Table 2.
Comprehensive analysis of soft sensor models based on SVM (for the list of abbreviations see Table A1).
| Ref | Prediction model | Compared with | RMSE/MSE | MAXE | Best Performance |
|---|---|---|---|---|---|
| [57] | LS-SVM | RBF-NN | - | - | LS-SVM |
| [45] | LS-SVM | NN | - | - | LS-SVM |
| [49] | SVM | BP-NN | - | - | SVM |
| [50] | PSO-LS-SVM | 0.7835 | 0.486 | PSO-LS-SVM | |
| LS-SVM | 0.1032 | 1.493 | |||
| [51] | PSO-SVM | SVM | - | - | PSO-SVM |
| [52] | ABC-MLS-SVM | PID control | - | - | ABC-MLS-SVM |
| [54] | GRA-LS-SVM | 2.518 | 2.641 | GRA-LS-SVM | |
| RBF-NN | 14.273 | 6.271 | |||
| LS-SVM | 3.219 | 2.847 | |||
| GRA-RBFNN | 4.162 | 3.594 | |||
| [56] | IPSO-SVM | PSO | - | - | IPSO-SVM |
| [58] | MLS-SVM Inversion | LS-SVM | - | - | MLS-SVM Inversion |
Ref - References, RMSE – Root Mean Square Error, MAXE –Maximum Absolute Error, MSE – Mean Square Error