Skip to main content
. 2020 Mar 23;20(6):1771. doi: 10.3390/s20061771

Table 2.

Comprehensive analysis of soft sensor models based on SVM (for the list of abbreviations see Table A1).

Ref Prediction model Compared with RMSE/MSE MAXE Best Performance
[57] LS-SVM RBF-NN - - LS-SVM
[45] LS-SVM NN - - LS-SVM
[49] SVM BP-NN - - SVM
[50] PSO-LS-SVM 0.7835 0.486 PSO-LS-SVM
LS-SVM 0.1032 1.493
[51] PSO-SVM SVM - - PSO-SVM
[52] ABC-MLS-SVM PID control - - ABC-MLS-SVM
[54] GRA-LS-SVM 2.518 2.641 GRA-LS-SVM
RBF-NN 14.273 6.271
LS-SVM 3.219 2.847
GRA-RBFNN 4.162 3.594
[56] IPSO-SVM PSO - - IPSO-SVM
[58] MLS-SVM Inversion LS-SVM - - MLS-SVM Inversion

Ref - References, RMSE – Root Mean Square Error, MAXE –Maximum Absolute Error, MSE – Mean Square Error