related pathology [125]. Resting state fMRI has identified a 

cognition related rs-fMRI PD-related pattern [108] and reduced connectivity in networks 

relevant to cognition, most consistently within the default mode network [126]. 

Hippocampal atrophy may serve as a biomarker of initial cognitive decline in PD, including 

impaired memory encoding and storage [127,128]. Most recently, 7T hippocampal subfield 

imaging indicated a significant relationship between memory performance and CA1, 

suggesting that it may characterize memory [129]. Much work is needed in this area to 

understand the mechanisms of dopamine independent cognitive dysfunction and their 

relationship to underlying neuropathology.

These studies are presented as a means to highlight the complexity in studying PD-related 

non-motor symptoms, and cognition in particular. While aspects of cognitive dysfunction are 

related to the neurodegeneration of the fronto-striatal circuitry, the development of memory 

and visuospatial deficits, the harbingers of dementia, require further investigation. Careful 

consideration of the age of the individual, stage of disease, associated genetic risks, and 

nature of the cognitive symptoms are necessary to develop and utilize biomarkers for the 

cognitive symptoms in PD.

5. Considerations

The use of MRI biomarkers exhibit several potential advantages, for clinical trials as well as 

clinical practice, as the MRI is a noninvasive imaging technique that does not require the 

injection of contrast agent or radiation exposure, and thus can be repeated many times 

during a longitudinal study. Furthermore, MRI scanners are already part of routine medical 

care and easily accessible. However, there are limitations of these methods that need to be 
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carefully considered when translating to use for clinical trials. Specifically, there are several 

issues related to scalability. Many of the iron/neuromelanin sensitive and diffusion measures 

discussed here currently require manual outlining of the SN (and corresponding sub-regions) 

and/or an expert read by a radiologist (in the case of nigrosome imaging), both of which are 

labor intensive processes. Further, manual segmentation creates enormous variability due to 

between-rater differences and drift effects overtime, a major limitation for clinical trials. 

Fortunately, automated segmentation and quantification approaches are being developed and 

future research should focus on validating these measures prior to clinical trial 

implementation [38,55,130,131].

fMRI has relatively high spatial and reasonable temporal resolution, and can be acquired in 

the same session as structural MRI. However, unlike structural MRI, fMRI is highly 

sensitive to dopaminergic medications and is best performed when patients are in a 

practically defined ‘off’ state [110]. Further, there is a large amount of post-processing 

necessary to interpret resting state fMRI and this technique is very sensitive to the effects of 

motion and preprocessing strategies. While single site studies show very few individuals 

exceeding head motion parameters, with no differences between PD and older 

neurologically normal adults [110], head motion control has been difficult to scale to 

multisite studies. Hopefully this can be overcome as emerging standardization will facilitate 

automated processing [132].

6. Summary and conclusions

MRI biomarkers exhibit an enormous potential to characterize disease processes in PD. 

Particularly promising measures that capture PD related changes in the SN include iron, 

neuromelanin, and diffusion sensitive measures. However, there remains a need to validate 

these markers against pathological data and determine their reliability, how sensitive they 

may be in detecting pre-clinical changes, their ability to differentiate PD and APDs, as well 

as capture longitudinal progression. Unlike the clear role of the SN in motor symptoms, a 

“cognitive deficit” cannot be treated as uniform dysfunction of any single brain region, but 

rather there are domain-specific deficits that correspond to regional and network 

dysfunction. Much work is necessary to identify biomarkers in this domain.
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Fig. 1. Neuroanatomy Relevant to Parkinson’s Disease
A. Braak staging of α-synuclein pathology. At death, PD patients exhibit the following 

stages of α-Syn pathology: stage I olfactory bulb only (8.6%), Stage IIa brainstem 

predominant (15.4%), stage IIb – limbic predominant (13.6%), stage III brainstem and 

limbic (31.8%) and stage IV neocortical (30.7%) [133]. While not all patients with 

pathology will exhibit clinical symptoms [16,134], the progression of neuropathology 

generally corresponds to the progression of both motor and non-motor symptoms [18]. B. 

The SN is subdivided into the ventral pars reticulata (SNr) and the dorsal pars compacta 
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(SNc), the latter is composed of dopaminergic neurons. The SNc is further divided into the 

dorsal and ventral tier, with the loss of dopaminergic neurons occurring first in the caudal 

and ventrolateral tier (A9; [15,19]). Within A9, there are five nigrosomes (clusters of 

dopaminergic neurons; N1 – N5), with N1 exhibiting the earliest loss of dopaminergic 

neurons [14]. Dopaminergic neuronal loss typically spreads to neighboring groups from the 

N1 in PD (A10; A8; [20]). C. Fronto-subcortical loops comprise the motor, associative, and 

limbic domains, which respectively transit through the posterior, anterior, and ventral 

striatum, thus segregated functionally and anatomically. GPe = globus pallidus externa. GPi 

= globus pallidus interna. STN = subthalamic nucleus. SNc = substantia nigra pars 

compacta. SNr = substantia nigra pars reticulata. Adapted with permission from: 
[16,74,117].
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Fig. 2. Common MRI methods used to study Parkinson’s disease.
A. Parkinson’s Disease Related Pattern (PDRP) identified with rs-fMRI. PDRP identified in 

rs-fMRI (fPDRP, left) is shown on the MNI 152 template. fPDRP is characterized by 

increased activity in the basal ganglia, thalamus, cerebellum/pons, anterior cingulate cortex 

(ACC), and supplementary motor area (SMA). B. Example cortical and subcortical 

segmentation of a T1-weighted image. C. Normal MR anatomy of the SN at 3T. Left: 

Parasagittal T1w image showing the level of the axial slice. Right: Axial slice passing at the 

level of the midbrain and the SN (arrowheads). The SN appears hypointense in three-

dimensional T1-weighted MP2RAGE (3DT1w) and in two-dimensional T2*weighted 

images (T2*w) and hyperintense in neuromelanin T1-weighted spin-echo images (NMw) 

and proton density-weighted (PDw) images. The contours of the midbrain are outlined in 

white. Adapted with permission from: [74].
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Table 1
Biomarker Definitions

In the United States, FDA-NIH Joint Leadership Council published a resource which includes biomarker 

definitions to facilitate harmonization of terms used in translational science and medical product development 

[Biomarkers, Endpoints, and other Tools (BEST) Resource; [126]].

Biomarker: A defined eharaeteristie that is measured as an indicator of normal biological processes, pathogenic processes, or responses to an 
exposure or intervention, including therapeutic interventions. Molecular, histologic, radiographic, or physiologic characteristics are types of 
biomarkers. A biomarker is not an assessment of how an individual feels, functions, or survives. Categories of biomarkers include:
 - Susceptibility/Risk Biomarker: A biomarker that indicates the potential for developing a disease or medical condition in an individual who 
does not currently have clinically apparent disease or the medical condition.
 - Diagnostic Biomarker: A biomarker used to detect or confirm presence of a disease or condition of interest or to identify individuals with a 
subtype of the disease.
 - Monitoring Biomarker: A biomarker measured serially for assessing status of a disease or medical condition or for evidence of exposure to 
(or effect of) a medical product or an environmental agent.
 - Prognostic Biomarker: A biomarker used to identify likelihood of a clinical event, disease recurrence or progression in patients who have 
the disease or medical condition of interest.

Reasonably Likely Surrogate Endpoint: An endpoint supported by strong mechanistic and/or epidemiologic rationale such that an effect on the 
surrogate endpoint is expected to be correlated with an endpoint intended to assess clinical benefit in clinical trials, but without sufficient 
clinical data to show that it is a validated surrogate endpoint.

Validated Surrogate Endpoint: An endpoint supported by a clear mechanistic rationale and clinical data providing strong evidence that an effect 
on the surrogate endpoint predicts a specific clinical benefit.
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