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Abstract: The comfortable, continuous monitoring of vital parameters is still a challenge. The long-term
measurement of respiration and cardiovascular signals is required to diagnose cardiovascular and
respiratory diseases. Similarly, sleep quality assessment and the recovery period following acute
treatments require long-term vital parameter datalogging. To address these requirements, we have
developed “VitalCore”, a wearable continuous vital parameter monitoring device in the form of
a T-shirt targeting the uninterrupted monitoring of respiration, pulse, and actigraphy. VitalCore
uses polymer-based stretchable resistive bands as the primary sensor to capture breathing and pulse
patterns from chest expansion. The carbon black-impregnated polymer is implemented in a U-shaped
configuration and attached to the T-shirt with “interfacing” material along with the accompanying
electronics. In this paper, VitalCore is bench tested and compared to gold standard respiration and
pulse measurements to verify its functionality and further to assess the quality of data captured
during sleep and during light exercise (walking). We show that these polymer-based sensors could
identify respiratory peaks with a sensitivity of 99.44%, precision of 96.23%, and false-negative rate of
0.557% during sleep. We also show that this T-shirt configuration allows the wearer to sleep in all
sleeping positions with a negligible difference of data quality. The device was also able to capture
breathing during gait with 88.9-100% accuracy in respiratory peak detection.

Keywords: vital parameter monitoring; sleep monitoring; conductive polymer; home sleep test;
continuous respiratory monitoring

1. Introduction

The human body can be described as a continuously running machine with electrical activity and
mechanical movement. Many vital signs, as we measure them, are a byproduct of these dynamics
and are used to indicate the general health of the individual through comparison with known healthy
values. The three most basic vital signs are respiration, heartbeat, and body temperature, which can be
sensed directly by another human without any medical equipment. Respiration is observed as rhythmic
chest/abdomen movement or sensing the air moving in/out of the nostrils or mouth. The heartbeat can
be observed either by capturing the electrical signal within the heart, its direct mechanical response,
or the subsequent pulse at the arm, neck, or groin. Body temperature cannot be specifically measured
without a thermometer; however, a healthy human can touch and determine when a body is abnormally
hot or cold. All three vital signals have established acceptable ranges indicating when an individual is
generally healthy or unhealthy. Among the three vital signs, both respiration and heartbeat may be
measured by quantifying mechanical movement.
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A healthy, independent human does not need continuous vital sign monitoring except perhaps to
evaluate their physical performance. If an individual is truly ill, they will undoubtedly be connected
to a myriad of available medical devices to monitor a large variety of physiological data. However,
it is often the case that no continuous physiological monitoring is maintained following the acute
phase of treatment and recovery. There are several reasons why this may be the case, including
the cost of additional equipment and the benefit of the patient not being tethered to equipment so
they can ambulate with minimal risk. However, as the cost of healthcare continues to rise, there is
increasing interest in minimizing avoidable inpatient hospitalizations. A light-touch physiological
monitoring system can aid in enabling this need. In the first instance, it could provide the clinician with
accurate data that demonstrates that the patient is sufficiently stable to be discharged. A connected
device could potentially go with the patient, again providing assurance that their health is maintained
during and following transition to their home or care provider. This may have an additional benefit
of identifying risk factors that could lead to readmission, allowing earlier preventative intervention.
To our knowledge, there is no existing device developed with this application in mind. Such a device
should fulfill the following four basic requirements.

Low cost.
Simple setup procedure.
Comfortable and suitable for multiple day/night use.

Ll N

Accurate representation of the physiological metrics of interest.

These four requirements are not mutually exclusive, and the increased fulfillment of one
requirement can easily degrade the fulfillment of another. The success of such a device depends on how
the designers tune the four parameters such that it can provide the best possible solution. The simplicity,
“invisibility”, and comfort of the designed device depend on the materials and monitoring methods
employed. For example, measuring respiration using tubes inserted into nostrils, face masks, or acoustic
sensors mounted on the nose or throat could provide accurate measurements but would not satisfy
the requirement regarding user comfort [1,2]. Completely noninvasive methods such as video [3-5],
vibration, or Doppler effects [6,7] are comfortable to users but may not be simple to set up or provide
the required continuous accuracy. In our previous work, we have observed that polymer-based
conductive rubber or conductive stretchable fabric when used as displacement and vibration sensors
could introduce a balanced middle ground between these two approaches [8-13]. These ‘morphic’
sensors are worn tight to the body, but not with any significant compressive force; furthermore, they are
unobtrusive and are comfortably worn.

Table 1 shows a summary of the currently available wearable solutions for vital parameter
monitoring. The table is divided into commercially available products and research or prototype-only
devices. The intended purpose or use of each device is listed. The capability of capturing heart rate
(HR) and respiratory rate (RR) are indicated, along with the corresponding technologies used to achieve
these measurements.

Table 1. Summary of the current state-of-the-art vital monitoring wearables and internal technology.
ECG: electrocardiogram, HR: heart rate, PPG: peaks of finger measurement, RR: respiratory rate.

elastomer

Product Purpose HR HR Technology RR RR Technology
Everion [14] Fitness/medical v PPG v —
Hexoskin [15] Fitness/medical v ECG v RIP bands
Ambiotex [16] Fitness v ECG X —
Athos [17] Fitness v ECG X —
Hitoe [18] Fitness/consumer v ECG X —
Roudjane et al. (2018) [19] Consumer X — v/ Wireless antenna signal attenuation
Presti et al. (2019) [20] Sports X — v Flex1blGerl;1ttirrelrgBragg
Trindade et al. (2016) [21] Consumer v ECG X —
“Phyjama”, Kiaghadi, A. (2019) [22] Consumer/medical v Resistive sensor fabric v/ Resistive sensor fabric
Our work Consumer/Medical v ELG <+ Canibrom v Carbon black elastomer
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One noticeable pattern of the commercial products (shaded gray on Table 1) is the lack of respiratory
monitoring. Among these, only Hexoskin is capable of providing continuous respiratory monitoring
using respiratory inductance plethysmography (RIP) bands. RIP involves the AC polarization of a
conductive wire (usually a rubber-shielded copper wire) and measuring the inductance change [23].
The RIP bands provide excellent reproducibility allowing respiratory volume measurement. However,
it also involves more complex instrumentation without advantages in signal to noise ratio (SNR)
compared with a DC polarized resistive band approach. Mutual inductance between RIP sensors is
another issue that either requires multiple high-Q oscillators with sufficient frequency separation or a
time-division multiplexing scheme.

Everion claims that it can provide RR; however, we did not find any evidence that the measures
are accurate enough to be useful. Huwiler states, “Unfortunately, the data quality of the Everion
measurement of the respiratory rate was low, and therefore, could not be included into the analysis” in
a sleep monitoring experiment setup [24].

Apart from the T-shirt-like wearable solutions, there are several specialized devices in the market
to monitor vital signals during sleep. These at-home sleep monitoring devices are designed to aid the
diagnosis of sleep disordered breathing, primarily obstructive sleep apnea [25]. Apnealink air [26],
Nox T3 [27], Philips Alice PDx [28], and Alice NightOne [29] are some of the more popular devices in
use. These devices support multiple channels such as respiratory monitoring using RIP bands or nasal
pressure cannula, heart rate monitoring using electrocardiogram (ECG) or peaks of finger measurement
(PPG) and blood oxygen saturation monitoring. The major disadvantages of these devices are their
bulkiness and user comfort. The main controller units of Apnealink air (6.2 cm x 10.2 cm), Nox T3
(7.9 cm X 6.3 cm), Alice PDx (12.7 cm X 7.62 cm), and Alice NightOne (10.34 cm X 6.78 cm) are relatively
large devices that need to be attached on the chest during sleep. The rigid structure and numerous
sensing apparatus attachments do not allow the user to sleep in all sleep positions comfortably.

Research-based prototype devices and experiments typically feature technical methods that
are not yet easily realizable in mass produced products. Wireless antenna signal attenuation-based
respiratory monitoring produces a very low SNR signal, while flexible fiber Bragg grating involves
complex instrumentation that is not suitable for low-power, smaller “invisibles”. The Phyjama [22]
is an interesting approach to measure respiration and pulse using layered fabric sensors. The fabric
sensors are stitched to a T-shirt as square pads on multiple locations and the pads change resistance
with pressure applied to each pad. However, it is “designed for close contact with the skin and
unsuitable for loosely worn clothing”. The patches rely only on passive pressure applied to the fabric
(such as during sleep, where at least one patch is compressed against the body), so the device is
unusable in sitting and standing positions due to the lack of passive pressure against the T-shirt. In our
experience with polymer-based resistive elements or conductive fabric [30-32], resistive change has a
non-linear relationship where the highest sensitivity is obtained within the low strain region, <2%
stretch. Therefore, when conductive fabric or carbon black elastomers are used, the sensors are not
particularly tight in use, requiring less compressive force either from the T-shirt material or substrate
layer to follow the body movement closely and accurately.

This paper focuses on exploring the use of these ‘morphic’ sensors to extract mechanical movements
as a means of monitoring respiratory and cardiac function. As the intended use case is limited to the
context of a patient following acute care and in/following the transition to the home/care provider,
monitoring requirements are limited to low-level activity (walking) and in bed (sleep). The first part of
this paper describes the rationale and technical development of the morphic sensor-embedded T-shirt.
This is followed by bench-testing and use-case matched proof-of-concept experiments.
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2. Material and Methods

This paper evaluates the performance of flexible electroresistive band (ERB) sensors to monitor
mechanical physiological body movements. These movements are essentially regional body volume
changes transferred to conductive/electroresistive materials embedded in flexible clothing. There are
a number of varieties of conductive polymers/fabrics available in the current market; however, the
majority of these materials are not available commercially and are still in the research stage. Stretchable
electroresistive sensors incorporate two main components, the conductive component (e.g., carbon
black, graphene, nanowires, or metal elements such as silver, gold, nickel, and copper) with flexible
support material (e.g., silicon-based elastomers, rubber-based elastomers) [30]. Graphene-based
material shows better dynamic characteristics and performance but is in the early stage of research
with limited availability. Conductive polymers based on carbon black and metal-doped fabrics are
widely available due to their widespread use for electromagnetic interference shielding applications.

2.1. Sensors

For this work, we have manufactured a bespoke U-shaped carbon black rubber sensor (Figure 1(bii)).
This shape allows for a single point electrical connection to the main circuit removing the need for a
return wire. The electrical parameters of the sensor are reported in Table 2. It is important to note that
the resistance change with length is not perfectly linear. In addition, the rubber shows an exponentially
decaying voltage under constant current before stabilizing.

Table 2. Electrical and physical characteristics of a U-shaped rubber band.

Parameter Value
Length 11.6 mm
Width 2 mm

Thickness 2 mm

Resistance/cm 258.6 ()
A Resistance/cm 500 O)

While we are primarily interested in monitoring vital signals (cardiac and respiratory function)
using flexible conductive materials, we also incorporated accelerometry to capture the body position
and activity and investigate the impact of movement artefacts. An electrocardiogram (ECG) frontend
is also included as a cardiac activity reference for comparison.

2.2. Hardware and Electronics

The hardware platform is designed such that it can be integrated into a T-shirt allowing maximum
“invisibility”. Data need to be captured, recorded, and transferred to an external PC/Mobile Phone or
Cloud for further analysis. Ultimately, the physiological signals intended to be extracted from the raw
data are,

1. Breathing pattern (rate/variability)
2. Cardiac cycle (rate/variability)
3. Body movement (body position/activity)

A visualization of the system architecture is shown in Figure la and is based on the
system requirements.
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Figure 1. (a) Abstract view of the system design highlighting the location of the printed circuit board
(PCB), U-shaped sensor band, and ECG electrodes. (bi) External view of VitalCore prototype when
electronics and sensors are attached to the rear side of the fabric using interfacing. The dashed box
highlights the region where the electronics are placed. (bii) Top side of the PCB and the U-shaped
carbon black conductive rubber sensor. The PCB shows the microcontroller unit (MCU), Bluetooth
antenna, analogue to digital converter (ADC), secure digital (SD) cardholder and four placeholders to
connect two electroresistive bands (ERBs).

Figure 2 shows each of the components of the T-shirt electronics and the architecture of data flow.
The sensor bands are polarized with a constant current supply such that the output voltage changes
relative to the resistance changes of the sensor band. The band output and ECG frontend go through
two different amplifiers to an ADC. The accelerometer and the ADC connect with the microcontroller
unit (MCU) directly through a serial peripheral interface (SPI) bus. The SD card connects with the
MCU directly via a high-speed SPI bus.
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Figure 2. Components inside the T-shirt.



Sensors 2020, 20, 1583 6 of 27

A 3.7V, 150 mAh Li-Ion battery measuring 19.75 mm X 26.02 mm X 3.8 mm was chosen to balance
the power needs and device footprint size. The total continuous current dissipation of the system
must be limited to 15 mA to operate the system for at least 10 h. The minimum sample rate for chest
and abdominal measurements from ERBs is 20 Hz [33] and 50 Hz for ECG [34]; however, 100 Hz per
channel is used in all experiments across all channels.

The Bluetooth (System on Chip) SoC, CC2640R2F from Texas Instruments was chosen as the
microcontroller unit (MCU) to meet the design requirements. This MCU has an inbuilt Bluetooth stack,
removing the need for an external Bluetooth module.

An ADC with a relatively low sampling rate but high precision is required. The ADS1247 from
Texas Instruments was selected for several key reasons. The ADC is designed for use in temperature
sensor measurements, which is very similar to our use case. It has a 24-bit Delta-Sigma ADC and a
current source capable of providing 50 to 1500 pA constant current and an internal programmable
gain amplifier with 1-128 variable gain. By using the ADS1247 as our ADC, we can replace three key
components in our design with a single discreet integrated circuit (IC).

The AD8232 is a single-channel heart rate monitor IC in a 4 mm X 4 mm package and operates at
170 pA supply current. The LIS2DH triple-axis accelerometer (2 mm X 2 mm) from STMicroelectronics
supports up to 16 g acceleration and up to 5.3 kHz variable sampling rate. It consumes 18 pA current
at 200 Hz and varies when the rate goes up/down. Both the ECG frontend and accelerometer are
ultra-low-power devices contributing a minimum possible load to the central unit.

A MicroSD card was chosen for data storage because of its low cost, high memory density,
replacability, and ease of upgrading. A four-layer PCB was manufactured with dimensions of 41 mm
x 40 mm (Figure 1(bii)). As the AD1247 allows three differential channels and one channel is allocated
to ECG, the board is limited to two ERBs.

Custom-made U-shaped high resistive ERBs were attached on two sides of the board, dividing
chest expansion between the two bands. This allows redundancy but also reduces the risk of sensor
trapping when the user lays on their side. The PCB is coated with circuit board lacquer to protect from
sweat and is concealed under the T-shirt such that the PCB part is placed just below the sternal bone.
Hardware placement is critical to comfort. As both male and female human bodies have a small gap
under the rib cage, the electronics (the only rigid part of the device) are placed to occupy this space.
Even when the user sleeps in a prone position, we hypothesize that there is a minimum chance that the
device causes discomfort to the user. Figure 1(a,bi) show the front side of the device and the front view
when ERBs are attached.

Connections to disposable ECG electrodes are routed from a header on the PCB. The electronics
and ERBs were attached to the internal side of a t-shirt fabric using an “interfacing” [35] technique
popular in clothing manufacturing. With interfacing fabric, the device and T-shirt are connected
without any woven threads or sewing. When attached, the electronics and sensors are almost invisible
(Figure 1(bi)).

2.3. System Benchmarking and Evaluation

The system was tested to evaluate the performance of each component and provide a benchmark
for future work. The tests include the average power consumption, ADC test for sampling rate and
noise, SD write throughput, and Bluetooth link throughput. In anticipation of overnight sleep studies,
where the device may be in operation for 8 h or more, we have tested the device for significantly longer
in a laboratory setup. This was done to detect any unexpected interruptions to the data recording.
For five days and 18 h, VitalCore continuously acquired data and saved to the SD card. The data were
generated from a function generator KEYSIGHT 33210A (Santa Rosa, California, United States) at
1 Hz + (20 ppm + 3 pHz) sine signal of +200 mV with 500 mV offset. The two outputs of the function
generator are connected to two ERB pads and sampled at 400 Hz, since the original design is to sample
two ERBs, the ECG and an accelerometer at 100 Hz with time multiplexing, therefore producing a
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400 Hz total sample rate. Sampling the function generator output at 400 Hz makes the test conditions
similar to real-world data acquisition.

The ECG channel was also tested with an ECG simulator that provides 1 mV peak-to-peak
ECG output to verify the functionality. A SERT-2009 (Bainuodai, Tianjin, China) portable ECG/EKG
simulator was used in the experiment with right arm (RA), left arm (LA), and right leg (RL) nodes
connected to corresponding ECG inputs. The AD8232 produced an amplified signal and connects as
an input to the ADS1247 ADC. The ADS1247 samples the signal at the same frequency as the other
channels (100Hz). All amplification is provided by the AD8232 and the ADS1247 samples the signal
with unity gain.

2.4. Physiological Experiments

2.4.1. Respiration

The physiological experiments were designed to evaluate the performance of VitalCore against
respiration, pulse, and body position during sleeping and light activity. First, VitalCore is compared
with a spirometer (BIOPAC TSD107B & DA100C, Biopac, Goleta, CA, United States) for respiratory
event detection over 5 min. Simultaneous recordings were captured from the spirometer and VitalCore
followed by data alignment to compare respiratory signals from the two devices. It should be noted
that the spirometer and VitalCore acquire breathing events in different manners. The spirometer
records exhaled pressure only, while VitalCore records the torso expansion/contraction related to both
inhaling and exhaling. The peaks of VitalCore readings were aligned with the starting point of the
spirometer readings to compensate for the difference. A 0.1 Hz high-pass filter was used to eliminate
DC offset in the VitalCore signal. A subsequent cutoff peak detector (30% of peak-to-peak), with a
minimum 1-s distance, could find all the inspiratory peaks available in the experiment. The findpeaks()
function available in MATLAB was used to find the peaks from both signals [36,37]. The instantaneous
respiratory rate was calculated using the time difference between peaks for both signals.

2.4.2. Cardiac Activity

ECG functionality is included in the VitalCore to monitor the heart rate and as a comparison for
ERB-derived cardiac activity. After verifying the ECG frontend against an ECG simulator, human
experiments were conducted using single-use electrodes attached to the body. Three single-use ECG
electrodes (RA, LA, and RL) were used, and RA/LA were placed near the left and right ribcage while
the RL electrode was placed just above the right hip. The placement of electrodes was kept under the
area covered by the T-shirt (Figure 1a).

In a separate experiment, ERB data were compared to pulse recordings captured with a pressure
transducer attached to the index finger (AD Instruments Dunedin, New Zealand) [38]. As the ERB is
sensitive to the chest volume changes due to the heartbeat, this experiment was conducted to validate
this capability independent of the ECG.

2.4.3. Sleep Test

Sleep tests were conducted while wearing VitalCore for more than 8 h of sleep. VitalCore
simultaneously recorded the ERB, accelerometry, and ECG. Accelerometer data allowed for the
detection of sleep position and movement artefacts. The accelerometer is programmed for triaxial +2 g
acceleration and collected as an 8-bit signed output. Calculating the respiratory rate is a trivial task
when the acquired signal is clean. Due to the battery operation and shorter sensor bands, the VitalCore
output signal is not influenced by the power line noise. The primary noise source is body movement,
which is a signal artefact that occurs predominantly during sleep position change events. The 0.1 Hz
high-pass filter applied eliminates baseline changes in the signal that may occur around these events.
One computationally efficient way of counting the respiratory rate is using a high-pass filter followed
by a threshold-based peak detector as described above. Threshold-based peak detection works well
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in short duration, consistent waves. However, when high-frequency movement artefacts are present
within a long duration recording such as a sleep dataset, threshold-based peak detection shows a
high number of false-positives. To avoid high-frequency movement artefacts, the signal can be passed
through a 1 Hz low-pass filter. The maximum average respiration rate is commonly stated as 0.3 Hz,
which is equivalent to 20 breaths per minute.

MATLAB features an excellent function to find the local maxima given the minimum threshold and
frequency [37]. The function can also return the width of the peak and its prominence. The prominence
of a peak measures how much the peak stands out compared to other peaks due to its intrinsic
amplitude and its location. We have observed when both bands are combined, the smallest peaks
relating to respiration are approximately 3 mV in amplitude. Therefore, the findpeaks() function was
employed with a minimum time difference between two peaks of 1 s and minimum prominence of
1mV to identify a peak. The raw output from two bands was manually marked to assess the accuracy
of peak detection. Each two-minute window was exported as an image, and the number of false
positives and false negatives were recorded. As a standardized practice, the first and last hour of the
sleep data were discarded from the 10.5-h experiment. The remaining 8.5 h data produced 255, 2-min
plots to be marked, and each respiratory peak is manually marked for comparison.

The respiratory period can be calculated by differentiating the peak position in time and converting
to respiration per minute. Respiratory rate variability (RRV) can be presented as the root mean square
of the successive differences (RMSSD) of respiratory rates, which is a similar metric that is commonly
used in heart rate variability analysis [39]. RR and the corresponding successive differences were
computed breath-to-breath for analysis followed by RMSSD calculation using a breath-to-breath RRV
array. A healthy respiratory rate for an adult human should be between 12 and 20 breaths per minute,
and a respiratory rate higher than 24/min is considered a sign of serious illness [40—44]. Respiratory
rate variability could also be presented as a Poincare plot where the x-axis is the n-th respiration
rate calculated and the y-axis is the (n + 1) rate, which are both plotted in breaths per minute
(Appendix A.1).

Heart rate is the other measured vital signal from VitalCore. It could be measured and presented as
an averaged value over a minute-by-minute basis or beat-to-beat measurement. Measuring continuous
beat-to-beat heart rate and heart rate variability could help assess sleep quality, sleep staging, and
general health [45-51]. Since the aim of having an ECG is to gather information about the heart rate
and variability, and not acquiring a precise medical-grade ECG waveform, the lead placement could be
flexible. During pre-processing, the ECG data were passed through a first-order high-pass filter with a
cutoff frequency at 0.3 Hz, and a seventh-order Butterworth low-pass filter with a 15 Hz cutoff value.
The filtered data were used with the MATLAB findpeaks() function to identify peaks with 150 mV as the
prominence value. The dataset chosen was the 9-h sleep data set recorded with VitalCore.

An embedded accelerometer is used to identify movement artefacts and sleep position. The
accelerometer returns each x, y, z axis data at 100 Hz as a one byte signed number, which is calibrated
to +£2 g at full-scale reading. The following algorithm is used to find regions of high activity.

1.  Take the squared sum of each x, y, and z channel for each sample.
5SS, = x2+y2 + 22

2. Calculate the absolute difference between subsequent samples.
ASS =155, — 55,1l

3. Calculate the mean (1) and standard deviation (o) of the differentiated array (ASS) for 10-s
windows. Add mean (W) to 30 to cover 99.7% of the values.

4. Apply a 10-s moving mean filter to the i + 30 values.

5. Use the findpeaks() function to find peaks with a prominence >50.
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6.  Use peak width at half prominence to mask the high activity regions. The masked region is twice
the peak width.

As shown in Figure 3, the squared sum of accelerometer channels and filtered moving standard
deviation identifies regions of high activity. The half prominence width is used to generate a high
activity masking array.
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Figure 3. The squared sum of accelerometer channels and the usage of filtered moving standard
deviation to identify regions of high activity blocks.

When calculating sleep position, the accelerometer data requires smoothing as high-frequency
oscillations are unrelated to sleep position. This was achieved for all three axes by applying a
two-second moving average filter. The x-axis and y-axis were used to calculate angles in radians using
an atan2(x,y) operation [52] and converted to degrees by multiplying by 180/7t. The percentage of time
spent on each sleep position (supine, face-down, left and right) and a circular histogram were chosen
to present sleep position data.

2.4.4. Performance during Gait

Finally, to analyze the noise immunity of ERBs when movement artefacts are present, VitalCore
was worn during moderate pace walking experiments. The baseline respiratory wave is acquired
simultaneously with a stationary, high flow pneumotach spirometer. The two recordings were
synchronized by aligning two distinctive respiratory sync patterns performed before and after each
experiment. Four data recordings were takenat 1, 2, 3 and 4 km/h walking activity on a treadmill. VitalCore
band output was filtered using Singular Spectrum Analysis (SSA) technique [53]. SSA decomposes the
time series data into a sum of components. Ideally, VitalCore output would be split into two categories,
the respiratory wave and movement artifact. The SSA algorithm was implemented in MATLAB by
Javier et al. [54] based on [55]. The parameter L (sliding window length), was chosen as 100 samples
and uses the first three components to reconstruct the noise suppressed VitalCore output. The ground
truth pneumotach spirometer data were also filtered using the same parameters. The filtered data
passed into a prominence based peak detection algorithm to identify each peak related to the maximum
inspiration point.
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3. Results

3.1. Hardware and Verification Tests

Table 3 summarizes results from benchmark tests, while Table 4 summarizes the results obtained
from long term continuous operation tests.

Table 3. System benchmarks.

Parameter Value Comment
Power consumption 1228 mA  Average current used by all the peripherals
Signal-to-noise ratio 84 dB DC signal
SD data write 375 kB/s Maximum
SD data read 538 kB/s Maximum
Bluetooth link throughput 1300 kb/s Using Bluetooth 5

Table 4. Summary of observed parameters from long-term continuous operation test and expected values.

Parameter Observed Ideal Value Error
Input sine waves (n) 499,628 499,628 0
Time for n waves 499,624 s 499,628 s 0.000650%
Sampling rate 399.9968 Hz 400 0.0032 Hz
Maximum period 1.01s 1s 1ms
Minimum period 0.99s 1s 1ms

In the long-term operational test, a total of 499,628 sine wave cycles were produced for recording
and VitalCore captured all the sine wave cycles. VitalCore captured 49,962,475 samples per channel at
100 Hz, whereas it was expected to capture 49,962,800 samples (assuming the function generator clock is
an accurate baseline). For over five days and 18 h, it missed 325 samples, which was a 0.00065% timing
error. For our purposes, considering the relatively slow periodicity of respiration and cardiac activity,
this is acceptable. The 1 ms ambiguity in terms of the maximum and minimum sine wave period is a
result of the peak “real” sine wave occurring between samples. Vitalcore would record the peak in the
next sample or the previous sample resulting in a 0.01 s time resolution error. No interruptions in data
capture were noted throughout the experiment. We have confirmed that the ECG frontend produces
an accurate waveform using an ECG simulator with a 1 mV input ECG signal.

3.1.1. Physiological Experiment 1: Respiratory Rate and Respiratory Rate Variability

Figure 4 shows readings from the spirometer and VitalCore. Peaks are marked for peak inspiration
for VitalCore and peak expiration for spirometer data. The inset highlights the time difference between
the two signals. The peak detection and respiratory flow calculation are elementary for VitalCore data
due to the clean output it produces. The mean percentage error for the instantaneous respiratory rate
compared to the spirometer was only 0.087% breaths/minute with a standard deviation of 3.2%. When
averaged over time, the calculated respiratory rate from the spirometer was 19.7191 breaths/minute,
while VitalCore shows 19.7179 breaths/minute.
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Figure 4. Data captured from the pneumotach spirometer flow and VitalCore. Inset: overlapped
data excerpt.

3.1.2. Physiological Experiment 2: ECG Frontend

Human ECG recordings from the Vitalcore ECG frontend showed consistent QRS peaks of
approximately 400 to 800 mV amplitude. The recorded wave was passed through a peak detection
function with 250 mV prominence cut-off to derive the continuous beat-to-beat heart rate. For the
recorded region, 86.48 + 2.33 mean beats/minute were calculated. The overall quality of the signal was
deemed sufficient for the calculation of heart rate and heart rate variability.

3.1.3. Physiological Experiment 3: ERB-Derived Cardiac Activity

We observed that ERBs are sensitive to the blood volume change due to the heartbeat. The concept
is similar to ballistocardiography (BCG); however, we do not measure the force to extract the pulse
information. The ERBs measure the tiny volume change of the chest due to the cardiac output and
blood flow from the heart. The expansion is apparent in the raw signal when the breathing artefact
is removed.

The output from the finger pressure transducer along with the left-side and right-side ERBs are
shown in Figure 5. Interestingly, the left band shows the expansion due to cardiac activity much more
clearly. A time difference between the peaks of finger measurement (PPG) and heartbeat expansion
from the ERBs is also visible. The time difference corresponds to the pulse transient time.

Measuring the heart rate from the left band is a trivial task if the respiratory movements
are not involved. However, when respiratory movements are involved, the task requires further
post-processing. The heartbeat is visible to the naked eye even when respiratory movements are
present in the captured waveform; however, getting a consistent automated measurement requires
further analysis of the signal.
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Figure 5. The pulse recorded from the pressure transducer and the corresponding reading from
left/right bands of VitalCore. The readings were taken while holding breath.

Figure 6 shows an excerpt of captured data recorded with a pressure transducer during regular
breathing. The output of the pressure transducer and detected peaks are projected downwards to the
overlayed VitalCore measurements. The larger peaks are respirations, while smaller glitches indicated
in black boxes are the sudden variation of blood volume. It is evident that even though the heartbeats
are clearly visible, false-positive rejection and a higher degree of filtering is required to extract the
heartbeat only from VitalCore bands.
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Figure 6. The magnitude of the respiration signal and pulse signal from the left-side band compared
to heartbeat captured from a finger-worn pulse transducer. The heartbeat from the band is visible as
small negative glitches, which represent the starting point of the pulse.
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3.2. Sleep Monitoring

Sleep data have some unique features. The artefacts are comparatively small compared to those
during activity (e.g., walking) unless the test subject is suffering from significant sleep disturbance.
Most of the artefacts come from voluntary or involuntary movements such as those that occur due to
changing sleep position and arousals.

3.2.1. Full Night Recording

Figure 7 shows the sample output from each channel recorded during sleep.
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Figure 7. Example signal patterns from a full night recording. (a) ERB output, (b) ECG output, (c) X, Y,
and Z axis output from the accelerometer. The figures show different sections extracted from the full
night recordings.

Figure 7a shows the unfiltered ERB output. The signal has a significantly large DC offset while the
signal corresponding to respiratory function results in 10-20 mV change. The smaller peaks between
respiratory events are heartbeats. Figure 7b shows the unfiltered ECG recordings. The QRS peak is
about 100-200 mV on average; however, it could increase to 400 mV on some occasions. The visible
oscillation of the ECG peak value is due to the respiratory movement. Figure 7c shows the output of
the three-axis accelerometer. The chosen section demonstrates three essential pieces of information that
could be acquired from the accelerometer; i.e., the first half of the figure shows a relatively still position
and a small movement occurred around the 8000 s mark. Then, around 8250 s, the subject changes
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sleep position, resulting in a more significant artefact. A significant wave pattern in the Z axis at the
end of the graph is the respiratory output captured as the acceleration change. The data windows for
both the band signal and ECG wave were chosen from near the end of the full night data recording,
demonstrating that the band/ECG signal maintains signal quality throughout the full recording.

3.2.2. Respiratory Rate and Variability

Respiratory rate and variability measures could be performed quickly using automated functions.
The experiment data used to find the respiratory rate and variability had 10.5 h of raw data and 8.5 h
of useful region. The findpeaks() function returned peaks, timestamps, peak height, and width based
on prominence. A total of 6498 peaks were extracted, 245 peaks were identified as false-positives,
and 35 peaks were missed (i.e., false-negatives). This represents a sensitivity of 99.44%, a precision
of 96.23%, and a false-negative rate of 0.557% in identifying respiration peaks. The algorithm took
only 0.55 s using an Intel 17 6820HQ CPU with 16 GB memory. The 6498 identified peaks have a mean
respiration rate of 14.52 respirations/minute with a standard deviation of 7.23. The majority of the data
(89% of total respirations) lie below 20 breaths per minute. The root mean square of the successive
differences (RMSSD) value for respiratory rate variability was computed as 7.06 breaths per minute.

Appendix A, Figure Al shows the calculated breath-to-breath respiratory rate, a histogram
summary of the respiratory rates, a Poincare plot showing the distribution of successive respiratory
rates, and a histogram of the respiratory rate variability (RMSSD) calculated for each respiratory event.

3.2.3. Heart Rate and Heart Rate Variability

QRS peaks from VitalCore varied between 200 and 300 mV generally. A 9-h sleep dataset produced
36,173 ECG QRS peaks. Processing to identify peaks took 1.5 s, and the filtering stage took 0.7 s.
The resulted mean heart rate was 68.82 beats/minute with a standard deviation of 14.59 beats/minute.
The identified R-R peaks were used to calculate heart rate variability. We observed a sudden rise of
heart rate correlated with sleep position changes as verified against the accelerometer data. When the
subject changes position, the ECG output becomes unstable; however, it immediately stabilizes after
the subject lies still. The majority of heart rate values lie around 55-85 beats/minute. The recorded
dataset shows a high heart rate variability RMSSD value of 13.67 beats/minute change, indicating a
healthy subject.

The ECG data are shown in Appendix A, Figure A2 and includes calculated beat-to-beat heart
rate, a histogram summary of the heart rate, a Poincare plot showing the distribution of successive
beat-to-beat heart rate values, and a histogram of heart rate variability (RMSSD) calculated for each
pulse event captured.

3.2.4. Actigraphy and Movement Artefact Rejection

The accelerometer is a versatile device that gives valuable sleep information when adequately
placed. Since VitalCore hardware was placed on top of the chest, the angle between gravitational
acceleration and VitalCore is directly related to sleep position. In addition, the accelerometer provides
information about motion artefacts that help reject the band data within this period. When used for
artefact removal, the squared sum of all three axes could be considered as a single input regardless of
the acceleration direction. Figure 8 shows a section of cleaned band data when a high activity mask is
used to remove moving artefacts.
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Figure 8. Top Panel: Example of accelerometer data used to mask high activity regions. Middle
Panel: Band data affected by moving artefacts. Bottom Panel: Band data following the masking of
movement artefacts.

3.2.5. Sleep Position and the Effect of Respiratory Output

Having the accelerometer on the chest gives a clear advantage when the sleep position needs
to be calculated. As VitalCore hardware was positioned on top of the chest and the subject sleeps
horizontally, sleep position can be calculated by calculating the roll angle.

Figure 9 summarizes a full night sleep recording. The first plot shows the percentage of time
spent on the nearest estimation to each sleep position. The second polar diagram shows the time spent
at each angle (binned to 4 degrees).

90 Sleep time in minutes

Supine: 12% Left: 7%

One hour mark

Right: 24%

[Left] 180 0

Face-down: 57%

270

(@ (b)

Figure 9. Summary of sleep position from a full night recording. (a) Percentage of time spent in each
position. (b) A polar diagram showing sleep angle versus sleep time in minutes.

The sleep position calculation shows an important advantage of VitalCore. As observed from
Figure 9, this user spent the majority of time sleeping face-down, which is presumably the most
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comfortable sleep position for the subject. This is not possible in polysomnography tests and difficult
to achieve using current at-home sleep apnea test devices.

The ability to operate in every position is useless if the device cannot provide a reasonable
measurement from each position. The artefact-removed signal was passed through a prominence-based
peak detection algorithm that returns the peak height for each peak identified. The peak height vector
is multiplied by the sleep position mask generated for each sleep position to obtain the peak heights in
each position. Table 5 shows the statistics for peak heights based on each position. The trimmed mean
was measured by removing 5% of data outliers from each side of the data.

Table 5. Descriptive statistics for respiration peak heights for each sleep position. Peak height data
measured in mV.

Sleep Position Mean  Trimmed Mean Standard Deviation
Supine 6.07 532 571
Left 9.33 8.59 8.12
Right 13.03 12.59 6.68
Face-down 7.16 6.91 4.32

As shown in Table 5, there is a negligible difference in the mean height between the supine
and face-down position. The right-side position shows a strong signal with low standard deviation
followed by the left-side position. However, the left side signal has a high standard deviation, with the
mean value being slightly higher than the face-down position.

We conducted a Kruskal-Wallis test to compare all four sleep positions together. Figure 10 shows
the distribution of the peak values in a box plot without reducing the sample size for each group.
The Kruskal-Wallis test is a nonparametric version of one-way ANOVA and an extension of the
Wilcoxon rank sum test to more than two groups. This test compares the medians of the groups of data
to determine if the samples come from the same population (or equivalently from different populations
with the same distribution). With a p-value of zero, the test rejects the hypothesis that all samples come
from the same distribution. Table 6 shows the resulting ANOVA table using standard notation.
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Figure 10. Results of Kruskal-Wallis test. The box plot shows the distribution of peak values of the
sensor band versus sleep position.
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Table 6. Kruskal-Wallis ANOVA table for sleep position comparison.

Degrees of Freedom  Mean Squares

Source $S/(1019) Chi-sq Prob > Chi-sq

(Df) (MS)
Groups 0.830654 3 2.7688 x 10° 1786.09 0
Error 2.64295 7466 3.5399 x 10°
Total 3.47361 7469

Further, we compared pairwise groups using the Wilcoxon rank sum test [56] after producing a
probability density estimation for all sleep positions. The rank sum function tests the null hypothesis
that data in two distributions (x and y) are samples from continuous distributions with equal medians,
against the alternative that they are not. All four positions were compared pair wise and it was noted
if two positions could reject the null hypothesis at the 5% significance level or if they failed to do
so. All combinations except supine versus left and face-down versus right reject the null hypothesis,
as shown in Table 7.

Table 7. Pair-wise p value from Wilcoxon rank sum test.

Sleep Position Left Right Face-Down
Supine 0.9542 0.00039 0.00024
Left - 0.00022 0.00014
Right - - 0.6752

Another characteristic measure is how differently each band behaves when the user changes
position. VitalCore is designed such that the device is centered while two bands extend to the left and
the right so that even if one side is trapped, the other band could still function. For example, if the user
is sleeping on their left side, the left band might be bearing bodyweight, resulting in a low response
to physiological activity; however, as the right-side band is free from load, we hypothesize that it
still can capture respiration. As the accelerometer captures a sleep position mask for each side, we
tested this hypothesis by measuring the signal power acquired from each position. The signal power is
considered as the root mean square for both bands for each position independently.

Table 8 confirms the hypothesis that VitalCore bands can complement each other when measuring
sleep data. The supine and face-down positions show a small difference between the two bands while
the left and right positions show a considerable difference. Clearly, when in the left position, the right
band is free to move and provides a better signal, while in the right position, the left band provides a
better signal.

Table 8. Calculated power for each band for each sleep position and the overall power difference.

Sleep Position Left Band Power  Right Band Power Power Difference

Supine 0.365 0.300 0.065
Left 0.289 0.535 —0.246

Right 1.890 1.132 0.757

Face-down 1.796 1.704 0.092

3.2.6. Respiratory Rate Calculation Using Accelerometer Readings

Apart from using the accelerometer to reject movement artefacts and calculate the sleep position,
we observed that the accelerometer could show respiratory data. It is possible to remove high-frequency
noise from the accelerometer and obtain a reasonably comparable respiratory rate calculation. As the X
and Y axis are used to estimate the sleep position, the Z axis of the accelerometer records the respiratory
data. However, when the subject sleeps on their side, it is observed that X axis of the accelerometer also
provides the respiration signal. Therefore, the squared sum of the X and Z axes was used to analyze
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the respiratory pattern from the accelerometer. A 20th-order Butterworth filter with a stopband gain of
80 dB and passband frequencies of 0.66 Hz and 1 Hz was created to filter the accelerometer data. Sleep
position masks for supine and face-down were used to invert the accelerometer readings as the peak
inspiration point of face-down is opposite to that of the supine recordings.

The accelerometer-based respiratory measures and band-produced respiratory measures are
compared graphically to summarize the comparison of respiratory peak detection between band data
and accelerometer data. Figure 11a shows a section of respiratory wave filtered from the accelerometer
and detected peaks from the ERBs using the prominence-based approach. Figure 11b shows the
color-coded accelerometer-derived respiratory data based on sleep position. The left/right positions
yield the weakest signal amplitude. Figure 11c shows the histogram of both the band derived
respiratory rate and accelerometer-derived respiratory rate. The two colors, red and blue, combine to
purple where both parameters yield identical outputs. Figure 11d shows the error calculated using the
ERB-derived respiratory rate as the ground-truth for accelerometer measurement. It is aligned with
Figure 11b to show that the highest error occurs when the subject sleeps in side positions.
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Figure 11. Summary of accelerometer-based respiratory rate estimation. (a) The respiratory signal
captured by accelerometer and detected peaks. (b) The color-coded respiratory signal captured in a full
night’s recording. (c) Breath-to-breath respiratory rate count comparison between accelerometer and
band signal. (d) The estimated respiratory rate difference between the accelerometer and band data.

3.2.7. Respiration Rate Calculation during Light Activity

VitalCore is not designed as an activity monitor nor as a sports monitor. In sleep monitoring
applications, the subject is relatively static compared with day-to-day activity or during exercise.
However, we observed that VitalCore could be used to monitor breath-to-breath respiration during
light activities. The majority of current activity monitors utilize accelerometry, pulse oximetry, and GPS
where the main focus is to track heart rate during activity. Most of the devices lack the capability
of measuring respiration directly. VitalCore has some advantage in this regard, as it can measure
respiration directly instead of relying on indirect inference. The fixed position of the sensors on



Sensors 2020, 20, 1583 19 of 27

the chest (in comparison to wrist-worn devices) makes the accelerometer pattern for activity highly
predictable and repeatable, resulting in simpler data processing.

During gait at four different speeds, the pneumotach spirometer produces a consistent signal for
all four scenarios (Figure 12). The VitalCore respiratory response degrades with walking speed and
the accelerometer starts to produce a prominent pattern for walking activity.
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Figure 12. Data excerpts for each walking speed showing (a) pneumotach spirometer output,
(b) corresponding VitalCore output from two bands, and (c) corresponding accelerometer readings
from VitalCore.

We present the linear temporal correlation (LTC) for the respiratory peaks detected from ground
truth data and VitalCore data in Table 9. Surprisingly, the highest correlated and highest accuracy
respiratory event detection is achieved when walking at higher speed (4 km/h), as shown in Table 10
and Figure A3. The 4 km/h VitalCore dataset presents no false-positives and shows the highest
correlation between the corresponding peaks. This could be due to the faster walking introducing
high-frequency movement artefacts that are significantly different from the respiratory frequency,
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so it is easier to remove these artefacts from VitalCore data. Table 10 summarizes all four walking
speeds in terms of the mean respiratory rate, standard deviation, and step frequency derived from Fast
Fourier Transformation (FFT). The data from Table 10 do not conclusively prove that VitalCore can
detect all respiratory events during light activity due to the low experimental sample size. However,
the experiments show that VitalCore ERBs and relatively simple algorithms are quite tolerant of
movement artefacts.

Table 9. Data statistics for linear temporal correlation (LTC) between ground truth data and VitalCore
data for respiratory peak detection.

Walking Speed ~ Min LTC MaxLTC  LTCRange LTCMean LTCMedian LTCMode LTC Standard Deviation
1 km/h 0.24 0.75 0.51 0.4579 0.475 0.49 0.1128
2 km/h 0.13 1.00 0.87 0.6198 0.605 0.50 0.2043
3 km/h 0.49 0.99 0.50 0.6897 0.660 0.55 0.1490
4 km/h 0.49 1.00 0.51 0.8090 0.820 0.83 0.1033

Table 10. Mean respiratory rate, standard deviation comparison for VitalCore with walking step

frequency, and respiratory peak accuracy.

. Respiratory Rate o Step Frequency Peak Detection
Walking Speed Dataset (Breaths/Minute) Standard Deviation (Steps/Minute) Accuracy
1km/h Ground truth 16.32 251 6438 100%
VitalCore 16.53 1.90
Ground truth 20.42 3.14 .
2km/h VitalCore 20.53 328 83.04 100%
3 km/h Ground truth 17.00 4.23 104.40 88.89%
VitalCore 19.99 7.75
Ground truth 21.70 3.02 o
4km/h VitalCore 21.71 313 114.78 100%

4. Discussion

This paper presents the evaluation of VitalCore, a truly wearable device designed for vital signal
monitoring, specifically targeting low activity and sleep monitoring applications. The experiments
were conducted in a laboratory setup and home environment. Initial experiments evaluated device
reliability during long-term bench testing, examining Bluetooth function and data writing to confirm
that the device is capable of running uninterrupted for 8 h or more. Furthermore, the device was tested
with a portable ECG function generator and cross-compared with a pneumotach spirometer and finger
pulse transducer to verify the expected functionality. Then, the device was evaluated in full night sleep
studies capturing data continuously for more than 8 h.

The signal output of the bands proved to be clean with high SNR, allowing simplified
data-processing algorithms. The processing time for identifying respiratory peaks for a 10.5-h
dataset took 0.55 s and resulted in 99.44% sensitivity, 96.23% precision, and a 0.557% false-negative rate
for respiratory peak detection. The ECG frontend worked reliably and showed minimum obstruction
and peak-to-peak difference. The processing of ECG took 2.2 s, including the filtering stage.

The most versatile sensor of the system was the accelerometer. While of little use on its own,
when combined with bands and ECG, it resulted in valuable insight into sleep patterns, and it could be
used as a reliable sleep position estimator due to the center chest placement. The accelerometer could
also be used to highlight high-activity regions from the dataset and highlight these for sleep analysis
or artefact rejection. Accelerometer readings were sensitive enough for respiratory monitoring but not
suitable for all sleep positions.

The positioning of two bands on opposite sides of the electronics allowed them to complement
each other. When sleeping on either side, the mean signal amplitude was reduced. However,
the unloaded band has a high SNR compared to the band bearing body weight. This supports having
two independent bands on each side of the body in sleep setups. Moreover, we found the left band is
more sensitive to the heartbeat compared to the right-side band.
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As each band is polarized with 100 pA current sources, the sensor interface introduces very
low-power consumption toward the total power budget. Since the resistive measurement can be
conducted with a single integrated ADC package (ADS1247) and no filtering or post-processing of
the signal is required, VitalCore needs fewer and simpler discreet components compared to other
devices available in the market. It allows us to produce a smaller PCB, which leads to comfortable
wearability due to the small size of the device. The bands are highly sensitive to body volume changes
and sufficiently sensitive to allow heart rate estimation using the band data only. This could lead
to electrodeless heart rate estimation in the future, but it will require the development of bespoke
post-processing approaches in the future.

These resistive elastomer sensors are prone to capturing body movement when placed on the chest.
As VitalCore band sensors and accelerometer are in proximity, there is the possibility of distinguishing
the source of the activity (e.g., torso/non-torso). The U-shape of these bands allows completion of the
electrical loop via the sensor material, so no additional wiring is required. This reduces the complexity
and potential points of failure. Their stretchability allows capturing the respiration and heartbeat
without applying significant force to the wearer, while their flexibility allows the sensor to wrap around
the chest, extending the sensor length and increasing sensitivity. Further, the U-shaped sensor design
minimizes the risk of trapping when the user sleeps on their side positions. The base sensor material
is low cost and readily available in the market as electromagnetic interference gaskets. The material
may be custom molded into a variety of shapes allowing a greater flexibility of sensor design. Finally,
VitalCore allows best in the class full-speed Bluetooth 5 connectivity with Bluetooth 4.2/4.1 backward
compatibility. Up to 32 GB swappable microSD storage enables at least 200 days of data recording in
continuous operation (at 1.6 kBps).

However, VitalCore hardware is not without its limitations. We believe that the current
41 mm x 40 mm PCB size could be further reduced using smaller discrete devices and using a denser
component placement. VitalCore morphic band sensors do capture non-torso-related movement,
in particular arm movement. Further work is required to either eliminate this artifact through improved
physical design or by using accelerometer data to filter out this unwanted signal. The most critical
disadvantage of VitalCore is the lack of blood oxygen saturation (SPO2) sensor. SPO2 is widely used in
sleep monitoring; indeed, the definition of sleep apnea is defined using SPO2 [57]. With our current
design, obstructive breathing events would have to be inferred using the respiratory wave shape,
wave height, and associated accelerometer readings. Dedicated sleep studies comparing to gold
standard polysomnography will determine if this is feasible. The alternative is to include an SPO2
sensor; however, to do this without affecting user comfort is a significant challenge in itself.

This work focuses on the evaluation of a proof-of-concept version of VitalCore and is limited due
to the small dataset produced. Future work will evaluate the use of VitalCore in a heterogeneous cohort
of subjects with varying body shapes and those with cardiovascular and/or respiratory conditions with
a primary focus on sleep disorders.

Finally, VitalCore is designed with user comfort as a priority. The designed hardware induces
minimum to no obstruction to a comfortable sleep. The test subjects showed no sign of discomfort and
did not wake up during sleep due to discomfort. Importantly, VitalCore allows sleeping in any sleep
position, as shown in the results. The morphic bands still managed to capture respiratory function at
high accuracy in all positions. This further solidifies the utility of electroresistive materials in vital
monitoring applications.
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Appendix A

Appendix A.1 Respiratory Rate (RR), Respiratory rate Variability (RRV), Heart Rate (HR), and Heart Rate
Variability (HRV)

A detailed snapshot of a full night recording for RR and RRV measures is shown in Figure A1.
Figure Ala shows the RR calculated using the period of successive respiratory peaks. The sudden
increase of RR is due to movement artefacts. In practice, these events are observed as single or multiple
high frequency oscillations around the time of body movement. Figure Alb shows a summary of
respiratory rates. About half of the respiratory rates are within 10-12 respirations/min. Figure Alc
shows a Poincare plot of successive respiratory rates. The x-axis shows the n! RR calculation against
the successive (n + 1)" RR. Poincare plot could be used to visualize the RRV where a distributed graph
shows a high RRV while a grouped point in the graph show a low RRV. Figure Ald summarizes RRV.
The difference of successive respiratory rates grouped as a histogram.

Similarly, the heart rate (HR) and heart rate variability (HRV) results from a full night recording
are shown in Figure A2. Since the HR is generally higher than the RR, the Poincare plot is denser and
show a higher HRV value compared to RRV. In addition, the HRV shows a lower kurtosis compared to
the RRV.
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Figure A1. Respiratory rate and variability representations. (a) Respiratory rate. (b) Distribution
of respiratory rate. (c) Poincare plot of respiratory rate variability. (d) Probability distribution of
respiratory rate variability.
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Figure A2. Summary of analysed ECG recordings. (a) Beat-to-beat heart rate variation. (b) Histogram
of heart rate and corresponding probability. (c) Poincare plot of nth heartbeat against (n + 1)t heartbeat.
(d) Histogram of heart rate difference.

Appendix A.2 Respiratory Rate Calculation during Light Walking and Linear Temporal Correlation (LTC) with
Ground Truth Data

The respiratory rate calculated during walking speeds of 1 km/h, 2 km/h, 3 km/h, and 4 km/h
is shown in a timestamp graph with linear temporal correlation (LTC) measures (Figure A3).
The timestamp graph for each peak provides an abstract view of how well each peak from ground truth
relates to the corresponding VitalCore-based inspiratory peaks. Perfectly synced peaks would show a
straight column, while lag/lead shows as a misalignment. The LTC graph indicates the time difference
between VitalCore and ground truth peaks as a value. For each ground truth peak (P, = 1), a linearly
decaying function F(t) = P, — 0.01 At where F(t) > = 0, multiplied with corresponding VitalCore peak
(Vn =1). Perfectly aligned peaks produce 1 as the maximum correlation while any peak occurring
outside one-second lag/lead would produce a value of zero. The LTC is color-coded where blue bars
present lagging VitalCore peaks and red bars present leading VitalCore peaks.

A consistent and higher LTC graph shows a high confidence in respiratory peak detection.
The 4 km/h test produces a much better LTC graph compared to other walk tests.
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Figure A3. Timestamp graph for ground truth and VitalCore with linear temporal correlation (LTC)
between ground truth and VitalCore for walking speeds of 1 km/h, 2 km/h, 3 km/h, and 4 km/h.
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