Table 3.
Comprehensive analysis of soft sensor models based on NN/ANN (for the list of abbreviations see Table A1).
Ref | Prediction model | Compared with | RMSE/MSE | MAXE | Best Performance |
---|---|---|---|---|---|
[31] | NN-MIV | 27.512 | - | NN-MIV | |
NN | 37.943 | ||||
[61] | GPR-NN MIV | 0.0436 | 0.1440 | GPR-NN-MIV | |
GPR | 0.1082 | 0.4373 | |||
[23] | RBF-NN | BP | - | - | RBF-NN |
[62] | PSO-NN | BPNN | - | - | PSO-NN |
[65] | Novel SS ANN | General SS-ANN | - | - | Novel SS-ANN |
[66] | GRNN | RBF-NN | - | - | GRNN |
[67] | KPCA-RBF-NN | PCA | - | - | KPCA-RBF-NN |
Ref - References, RMSE – Root Mean Square Error, MAXE –Maximum Absolute Error, MSE – Mean Square Error.