Table 4.
Comprehensive analysis of soft sensor models based on fuzzy logic (FL) NN/SVM (for the list of abbreviations see Table A1).
| Ref | Prediction Model | Compared with | RMSE/MSE | MAXE | Best Performance |
|---|---|---|---|---|---|
| [43] | FNN Inverse System | PID control | - | - | FNN Inverse sys |
| [89] | GD-FNN | 0.0064 | |||
| RBF-NN | 0.0194 | GD-FNN | |||
| [90] | MNN-KFCM | 0.1963 | - | MNN-MFKC | |
| Single NN | 0.5441 | ||||
| [91] | FLS-SVM | LS-SVM | - | - | FLS-SVM |
| [92] | PSO-FNN | 0.1141 | 0.6151 | PSO-FNN | |
| FNN | 1.3658 | 3.5640 | |||
| [93] | Fuzzy LS-SVM | 0.0097 | - | Fuzzy LS-SVM | |
| LS-SVM | 0.0244 |
Ref - References, RMSE – Root Mean Square Error, MAXE –Maximum Absolute Error, MSE – Mean Square Error.