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Abstract
Aims/hypothesis We aimed to assess whether persistence of C-peptide secretion is associated with less glucose variability and
fewer low-glucose events in adults with type 1 diabetes who use flash monitoring.
Methods We performed a cross-sectional study of 290 adults attending a university teaching hospital diabetes clinic, with type 1
diabetes, who use flash monitoring and in whom a random plasma C-peptide was available in the past 2 years. Variables relating
to flash monitoring were compared between individuals with low C-peptide (<10 pmol/l) and those with persistent C-peptide
(either 10–200 pmol/l or 10–50 pmol/l). In addition, the relationship between self-reported hypoglycaemia and C-peptide was
assessed (n = 167). Data are median (interquartile range).
Results Individuals with preserved C-peptide secretion (10–200 pmol/l) had shorter duration of diabetes (15 [9–24] vs 25 [15–
34] years, p < 0.001) and older age at diagnosis (23 [14–28] vs 15 [9–25] years, p < 0.001), although current age did not differ in
this cohort. Preserved C-peptide was associated with lower time with glucose <3.9 mmol/l (3% [2–6%] vs 5% [3–9%],
p < 0.001), fewer low-glucose events per 2 week period (7 [4–10] vs 10 [5–16], p < 0.001), lower SD of glucose (3.8 [3.4–
4.2] vs 4.1 [3.5–4.7] mmol/l, p = 0.017) and lower CV of glucose (38.0 [35.0–41.6] vs 41.8 [36.5–45.8], p < 0.001). These
differences were also present in those with C-peptide 10–50 pmol/l and associations were independent of diabetes duration and
estimated HbA1c in logistic regression analysis. Preserved C-peptide was also associated with lower rates of self-reported
asymptomatic hypoglycaemia (8.0% vs 22.8% in the past month, p = 0.028).
Conclusions/interpretation Preserved C-peptide secretion is associated with fewer low-glucose events and lower glucose vari-
ability on flash monitoring. This suggests that individuals with preserved C-peptidemaymore safely achieve intensive glycaemic
targets.
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Abbreviations
CGM Continuous glucose monitoring
CSII Continuous subcutaneous insulin infusion
IQR Interquartile range

Introduction

In recent years the utility of C-peptide measurement in routine
clinical diabetes practice has garnered increasing attention [1].
C-peptide measurement in those with a clinician diagnosis of
type 1 diabetes is an effective means of identifying individuals
who may have monogenic diabetes [2] and of identifying
other misclassifications (e.g. type 2 diabetes), with the poten-
tial for significant changes in therapy. Even in those with a

Electronic supplementary material The online version of this article
(https://doi.org/10.1007/s00125-020-05099-3) contains peer-reviewed but
unedited supplementary material, which is available to authorised users.

* Fraser W. Gibb
fraser.gibb@ed.ac.uk

1 Edinburgh Centre for Endocrinology & Diabetes, Royal Infirmary of
Edinburgh, Little France Crescent, Edinburgh EH16 4SA, UK

2 Centre for Cardiovascular Science, University of Edinburgh,
Edinburgh, UK

3 Edinburgh Centre for Endocrinology & Diabetes, Western General
Hospital, Edinburgh, UK

4 Department of Clinical Biochemistry, Western General Hospital,
Edinburgh, UK

Diabetologia (2020) 63:906–914
https://doi.org/10.1007/s00125-020-05099-3

http://crossmark.crossref.org/dialog/?doi=10.1007/s00125-020-05099-3&domain=pdf
https://orcid.org/0000-0002-5576-6463
http://creativecommons.org/licenses/by/4.0/
mailto:fraser.gibb@ed.ac.uk


clear diagnosis of type 1 diabetes, there is increasing evidence
that confirming endogenous insulin secretion has clinical
implications. Significant residual C-peptide secretion is more
likely in those diagnosed in adulthood, ranging from 36%
within the first 5 years to 22% up to 20 years post diagnosis
[3], with evidence of stabilisation after an exponential fall in
the first 7 years [4]. Even after 50 years of type 1 diabetes,
32.4% of individuals retain detectable C-peptide levels
(>16 pmol/l) [5]. Evidence from the DCCTsuggests that inten-
sive therapy may prolong the duration of C-peptide persistence
[6]. In the DCCT, preserved C-peptide secretion was associat-
ed with lower rates of severe hypoglycaemia [7], fewer diabe-
tes complications, lower HbA1c and lower insulin doses [8],
although these associations were mostly observed in the inten-
sive treatment arm. These associations were not noted in the
recent Joslin Medalist Study which assessed individuals with
long-standing type 1 diabetes [5]. Preservation of C-peptide
has been associated with lower self-reported rates of symptom-
atic, asymptomatic and severe hypoglycaemia, although not
with measures of impaired awareness, in a number of observa-
tional studies [9–11]. Many C-peptide assays in current clinical
use provide a limit of quantification at around 50 pmol/l;
however, C-peptide levels >10 pmol/l have been independent-
ly associated with a lower risk of diabetes complications [10].
C-peptide persistence has been associated with improved
continuous glucose monitoring (CGM) ‘time in range’ in a
largely paediatric cohort of people with recently diagnosed
type 1 diabetes [12] and with lower glucose variability and
low-glucose events in type 2 diabetes [11]. However, little is
known of the effects in adults with type 1 diabetes and beyond

the first few years after diagnosis. Within the past 2 years, our
centre has expanded use of flash glucose monitoring to approx-
imately 50% of individuals with type 1 diabetes [13]. Across a
similar timescale we have introduced a programme to measure
random plasma C-peptide in all individuals with apparent type
1 diabetes of more than 3 years’ duration. The convergence of
these two events has provided the opportunity to assess the
relationship between C-peptide status and flash glucose moni-
toring variables in a large cohort of adults with type 1 diabetes
in a ‘real-world’ clinical context. We hypothesised that persis-
tence of C-peptide, even at low levels, would be associated
with less glucose variability and fewer low-glucose events.

Methods

Study design and participantsWe conducted a cross-sectional
study of adults with type 1 diabetes, using flash glucose moni-
toring (Freestyle Libre, Abbott, Witney, UK), in whom
random plasma C-peptide results were available. Since
July 2017, we have routinely measured random C-peptide in
all people with type 1 diabetes of greater than 3 years’ duration
in our centre (comprising the Royal Infirmary of Edinburgh
and Western General Hospital diabetes clinics), to help iden-
tify potential misclassifications (e.g. monogenic diabetes or
type 2 diabetes). Our centre approved National Health
Service-funded flash glucose monitoring for all individuals
meeting Scottish Diabetes Group criteria in February 2018
[13]. To date, approximately 50% of our type 1 diabetes popu-
lation have commenced flash monitoring. All flash
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monitoring users are encouraged to link their data to our centre
using the LibreView platform (Abbott, Witney, UK). To be
included in this study, the following criteria had to be met:

& diabetes duration >3 years;
& concomitant plasma glucose >4 mmol/l at time of C-

peptide measurement;
& 2 weeks of flash monitoring data available from

LibreView between February and April 2019;
& ≥75% data capture with respect to flash monitoring data

within the 2 week period being assessed.

Individuals with C-peptide >200 pmol/l (n = 21) were
excluded from this analysis to limit the possibility of including
people with diagnoses other than type 1 diabetes. All elements
of this observational study reflect routine clinical care and
therefore ethics approval was not required. These data are
presented with the consent of the owner (NHS Lothian).

Outcomes The principal analyses compared individuals with
C-peptide <10 pmol/l (low) and those with C-peptide 10–
200 pmol/l (preserved). A further category was created to
compare low C-peptide (<10 pmol/l) with ‘micro-secretors’
(10–50 pmol/l). The main outcomes of interest were differ-
ences in flash monitoring variables (obtained from the
LibreView platform) between those with low and preserved
C-peptide. The key flash monitoring variables were average
glucose, SD of glucose, CV of glucose, number of low-
glucose events (<3.9 mmol/l) per 2 weeks, time below range
(glucose <3.9 mmol/l), time in range (glucose 3.9–10.0 mmol/
l), time above range (glucose >10 mmol/l), low-glucose event
average duration, estimated HbA1c and interquartile range
(IQR) of glucose. Most recent HbA1c measurement, age at
diagnosis, diabetes duration, BMI and treatment type (contin-
uous subcutaneous insulin infusion [CSII] or multiple daily
injections [MDI]) were obtained from our national clinic data-
base system, SCI-Diabetes (https://www.sci-diabetes.scot.
nhs.uk). Presence of microvascular complications was
derived from SCI-Diabetes and the electronic patient record.
Individuals attending the Royal Infirmary of Edinburgh are
routinely asked to complete a hypoglycaemia questionnaire
at each clinic visit, which includes a modified Clarke ques-
tionnaire [14] and Gold score [15] (available in 167/187
[89.3%]).

Assays Random plasma C-peptide was measured using an
Abbott Architect immunoassay. In-house studies have demon-
strated a CVof 7% at 7 pmol/l and of 15% at 4 pmol/l. Based
on these data, we report 4 pmol/l as the limit of quantification
in this study. HbA1c was measured by ion-exchange high
performance liquid chromatography using the Arkray
Adams A1c automated platform (A. Menarini Diagnostics,
Winnersh, UK).

Statistical analysisData were mostly non-normally distributed
(as determined by Shapiro–Wilk test) and are presented as
median and IQR. Unpaired data were analysed by Mann–
Whitney U test. Categorical data were compared by χ2 or by
Fisher’s exact test where the conditions for χ2 were not met.
Correlations were analysed by Spearman’s rank correlation.
Logistic regression was performed to identify independent
predictors of key flash monitoring variables. Significance
was accepted at p < 0.05. All analyses were performed using
RStudio version 1.0.153 (https://www.rstudio.com).

Results

Participant characteristics Full characteristics are presented in
Table 1, comparing those with low (<10 pmol/l) and preserved
(10–200 pmol/l) C-peptide or micro-secretion of C-peptide
(10–50 pmol/l). Median C-peptide was <4 pmol/l (<4 to <4)
in the low group, 22 pmol/l (16–31) in the micro-secretion
group and 32 pmol/l (19–67) in the preserved group. C-
peptide concentration was negatively correlated with duration
of diabetes (r −0.362, p < 0.001) (Fig. 1), and although pres-
ence of retinopathy (of any severity) was more common in
low-C-peptide individuals, this association was not indepen-
dent of diabetes duration. Neither severe retinopathy (i.e.
requiring either retinal photocoagulation or specialist ophthal-
mology review) nor elevated urinary albumin/creatinine ratio
was associated with C-peptide status (Table 1). C-peptide was
not significantly correlated with plasma glucose at the time of
C-peptide measurement (r 0.044, p = 0.460) or most recent
HbA1c (r 0.040, p = 0.450). In comparison with the other
2597 individuals with type 1 diabetes attending our centre,
participants in this study had lower HbA1c (58 [52–66] vs 63
[54–74] mmol/mol, p < 0.001) (7.5% [6.9%–8.2%] vs 7.9%
[7.1%–8.9%]), weremore likely to use CSII (28.3% vs 13.4%,
p < 0.001), were younger (42 [31–53] vs 46 [31–59] years,
p = 0.016) and had longer duration of diabetes (21 [13–32]
vs 19 [10–32] years, p = 0.007).

Flash glucose data Average glucose, estimated HbA1c, time in
range and time above range did not differ significantly between
those with C-peptide <10 pmol/l and those with preserved C-
peptide secretion (Table 2). However, CV, SD and IQRwere all
lower in individuals with preserved C-peptide (Table 2 and Fig.
2). Similarly, time below range and number of low-glucose
events were lower in individuals with preserved C-peptide
(Table 2 and Fig. 2). When limiting the comparison to those
with C-peptide levels of 10–50 pmol/l, these associations
remained significantly different compared with low-C-peptide
individuals (Table 2). C-peptide was significantly correlated
with CV (r −0.141, p = 0.016), time below range (r −0.180,
p = 0.002) and low-glucose events (r −0.182, p = 0.002) (elec-
tronic supplementary material [ESM] Fig. 1a–c).
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Logistic regression models identified C-peptide status as
independently contributing to associations with glucose vari-
ability and low-glucose variables (Table 3).

Hypoglycaemia questionnaire data Median Gold score (2
[1–2] in low vs 1 [1–2] in preserved, p = 0.506) and the
percentage of people with impaired awareness of
hypoglycaemia, defined as Gold score ≥4 (9.6% vs 2.4%,
p = 0.281), did not significantly differ by C-peptide status.
Individuals with more than 2–3 episodes of symptomatic
hypoglycaemia per week, in the preceding month, did not
differ significantly between groups (53.5% vs 40.8%,
p = 0.137). However, low-C-peptide individuals were
more likely to report any asymptomatic hypoglycaemia
in the past month (22.8% vs 8.0%, p = 0.028) and to report
not always being aware of hypoglycaemia (45.6% vs
28.0%, p = 0.034).

Discussion

As hypothesised, we demonstrated significant associations
between residual C-peptide secretion and lower glucose variabil-
ity and low-glucose events in flash glucose monitoring users.
These associations were independent of prevailing HbA1c and
diabetes duration, suggesting routine evaluation of C-peptide
may have clinical utility in the management of type 1 diabetes.
These data also highlight the limitations of HbA1c, which did not
differ between groups, as a means of assessing optimal
glycaemic management. In the modern era, it is conceivable that
HbA1c will be supplanted by CGM metrics to optimise
glycaemic management [16], particularly in efforts to minimise
glucose variability, which has been posited as an independent
risk factor for diabetes complications [17].

Our flash glucose monitoring findings are accompanied by
significant differences in self-reported hypoglycaemia, consistent

Table 1 Comparison of clinical and demographic variables by C-peptide status

Variable <10 pmol/l
n = 201

10–200 pmol/l
n = 89

p for <10 pmol/l
vs 10–200 pmol/l

10–50 pmol/l
n = 58

p for <10 pmol/l
vs 10–50 pmol/l

Age at diagnosis (years) 15 (9–25) 23 (14–28) <0.001 21 (14–30) <0.001

Duration of diabetes (years) 25 (15–34) 15 (9–24) <0.001 17 (10–28) <0.001

Current age (years) 43 (31–53) 39 (31–53) 0.560 41 (31–54) 0.975

BMI (kg/m2) 26.6 (23.7–30.0) 27.2 (24–30.6) 0.327 27.2 (24.2–30.7) 0.319

HbA1c (mmol/mol) 57 (52–67) 58 (52–65) 0.845 57 (52–64) 0.607

HbA1c (%) 7.4 (6.9–8.3) 7.5 (6.9–8.1) 7.4 (6.9–8.0)

Obese 51/200 (25.5%) 27/89 (30.3%) 0.392 19/58 (32.8%) 0.274

Male 108/201 (53.7%) 53/89 (59.6%) 0.358 34/58 (58.6%) 0.510

CSII 60/201 (29.9%) 22/89 (24.7%) 0.371 16/58 (27.6%) 0.739

Any retinopathy 137/201 (68.2%) 42/89 (47.2%) <0.001 27/58 (46.6%) 0.039

Any retinal photocoagulation therapy 35/201 (17.4%) 11/89 (12.4%) 0.277 10/58 (17.2%) 0.976

Under specialist ophthalmology review 53/201 (26.4%) 17/89 (19.1%) 0.182 14/58 (24.1%) 0.733

Elevated urinary albumin/creatinine ratio 29/200 (14.5%) 14/88 (15.9%) 0.757 10/58 (17.2%) 0.608

Data are presented as median (IQR) or as n/N (%)

Fig. 1 Relationship between
diabetes duration and random
plasma C-peptide. Blue dots
represent individuals with any
reported retinopathy and red dots
represent those with no
retinopathy. Size of dot
corresponds to age at diagnosis.
Horizontal lines represent
10 pmol/l and 50 pmol/l
thresholds
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with findings from several previous investigations [9–11],
although significant differences were limited to asymptomatic
hypoglycaemia in our study. Marren et al [9] describe significant
differences in self-reported symptomatic and asymptomatic
hypoglycaemia in those with preserved C-peptide, although the
median C-peptide concentration in this group (114 pmol/l) was
substantially higher than in our study (32 pmol/l). While we
report random plasma C-peptide andMarren et al [9] used values
after a standard mixed-meal tolerance test, the correlation
between random and post-mixed-meal C-peptide is known to
be very strong (R = 0.91) and is unlikely to substantially limit
the comparability of these studies [18]. Other important contrasts
with this study are the higher HbA1c (67–69 mmol/mol [8.3–
8.5%] vs 57–58 mmol/mol [7.4–7.5%] in our cohort) and signif-
icant difference in age between C-peptide groups, which was not
different in our study (which was limited to adults) despite differ-
ences in diabetes duration and age at diagnosis. Kuhtreiber et al
[10] demonstrated similar associations between hypoglycaemia
and fasting C-peptide, although the median concentration of C-
peptide associated with mild and moderate hypoglycaemia
(42.4 pmol/l) was higher than the median in both our preserved
and micro-secretor categories. The novelty of our self-reported
hypoglycaemia data is the demonstration of lower rates of
asymptomatic hypoglycaemia at an even lower C-peptide thresh-
old than previously demonstrated [9–11].

The fact that C-peptide status is strongly associated with
reduced low-glucose events and glucose variability, but not
average glucose, time in range or time above range, offers a
mechanistic insight into the consequences of preserved C-
peptide. If this were simply a ‘buffering’ effect of ongoing
endogenous insulin secretion, smoothing out the peaks and
troughs in glucose in individuals receiving exogenous insulin,
we might expect to see this reflected in a lower HbA1c.
However, this was not the case in either our cohort or that of
Marren et al [9]. Loss of the glucagon counter-regulatory

response to hypoglycaemia occurs in many individuals with
type 1 diabetes within 5 years of diagnosis and is linked, in
part, to the loss of a paracrine effect of endogenous insulin on
alpha cells in pancreatic islets [19]. Adults with type 1 diabe-
tes and preserved C-peptide (>99 pmol/l after a mixed-meal
tolerance test) have relative preservation of the glucagon
response to hypoglycaemia [20]. Therefore, the role of intra-
islet insulin signalling offers a compelling mechanism to
explain the association of preserved C-peptide with reduced
low-glucose events [21, 22], although this phenomenon was
not observed in young individuals within 1 year of diagnosis
[23]. The only cohorts where preserved C-peptide was asso-
ciated with lower HbA1c were the intensive arm of DCCT [8]
and the study by Kuhtreiber et al [10], both of which had
comparatively low HbA1c levels. Cohorts with no difference
in HbA1c, in relation to C-peptide status (including this study),
may reflect a failure to intensify glycaemic management in
individuals who would be at lower risk of hypoglycaemia [9].

The key strength of this study is its novelty in assessing the
relationship between C-peptide and flash glucose monitoring
variables in a ‘real-world’ clinical context. Where associations
of CGMwith C-peptide were reported previously, this was in a
largely paediatric population, within 2 years of diagnosis and
with relatively higher levels of C-peptide [12]. Our cohort also
benefits from being balanced in terms of current age and HbA1c

between low and preserved C-peptide groups. As a ‘real-world’
assessment, the various measures obtained in this study (ques-
tionnaire data, HbA1c, C-peptide and flash monitoring data)
were not captured simultaneously, although we would envisage
this increasing the likelihood of a type II error rather than
producing false positive associations with C-peptide. Random
C-peptide appears to be as robust a measure of C-peptide status
as values obtained after a mixed-meal tolerance test [18], and
indeed we found no significant correlation between C-peptide
and concomitant plasma glucose. It would have been

Table 2 Comparison of data derived from flash monitoring by C-peptide category

Variable <10 pmol/l
n = 201

10–200 pmol/l
n = 89

p for <10 pmol/l
vs 10–200 pmol/l

10–50 pmol/l
n = 58

p for <10 pmol/l
vs 10–50 pmol/l

Average glucose (mmol/l) 9.8 (8.7–11.0) 9.8 (8.9–11.0) 0.792 9.5 (8.8–10.4) 0.470

SD (mmol/l) 4.1 (3.5–4.7) 3.8 (3.4–4.2) 0.017 3.8 (3.4–4.2) 0.032

CV (%) 41.8 (36.5–45.8) 38.0 (35.0–41.6) <0.001 38.5 (35.1–44.4) 0.030

Low events per 2 weeks (n) 10 (5–16) 7 (4–10) <0.001 8.0 (4.3–12.8) 0.037

Below 3.9 mmol/l (%) 5 (3–9) 3 (2–6) <0.001 4 (2–6) 0.034

In range (3.9–10.0 mmol/l) (%) 50 (39–58) 52 (42–61) 0.448 53 (45–62) 0.117

Above 10 mmol/l (%) 44 (32–55) 45 (34–55) 0.637 42 (33–50) 0.565

Low event average duration (min) 100 (76–127) 90 (66–120) 0.138 90 (66–123) 0.302

Estimated HbA1c (mmol/mol) 62 (54–69) 62 (55–69) 0.794 59 (55–66) 0.464

Estimated HbA1c (%) 7.8 (7.1–8.5) 7.8 (7.2–8.5) 7.6 (7.2–8.2)

IQR (mmol/l) 5.8 (4.7–6.8) 5.4 (4.6–6.1) 0.028 5.3 (4.6–6.0) 0.032

Data are presented as median (IQR)
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preferable to have access to different low-glucose thresh-
olds (e.g. <3 mmol/l); however, the nature of the data
capture process did not permit this. It would also have
been useful to have reported insulin dose data, but unfor-
tunately these were not consistently available. The deci-
sion to exclude individuals with C-peptide >200 pmol/l
was pragmatic, to limit the likelihood of including
misclassified cases, but also because the specific research
question related to the effect of relatively low levels of C-
peptide secretion. We did not measure diabetes antibodies

as a matter of routine and so it is possible that our cohort
contained a very small proportion of individuals with a cause
of insulin deficiency other than type 1 diabetes, e.g. hepato-
cyte nuclear factor 1-β monogenic diabetes. However, this
does not affect the central tenet of our study regarding the
relationship between C-peptide and low-glucose events.
While the ‘real-world’ design is a strength in terms of
generalisability, our cohort is skewed towards people with
lower HbA1c and greater CSII usage than our centre’s total
type 1 population.

Fig. 2 Influence of C-peptide category upon the following flash glucose data: (a) CV, (b) SD, (c) IQR, (d) percentage of time below 3.9 mmol/l and (e)
low-glucose events per 14 days. The boxes represent median and IQR and whiskers represent 1.5 × IQR
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These findings suggest that routine clinical measurement of
C-peptide in type 1 diabetes may be important not only in
confirming the correct diagnosis of diabetes, but also in
informing the risk of low glucose and glycaemic instability.
Given that we have shown an effect in the C-peptide range
10–50 pmol/l, we suggest that wider availability of higher-
sensitivity C-peptide assays may be of value, as many current-
ly available clinical assays report 50 pmol/l as their lower limit
of quantification. Our findings support previous conclusions,
drawn from self-reported hypoglycaemia [9], that there
appears to be a failure of intensification in glucose-lowering
therapy in people who are at lower risk of hypoglycaemia and
glucose variability. These data also raise the possibility of
stratified glycaemic targets which acknowledge the influence
of residual C-peptide secretion. Given the apparent impor-
tance of persistent C-peptide secretion, every effort should
be made to ensure early intensification of glycaemic control
at diagnosis, as this is currently the only available intervention
shown to preserve C-peptide secretion [6]. Moreover, studies
of novel strategies to preserve C-peptide secretion, such as
immunotherapies, should be supported and funded [24].
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