Skip to main content
. 2020 Mar 19;20(6):1706. doi: 10.3390/s20061706
Algorithm 1: ILECA
Input: train set D=xk,tk,k=1,2,,N, test set DT=Txk,Ttk,k=1,2,,nt
Output: expected classification matrix T
  •  1:

    formulate the feature matrix X for D

  •  2:

    X=Zscore(X)

  •  3:

    calculate Sb,Sw,SbSw

  •  4:

    obtain A* by solving the eigenproblem of I1(SbSw)

  •  5:

    calculate Y=XA*, obtain the new train data D=yk,tk

  •  6:

    generate wi and bi randomly, set the number of hidden neurons L

  •  7:

    calculate the output of hidden neurons H according to the Equation (13)

  •  8:

    calculate the output weight of classifier β according to the Equation (14)

  •  9:

    formulate the feature matrix Xt for DT

  • 10:

    Xt=Zscore(Xt)

  • 11:

    Yt=XtA*

  • 12:

    calculate the output of hidden neurons Ht for test data according to the Equation (13)

  • 13:

    T=Htβ according to the Equation (12)

  • 14:

    returnT