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Abstract

Background: Osteoclast activation is a hallmark of breast cancer-induced bone disease while little is known about
the role of osteoblasts in this process. Recently, we identified the homeodomain protein TG-interacting factor-1
(Tgif1) as a crucial regulator of osteoblast function. In this study, we demonstrate that lack of Tgif1 also restricts the
progression of breast cancer bone metastases.

Methods: Transwell migration assays were used to investigate the osteoblast-breast cancer cell interaction in vitro.
Molecular analyses included RNA sequencing, immunoblotting, and gRT-PCR. To determine the role of Tgif1 in
metastatic bone disease, 4T1 breast cancer cells were injected intracardially into mice with a germ line deletion of
Tgif1 (Tg/’fl’/’) or control littermates (Tgiﬂ*/*). Progression of bone metastases and alterations in the bone
microenvironment were assessed using bioluminescence imaging, immunofluorescence staining, confocal
microscopy, and histomorphometry.

Results: Medium conditioned by osteoblasts stimulated breast cancer cell migration, indicating a potential role of
osteoblasts during bone metastasis progression. Tgif1 expression was strongly increased in osteoblasts upon
stimulation by breast cancer cells, demonstrating the implication of Tgif1 in the osteoblast-breast cancer cell
interaction. Indeed, conditioned medium from osteoblasts of Tgif1 7~ mice failed to induce breast cancer cell
migration compared to control, suggesting that Tgif1 in osteoblasts augments cancer cell motility. Semaphorin 3E
(Sema3E), which is abundantly secreted by Tg/’flf/* osteoblasts, dose-dependently reduced breast cancer cell
migration while silencing of Sema3E expression in Tgifl '~ osteoblasts partially restored the impaired migration. In
vivo, we observed a decreased number of breast cancer bone metastases in Tg/f]‘/‘ mice compared to control
littermates. Consistently, the presence of single breast cancer cells or micro-metastases in the tibiae was reduced in
Tgifl ™~ mice. Breast cancer cells localized in close proximity to Endomucin-positive vascular cells as well as to
osteoblasts. Although Tgif1 deficiency did not affect the bone marrow vasculature, the number and activity of
osteoblasts were reduced compared to control. This suggests that the protective effect on bone metastases might
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be mediated by osteoblasts rather than by the bone marrow vasculature.

Conclusion: We propose that the lack of Tgif1 in osteoblasts increases Sema3E expression and attenuates breast

cancer cell migration as well as metastases formation.

Keywords: Breast cancer, Bone metastases, Osteoblasts, Tgif1

Background

Breast cancer is one of the most prevalent malignancies
and constitutes a tremendous medical and socio-
economic burden [1]. Increased awareness combined
with advancements in screening methods and therapies
has led to an improved prognosis and survival rate of
breast cancer patients [2]. Nevertheless, after initial
treatment, distant metastases frequently occur after years
or even decades of a disease-free interval. Bone is the
most frequent site for metastases in breast cancer, and
more than 70% of patients with an advanced disease suf-
fer from bone metastases [3, 4]. These patients have a
high morbidity caused by skeletal-related events due to
the predominantly osteolytic nature of the disease. Fur-
thermore, the survival rate remains poor with only 25%
of patients living more than 3 years upon diagnosis of
breast cancer bone metastases [5].

Breast cancer-induced bone destruction is a conse-
quence of a disturbed bone remodeling, a well-
characterized process known as the “vicious cycle” of
bone metastases [6]. Briefly, tumor-derived factors in-
cluding parathyroid hormone-related protein (PTHrP)
stimulate bone-forming osteoblasts to secrete receptor
activator of nuclear factor kappa-B ligand (RANKL) as
well as other cytokines. The increase in RANKL activates
bone-resorbing osteoclasts and subsequent bone de-
struction. This results in the release of matrix-derived
growth factors, such as transforming growth factor-f1
(TGEF-B1), which further stimulate tumor growth [6, 7].
Although novel therapeutic options and targets are
emerging (e.g., tyrosine kinase inhibitors, microRNAs
[8-11]), the disease remains incurable once osteolytic le-
sions have developed.

Upon entering the bone, breast cancer cells are ex-
posed to a heterogeneous bone microenvironment,
which comprises different cell types and non-cellular
cues including growth factors, cytokines, and the extra-
cellular matrix [12]. Each component of the bone micro-
environment has important roles in supporting tumor
cell quiescence, metastases initiation, and progression as
well as resistance and/or response to anti-cancer therapy
[13-20]. Within the bone microenvironment, the endos-
teal (osteoblasts, osteoclasts, adipocytes) and the vascular
(vascular endothelial cells, pericytes) niches regulate
hematopoietic = stem cell (HSC) renewal and

differentiation via cytokines, intracellular signals, and
cell-cell contacts (e.g., integrins, cadherins) [21-25]. It
has been suggested that tumor cell homing to bone, qui-
escence, and metastatic growth are mediated via these
niche-controlling signals [15, 17-20, 26-28]. Hence,
modification of the bone microenvironment including
the niches might offer novel therapeutic approaches to
target metastatic bone disease. However, although the
understanding of how tumor cells and the bone micro-
environment influence each other increases continu-
ously, the knowledge about early events of bone
metastases, especially regarding the stimuli that initiate
metastatic growth, is rather limited.

High abundance of the homeodomain protein TG-
interacting factor 1 (Tgifl) has been associated with
poor patient survival in various cancers, including upper
urinary tract urothelial carcinoma, colorectal cancer, and
breast cancer [29-31]. Besides its role in carcinogenesis,
we recently identified Tgifl as a novel target gene of the
canonical Wnt and of the Parathyroid hormone receptor
type 1 (PTHI1R)-dependent signaling pathways in bone
[32]. Furthermore, we determined its important role as a
novel regulator of bone homeostasis by demonstrating
that the deletion of Tgifl results in a low bone turnover
phenotype in vivo [32]. Given the crucial regulatory
function of Tgifl in both tumorigenesis and bone re-
modeling, we hypothesized that Tgifl could also impact
the initiation and progression of breast cancer bone
metastases.

Here, we report that Tgifl expression is strongly
increased in osteoblasts upon stimulation by meta-
static breast cancer cells, suggesting a potential role
of Tgifl in the osteoblast-breast cancer cell inter-
action. Furthermore, our results reveal that medium
conditioned by osteoblasts stimulates breast cancer
cell migration in a Tgifl-dependent manner. This in-
dicates that Tgifl in osteoblasts may also play a role
during the early stages of bone metastasis. In vivo
deletion of Tgifl in mice attenuates the progression
of bone metastases and protects from breast cancer-
induced bone destruction. Together, our findings es-
tablish osteoblasts and Tgifl as important regulators
of breast cancer cells in the bone microenvironment
and of the formation of breast cancer bone
metastases.
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Methods

Cell culture

Two sub-clones of the mouse mammary epithelial cell
line 4T1, stably expressing green fluorescence protein
(GFP) or GFP together with luciferase (luc), hereafter re-
ferred to 4T1-GFP and 4T1-GFP-luc were used. For the
establishment of a stable luciferase expression in 4T1
cells (purchased from ATCC), the luc2 gene was cloned
into the LeGO-iG2 plasmid (PMID: 18362927) using the
EcoRI restriction site. To produce infectious particles,
the second-generation lentiviral packaging system was
used by transient transfection of 293T cells using Lipo-
fectamine 2000. For transduction, the viral supernatant
was added in a 1:10 dilution to 50% confluent recipient
cultures. Positive selection of GFP-positive cells was per-
formed 72 h after transduction by fluorescence-activated
cell sorting (FACS). The 4T1-GFP cells were kindly pro-
vided by Dr. Sonja Loges. The 4T1 cells were cultured in
RPMI 1640 medium (Gibco, 61870-010) supplemented
with 10% fetal bovine serum (FBS, Gibco, 10270-106)
and 1% penicillin-streptomycin (P/S, Gibco, 15070-063).
The mouse osteoblast cell line MC3T3-E1 and the hu-
man breast cancer cell line MDA-MB-231 (both ob-
tained from ATCC) were cultured in a-MEM (Gibco,
22571-020) supplemented with 10% FBS and 1% P/S.

For calvarial osteoblast cultures, the calvariae were dis-
sected from 1- to 3-day-old mice and digested sequen-
tially (4x25min) in o-MEM containing 0.1%
collagenase and 0.2% dispase (both from Roche). The
first cell fraction was discarded; fractions 2 to 4 were
collected, combined, and expanded in a-MEM contain-
ing 10% FBS and 1% P/S.

To obtain conditioned medium, cells were washed
twice with phosphate-buffered saline (PBS) and serum
starved for 24 h in a-MEM supplemented with 1% FBS
and 1% P/S. On the next day, the medium was collected,
centrifuged for 5 min at 900g, and stored at — 80 °C. For
all experiments, 50% medium conditioned by cancer
cells (CCM) or medium conditioned by osteoblasts
(ObCM) was used (diluted in a-MEM + 1% FBS + 1% P/
S). MC3T3-E1 cells were stimulated with CCM (from
4T1 or MDA-MB-231 cells) for the indicated periods of
time. Treatment of osteoblasts with a selective ERK1/2
inhibitor (SCH772984, Santa Cruz Biotechnology) was
performed prior to the stimulation with CCM.

Transwell migration assay

For transwell migration assays (BD Biosciences, BIO-
COAT® Cell culture inserts, 354578), 2 x 10* breast can-
cer cells per well were allowed to migrate through 8-pum
pores towards control medium (a-MEM + 1% FBS + 1%
P/S, referred to as Ctrl), ObCM, or towards a-MEM
supplemented with recombinant Semaphorin 3E
(Sema3E, R&D Systems, 100-500ng/ml) for 6h.

Page 3 of 16

Migrated cells were stained using Giemsa’s azur eosin
methylene blue solution (Merck, HX8389304). Cells
within 4 fields of view of interest were counted using the
OsteoMeasure system (Osteometrics) using a x 10 ob-
jective (Olympus UPlan Fl 10x/0.30 /).

RNA sequencing

For RNA sequencing, osteoblasts were isolated from the
calvariae of Tgifl’~ mice and Tgifl*’* control litter-
mates as described above. Libraries were prepared from
1 ug total RNA using the NEBNext Ultra RNA Library
Preparation Kit for Illumina (NEB). The size of the li-
brary was measured using a Bioanalyzer 2100 (Agilent
Technologies), and a 51-bp single-end sequencing was
used for RNA sequencing. After aligning the reads using
Bowtie2 with mm9 cDNA transcriptome, reads were
counted with a custom ruby script and DESeq was ap-
plied to identify differentially expressed genes.

Mouse model of bone metastasis

To determine the role of Tgifl during the establishment
and progression of breast cancer bone metastases, 8—10-
week-old female mice with a germ-line deletion of Tgifl
(Tgifl") or control littermates (Tgifl™*) were used
[33]. Mice were backcrossed from C57Bl/6 background
to BALB/c background for at least ten generations. Mice
were injected intracardially with 1 x 10° 4T1 breast can-
cer cells (4T1-GFP or 4T1-GFP-luc) and sacrificed 5, 7,
and 9 days after tumor cell injection. Metastasis forma-
tion was monitored on day 7 using bioluminescence im-
aging (BLI) and quantified using the Living Image
Software. To quantify the number of metastases formed,
BLI signals were counted per leg for each mouse. For dy-
namic histomorphometry, 8-week-old tumor-free mice
were injected intraperitoneally 7 and 2 days prior to the
sacrifice with calcein (Sigma, C0875, 20 mg/kg) and
demeclocycline (Sigma, D6140, 20 mg/kg), respectively.

Sample preparation

For paraffin embedding, bones were fixed in 4% parafor-
maldehyde (PFA, pH 7.4, in PBS) for 48h at 4°C,
followed by decalcification in 0.5 M EDTA/0.5% PFA for
14 days. Decalcified bones were cut into 5-um-thick sec-
tions. For embedding in methylmethacrylate (MMA),
bones were fixed in 4% PFA for 48h. Fixed, non-
decalcified bones were embedded in MMA and cut into
4-pm-thick sections.

Immunofluorescence staining and imaging

To visualize the bone marrow vasculature and single
tumor cells by immunofluorescence, long bones were
fixed in 4% PFA for 4h at 4°C and decalcified in 0.5 M
EDTA (pH 8, in PBS) for at least 24 h. Bones were then
embedded in gelatin [34-36]. Samples were stored at —
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80°C prior to cutting into 30-pm-thick sections. Im-
munofluorescence staining of the vascular endothelial
cell marker Endomucin (1:100, Endomucin V.7C7, rat
monoclonal, Santa Cruz, sc-65495) and of the osteoblast
marker Osterix (1:200, Osterix antibody (A-13), rabbit
polyclonal, Santa Cruz, sc-22536) was performed on
bone sections [34—36] (see Table 1 for antibody details).
The GEFP signal of the 4T1-GFP cells was retained dur-
ing gelatin embedding, allowing the visualization of the
immunofluorescence without prior staining. Images were
acquired using the Leica SP5 confocal microscope, x 20
objective (20x HC PL APO CS IMM/CORR, NA: 0.70,
WD (mm): 059 (W), =.17 (oil)). The presence and
localization of 4T1-GFP breast cancer cells in long bones
were determined using confocal microscopy 5 days after
injection. For each mouse, 3—4 non-serial sections were
analyzed.

Analysis of the bone marrow vasculature

To determine whether the bone marrow vasculature is
altered in a Tgifl-deficient bone microenvironment, the
number (/mm? tissue area), length (mm), and size
(mm?) of the Endomucin-positive bone marrow vascula-
ture were analyzed on 3—4 non-serial, gelatin-embedded
sections of the tibiae from mice that were sacrificed 5
days after tumor cell injection. Only mice without tumor
cells were used for quantification. The analysis was per-
formed as outlined in Additional file 1: Figure S1A using
the Osteomeasure software and an Olympus BX50
microscope (Olympus UPlan FI 10x/0.30 o/-). Briefly, an
area of 1125 mm? in the metaphysis was quantified start-
ing 180 pm away from the growth plate and 225pum
away from the medial cortex.

Micro-computed tomography
For micro-computed tomography (uCT), the tibiae were
scanned during tissue fixation either in 4% PFA or in

Table 1 Antibodies used in this study
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70% ethanol at later time points. Trabecular bone vol-
ume (bone volume per total volume, BV/TV), trabecular
number (Tb.N), trabecular thickness (Tb.Th), and tra-
becular separation (Tb.Sp) were analyzed using a vivaCT
80 scanner (Scanco Medical). Bones were scanned at
70 kVp with a pixel size of 15.6 um. All trabecular bone
surfaces 78 um away from the growth plate were ana-
lyzed with a length of 1 mm of the region of interest.
Following the acquisition of the grayscale images, images
were converted into binary images with thresholds being
consistent within one study, and bone parameters were
calculated using the proprietary scanner software.

Immunoblot analysis

Whole-cell protein lysates were obtained using lysis buf-
fer (150 nM NaCl, 0.5% NP-40, 0.25% sodium deoxycho-
late, 50 mM Tris pH 7.5) supplemented with a protease
inhibitor (Roche Diagnostics, 11873580001) and a phos-
phatase inhibitor (Roche Diagnostics, 4906837001). Pro-
tein concentration was quantified using the Pierce™ BCA
Protein Assay Kit (Thermo Fisher, 23225) according to
the manufacturer’s protocol. Lysates were separated on a
12% acrylamide gel and immobilized onto nitrocellulose
blotting membranes (Amersham Protran®, 0.2 um NC,
Roth) using a Tans-Blot Turbo Transfer System (30 min,
25V, BioRad). The membranes were blocked using 5%
skimmed milk (Roth, Art Nr.T145.2) for 1h at room
temperature before overnight incubation at 4°C with
primary antibodies against Tgifl (1:500, rabbit monoclo-
nal antibody, Abcam, ab52955), Erk1/2 (1:1000, mouse
monoclonal antibody, Cell Signaling, #9107), phosphory-
lated Erk1/2 (Thr202/Tyr204) (1:1000, rabbit monoclo-
nal antibody, Cell Signaling, #4379), AKT (1:1000, rabbit
polyclonal antibody, Cell Signaling, #4691), and phos-
phorylated AKT (Ser473) (1:1000, rabbit monoclonal
antibody, Cell Signaling, #4060). Immunoblot for actin
was used as a loading control (1:1000, mouse

Antibody

Endomucin V.7C7, rat monoclonal
Osterix A-13 rabbit polyclonal
Alexa Fluor 546 goat-anti rat
Alexa Fluor 546 donkey-anti rabbit
Tgif1, rabbit monoclonal

Erk1/2

Phosphorylated Erk1/2 (Thr202/Tyr204)
AKT

Phosphorylated AKT (Ser473)
Actin, mouse monoclonal
Peroxidase-labeled anti-mouse

Peroxidase-labeled anti-rabbit

Supplier Concentration
Santa Cruz, sc-65495 1:100
Santa Cruz, sc-22536 1:200
Life Technologies, A11081 1:400
Life Technologies, A10040 1:400
Abcam, ab52955 1:500
Cell Signaling, #9107 1:1000
Cell Signaling, #4379 1:1000
Cell Signaling, #4691 1:1000
Cell Signaling, #4060 1:1000
Abcam, MAB1501 1:1000
Promega, W402B 1:10,000
Promega, W401B 1:10,000
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monoclonal antibody, Abcam, MAB1501). Secondary
antibodies were incubated for 1h at room temperature,
followed by signal detection using the Clarity Western
ECL Substrate (BioRad) and the ChemiDoc™ MP Im-
aging System (Bio-Rad).

RNA extraction and gene expression analysis

Total RNA was isolated from cultured cells using the
RNeasy Plus Mini Kit (Qiagen, 74136) according to the
manufacturer’s protocol. After sacrifice, the lungs were
snap-frozen in liquid nitrogen and stored at -80°C.
Total RNA was isolated from the lungs using TRIzol re-
agent (Sigma, T9424) according to the manufacturer’s
instructions. cDNA was synthesized using 1 ug RNA and
the ProtoScript First Strand c¢DNA Synthesis Kit
(E6300S). Quantitative real-time PCR (qRT-PCR) was
performed with the CFX Connect Real-Time PCR De-
tection System (Bio-Rad) using the SYBR™ Select Master
Mix for CEX (Applied Biosystems, 4472942). Data were
normalized to the expression of the housekeeping genes
glycerinaldehyde-3-phosphate-dehydrogenase (GAPDH)
or beta-2-microglobulin (B2M, Table 2). GFP expression
was used to determine the presence of tumor cells in the
lungs 5 days after tumor cell injection.

Histological analysis

For the analysis of bone volume, MMA-embedded sec-
tions were stained with von Kossa/van Gieson staining.
To identify osteoblasts and osteoclasts, bone sections
were stained using toluidine blue and tartrate-resistant
acid phosphatase (TRAP) staining, respectively. Bone cell
number/mm trabecular bone surface as well as dynamic
histomorphometric parameters were analyzed using the
OsteoMeasure software attached to an Olympus BX50
microscope, x 20 objective (Olympus UPlan Fl 20x/0.50
00/0.17) according to the standards of the American So-
ciety for Bone and Mineral Research (ASBMR) [37]. The
tumor volume and the trabecular bone volume in the
femora of mice were quantified using hematoxylin and
eosin- or van Giemsa-stained sections (2 non-serial sec-
tions per mouse, 20 pm apart) 9 days after tumor cell in-
jection. The analysis was performed using the
OsteoMeasure software and an Olympus BX50 micro-
scope (x 10 objective, Olympus UPlan FI 10x/0.30 oo/-).
The total tumor area and the trabecular bone area

Table 2 Oligonucleotide sequences used in this study
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(Additional file 1: Figure S1B) of a tissue area with a
length of 2700 um were quantified.

Enzyme-linked immunosorbent assay

Blood was collected by cardiac puncture and allowed to
coagulate at room temperature, followed by centrifuga-
tion at 6200g for 10 min. The serum was collected and
stored at — 80 °C until quantification of the bone forma-
tion marker pro-collagen type I N propeptide (P1NP,
Immunodiagnostic Systems, AC-33F1) and of the bone
resorption marker tartrate-resistant acid phosphatase
(TRAP, Immunodiagnostic Systems, SB-TR103). ELISA
analyses were performed according to the manufac-
turer’s instructions.

Statistical analyses

Statistical analyses were performed using the Prism
GraphPad software (Version 8.0.1). Data were analyzed
using Student’s ¢ test when comparing two groups or by
one-way analysis of variance (ANOVA), followed by
Tukey’s post hoc test when comparing more than two
groups. The applied test is indicated in each figure le-
gend with a p value <0.05 being considered as statisti-
cally significant.

Results

Tgif1 supports the osteoblast-mediated increase of breast
cancer cell migration

Patients with breast cancer bone metastases often
present with osteolytic lesions, and therefore, osteoclasts
are considered as the cellular drivers of the disease.
However, osteoblasts have recently been proposed as po-
tential early-stage mediators of bone metastasis progres-
sion [19, 38]. Yet, very limited knowledge exists about
the role of osteoblasts in initiating destructive bone le-
sions. We hypothesized that osteoblasts regulate early
stages of breast cancer bone metastases, including the
migration of breast cancer cells to the metastatic site. To
test this hypothesis in vitro, we used transwell migration
assays allowing breast cancer cells to migrate towards
the medium that had been conditioned by osteoblasts.
Indeed, osteoblast-conditioned medium stimulated the
migration of both cells of the mouse-derived 4T1
(Fig. 1la) and of the human-derived MDA-MB-231

Target gene Sense Antisense

mGFP CAGGAGCGCACCATCTTCTT CTCGATGTTGTGGCGGATCT
mB2M CTGCTACGTAACACAGTTCCACCC CATGATGCTTGATCACATGTCTCG
mTgif1 GAGGATGAAGACAGCATGGA TTCTCAGCATGTCAGGAAGG
mSema3E GGGGCAGATGTCCTTTTGA AGTCCAGCAAACAGCTCATTC
mMGAPDH TCACCACCATGGAGAAGGC GCTAAGCAGTTGGTGGTGCA
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Fig. 1 Tqif1 supports the osteoblast-breast cancer cell interaction in vitro. a Migration of 4T1-GFP and b of MDA-MB-231 breast cancer cells
towards control (Ctrl) medium or medium conditioned by osteoblasts (ObCM). ¢ Representative images of MDA-MB-231 cells immobilized on
transwell inserts after migration. Scale bar indicates 20 um. d Tgifl mMRNA expression in osteoblasts 1 and 2 h after stimulation with medium
conditioned by 4T1 breast cancer cells (CCM). e Immunoblot demonstrating the protein abundance of Tgif1, phosphorylated ERK1/2 (p-ERK1/2),
and total ERK1/2 in MC3T3-E1 osteoblasts after stimulation with CCM for 1 and 2 h. Immunoblot for actin was used as a loading control. f MC3T3-
E1 cells were incubated with vehicle (DMSO) or with an inhibitor of ERK1/2 signaling and stimulated with CCM for 1 and 2 h. Immunoblot to
demonstrate the abundance of Tgif1, p-ERK1/2, total ERK1/2, and actin. g Transwell assay of MDA-MB-231 breast cancer cell migration towards
Ctrl medium or medium conditioned by osteoblasts that were isolated from mice bearing a germ line deletion of Tqif1 (Tgif1 ") or from Tgif1""*
control littermates. N = 3-5 with experimental replicates. Data are presented as mean + SEM. Two-tailed Student's t test was used to compare two
groups (a, b), and ANOVA followed by Tukey's post hoc analysis was used to compare more than two groups (d, g); *p < 0.05, **p < 0.001,
**%p < 0.001, ****p < 0.0001

identified Tgifl as a novel target gene of the first 34
amino acids of human recombinant parathyroid hor-
mone (PTH 1-34) [32]. PTHrP is a key cancer cell-
derived cytokine and activates, like PTH 1-34, the

(Fig. 1b, c) breast cancer cell lines, suggesting that osteo-

blasts attract breast cancer cells to the metastatic site.
Next, we aimed to identify the molecular mediators of

breast cancer cell-osteoblast interaction. Recently, we
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PTHIR receptor [39-41]. We therefore hypothesized
that PTHrP might also increase Tgifl expression in oste-
oblasts and stimulated MC3T3-E1 cells with PTHrP. In-
deed, PTHrP treatment significantly increased Tgifl
mRNA expression in osteoblasts (Additional file 2: Fig-
ure S2A). Consistently, immunoblot analysis revealed a
strong increase in Tgifl expression 6 h after stimulation
with PHTrP (Additional file 2: Figure S2B). This finding
lets us to propose that CCM might also stimulate Tgifl
expression in osteoblasts. In support of this hypothesis,
CCM increased Tgifl mRNA expression already 1 h
after stimulation (Fig. 1d), suggesting that CCM stimu-
lates Tgifl expression at the transcriptional level. The
expression continued to increase after 2 and 6 h of CCM
stimulation (Fig. 1d, Additional file 2: Figure S2C). Con-
sistently, immunoblot analysis demonstrated an increase
in Tgifl expression in osteoblasts as early as 1 h after
stimulation with CCM, with a sustained increase of
Tgifl expression after 2 and 6h of exposure to CCM
(Fig. 1e, Additional file 2: Figure S2D).

To investigate signaling cascades that might be involved
in the CCM-induced increase of Tgifl expression in oste-
oblasts, we determined the activation of various signaling
pathways involved in cell migration including AKT and
ERK1/2 signaling. Interestingly, CCM stimulation acti-
vated the ERK1/2 pathway while no activation of the AKT
pathway was observed (Fig. le, Additional file 2: Figure
S2E). To test the hypothesis that the increase in Tgifl ex-
pression depends on the activity of the ERK1/2 signaling
cascade, osteoblasts were treated with a selective ERK1/2
inhibitor prior to the stimulation with CCM. Inhibition of
the ERK1/2 pathway impaired the CCM-induced increase
of Tgifl expression, suggesting that CCM stimulates Tgif1
expression in part through the ERK1/2 pathway (Fig. 1f).

To investigate whether Tgifl in osteoblasts is involved
in regulating the osteoblast-mediated increase in breast
cancer cell migration, we induced breast cancer cell mi-
gration with conditioned medium collected from osteo-
blasts that were isolated from mice bearing a germ line
deletion of Tgifl (7gifl ”") or from control littermates
(Tgif1*’"). Consistent with our findings using the
MC3T3-E1 cell line, medium conditioned by Tgifl**
primary osteoblasts significantly increased breast cancer
cell migration compared to control (Fig. 1g). In contrast,
medium conditioned by Tgifl™”~ osteoblasts failed to in-
crease the migration of MDA-MB-231 breast cancer
cells (Fig. 1g). These findings strongly indicate that Tgifl
is required for the osteoblast-mediated increase of breast
cancer cell motility.

Tgif1 deficiency reduces the formation of bone marrow
micro-metastases

Our in vitro findings suggest that Tgifl is important for
the increase of breast cancer cell migration upon
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stimulation with the medium that had been conditioned
by osteoblasts, raising the question whether Tgifl might
also be implicated in the initiation of metastatic bone
disease in vivo. To test this hypothesis, we employed a
syngeneic metastasis model using Tgifl " and Tgifl™"*
mice (Fig. 2a). In support of our hypothesis, immuno-
fluorescence staining and confocal microscopy revealed
that 5 days after breast cancer cell injection, the presence
of tumor cells in the bone marrow microenvironment
was reduced by 25% in Tgifl”~ mice compared to
Tgifl*"* mice (Fig. 2b). While breast cancer cells were
found in approximately 78% of TgifI** mice, only 58%
of Tgifl ™~ mice had breast cancer cells in the bone mar-
row. At this time point, we observed single tumor cells
and breast cancer micro-metastases in the tibiae of both
groups, albeit less frequent in the absence of Tgifl
(Fig. 2¢, d). Immunofluorescence staining of the bone
marrow vasculature using the endothelial cell marker
Endomucin and the osteoblast marker Osterix revealed
that tumor cells preferentially localize in close proximity
to both vessels and osteoblasts (Fig. 2e—g). To determine
if the deletion of Tgifl affects tumor cell homing to or-
gans other than bones, we performed a qRT-PCR ana-
lysis to detect GFP-positive breast cancer cells in the
lungs of Tgifl*"* and Tgifl”~ mice. A GFP signal was
only detected in the lungs of a small subset of mice and
did not differ between genotypes (Additional file 2: Fig-
ure S2A and S2B). This suggests that the reduced num-
ber of micro-metastases in the bone marrow
microenvironment is not due to tumor cell relocation to
other organs. Together, these findings demonstrate that
Tgifl plays an important positive role during the early
stages of breast cancer bone metastasis, which might be
regulated by osteoblasts and vascular endothelial cells.

Metastatic breast cancer burden is reduced in a Tgif1-
deficient bone microenvironment

To determine whether the reduced presence of single
cells and breast cancer micro-metastases 5 days after
tumor cell injection results in a decreased metastatic
burden, we analyzed the establishment of bone metas-
tases in Tgifl ”~ and Tgifl*”* mice. Supporting our
hypothesis, bioluminescence imaging revealed a de-
creased number of bone metastases in the long bones
of Tgifl””~ mice compared to control littermates
(28.26% vs. 48.89%, respectively, Fig. 3a, b) 7days
after tumor cell injection. In addition, the reduced
bioluminescence signal intensity is consistent with an
attenuated metastatic growth in the long bones of
Tgifl™’~ mice (Fig. 3a, c). However, this did not reach
statistical significance due to a high variance of the
data. Nevertheless, in support of our hypothesis,
histological analysis revealed a decreased tumor vol-
ume per tissue volume in the femora of Tgifl™’~ mice
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Fig. 2 Tqif1 deficiency reduces the presence of single tumor cells and micro-metastases in the bone microenvironment. a Schematic
presentation of the experimental outline to determine the role of Tgif1 during the establishment and progression of breast cancer bone
metastases in 8—-10-week-old female BALB/c mice with a germ line deletion of Tgif1 (Tgifi’/’) or control littermates (Tg/'ﬁ*/*). i.c, intra cardiac
injection. b Presence of single tumor cells and micro-metastases in the tibiae 5 days after tumor cell injection (n =9 for Tgifl ™", n=12 for
Tgif1™"). ¢, d Representative confocal images of gelatin-embedded tibiae from Tgif1™* (c) and Tgif1 " (d) mice stained for the vascular
endothelial cell marker Endomucin (red) and breast cancer cells (green). GP, growth plate. Scale bar indicates 100 um. e-g Representative images
showing the proximity of breast cancer cells (green) to Endomucin-positive vascular endothelial cells (red) (e) and Osterix-positive osteoblasts
(red) (f, g) is indicated by yellow arrowheads. Tb, trabecular bone. Scale bar indicates 50 um
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Fig. 3 Metastatic breast cancer burden is reduced in a Tgif1-deficient bone microenvironment in vivo. a, b Bioluminescence imaging and
prevalence of bone metastases 7 days after intracardiac injection (n =44-46 long bones/group). ¢ Bioluminescence signal quantification shown as
average radiance (p/s/cm?/sr) in Tgif1*”* and Tgifl 7~ mice (n = 20 mice/group). d—f Representative images of hematoxylin and eosin-stained
femurs (d) and quantification of tumor volume (tumor area/tissue area) (e) and trabecular bone volume (BV/TV; bone volume/tissue volume) (f) 9
days after tumor cell injection (n =4-7 mice/group). Scale bar indicates 1 mm. Data are presented as mean £ SEM. Two groups were compared
using two-tailed Student's t test (b, ¢, f) or Welch's ¢ test (e); *p < 0.05, **p < 0.01

Tgif1** Tgif1” Tgif1** Tgif1”

9 days after tumor cell injection (Fig. 3d, e). Consist-
ently, trabecular bone volume was significantly higher
in the femora of Tgifl”’~ mice compared to Tgifl™*
mice (Fig. 3f), suggesting that the lack of Tgifl pro-
tects from breast cancer-induced bone loss. This is
supported by a reduced concentration of TRAP5b and
an increased concentration of PINP in the serum ob-
tained from Tgifl”’~ mice (Additional file 3: Figure
S3C and S3D). In summary, these data suggest that
the absence of Tgifl reduces the bone metastatic bur-
den and protects from breast cancer-induced bone
destruction in vivo.

Tgif1 maintains the osteoblast activity in the bone
marrow microenvironment

In order to investigate which components of the bone
microenvironment might contribute to the reduced

metastatic burden in Tgifl-deficient mice, we

performed a detailed characterization of the bone
microenvironment of 8-week-old female TgifI™~ mice
and control littermates (Fig. 4a). pCT analysis re-
vealed that deletion of Tgifl did not affect the tra-
becular bone mass (bone volume/total volume (BV/
TV)), trabecular thickness (Tb.Th), trabecular number
(Tb.N), or the trabecular separation (Tb.Sp) in the
tibiae of tumor-free mice (Additional file 4: Figure
S4A-D) or of mice that were sacrificed 5days after
tumor cell injection (Additional file 4: Figure S4E-H).
These data were confirmed by histomorphometric
analysis, demonstrating no change of the trabecular
bone mass (Fig. 4b (upper panel), e). Since tumor
cells were found to localize in close proximity to
Osterix-positive osteoblasts lining the trabecular bone
surfaces at early stages of metastasis formation (Fig. 2f,
g), we investigated the number and function of osteo-
blasts in greater detail. Dedicated histomorphometric



Haider et al. Breast Cancer Research (2020) 22:34 Page 10 of 16

A
| 20mg/kg Calcein | | 20mg/kg Demeclocycline | | Sacrifice |
| Day 0 Day 2 Day 5 Day 7 |

4

Histomorphometry & uCT
Bone cell number, activity and structure,
bone marrow vasculature

Tqif 1+ Tgif1
- v L WSTE » ey
. W I*‘ ‘} ot L0 g ‘
R .‘hw\j

0.0

«
P
-
=

©

TRAPS5b [UIL]
S o

N

N.Ob/B.Pm [/mm] BV/TV [%]
° « 3 & o «» 3
Ob.S/BS [%] MS/BS [%]
= - N - »n
s « 3 & 8 ° 3 S
OVIBV [%]
N.Oc/B.Pm (/mm) - N N
o - 90N W o 5 @ @
BFR/BS [um3/um?Zday]
s & 8 8
OS/BS [%]
o o

o

Z
(o]
-

©
S

-3

o
o
o
o

Vessel number [/[mm?]
N B
o o
Vessel size [nm?]
Vessel length [mm]
o
=
a

100 0.004 0.15
0.003
& 0.002 |:| Tgif1™
0.001 ’ - Tgif1”
o 0.000 )

Fig. 4 (See legend on next page.)

o
o
S




Haider et al. Breast Cancer Research (2020) 22:34 Page 11 of 16

(See figure on previous page.)

Fig. 4 Absence of Tgif1 in the bone microenvironment reduces the number and activity of osteoblasts in vivo. a Schematic presentation of the
experimental outline to investigate the role of Tgif1 in the bone microenvironment using 8-week-old mice with a germ line deletion of Tgif1
(Tgiﬂ’/’) or control littermates (Tg/fl*/*). b Representative images of von Kossa-stained sections of the tibiae (top panel) and of fluorescence
double labeling (lower panel) from Tgif1 ™+ and Tgif1™~ mice. Scale bars indicate 1 mm (black) and 20 um (white). ¢ Representative images of
toluidine blue-stained sections of the tibiae demonstrating the reduction of osteoblasts (red arrows) lining trabecular bone surfaces in Tgif1 ™~
mice compared to Tgif1 ™" mice. Scale bar indicates 20 um. d Representative images of the bone marrow vasculature. Tibia sections from Tgif1
and Tgifl 7~ mice were stained for Endomucin to visualize vessels. GP, growth plate. Scale bar indicates 100 um. e-I Histomorphometric analysis
of trabecular bone mass (e), mineralized bone surfaces (f), osteoid volume (g), bone formation rate (h), osteoid surface (i), osteoblast number (j),
osteoblast surface (k), and the number of osteoclasts (I) in Tg/’fi*/+ and Tgifl’/’ mice (n=5-10 mice/group). BV/TV, bone volume/tissue volume;
MS/BS, mineralizing surface/bone surface; OV/BV, osteoid volume/bone volume; BFR/BS, bone formation rate/bone surface; OS/BS, osteoid
surface/bone surface; N.Ob/BS, number of osteoblasts/bone surface; Ob.S/BS, osteoblast surface/bone surface; N.Oc/BS, number of osteoclasts/
bone surface. m Serum TRAP5b concentration measured by enzyme-linked immunosorbent assay (ELISA) (n = 3-6 mice/group). n—-p Number (n),
size (0), and length (p) of Endomucin-positive bone marrow vessels were analyzed using 3-4 non-serial sections of the tibiae per mouse. Data are

+/+

presented as mean + SEM. Two-tailed Student’s t test was used to compare the two groups; **p < 0.01, ***p < 0.001

analysis revealed a significant reduction of the min-
eralizing surface per bone surface (MS/BS), the oste-
oid volume per bone volume (OV/BV), the bone
formation rate per bone surface (BFR/BS), and the
osteoid surface per bone surface (OS/BS) in Tgifl
mice compared to control littermates (Fig. 4b (lower
panel), ¢, f—i). These data indicate a reduced osteo-
blast activity in the absence of Tgifl. Indeed, the
number of osteoblasts per trabecular bone surface
(N.Ob/B.Pm) and the osteoblast surface per bone sur-
face were significantly reduced in Tgifl ™~ mice com-
pared to control littermates (Fig. 4c, j, k). In contrast,
the number of osteoclasts per bone surface (N.Oc/
B.Pm) (Fig. 41) and the osteoclast activity, determined
by the quantification of the TRAP5b serum concen-
tration (Fig. 4m), were not altered by the absence of
Tgifl.

Since single breast cancer cells localize not only close
to osteoblasts but also nearby Endomucin-positive vas-
cular endothelial cells (Fig. 2e), we investigated potential
alterations of the bone marrow vasculature in non-
tumor cell-bearing tibiae from Tgifi** and Tgifl
mice. No difference in the number, size, and length of
the bone marrow vasculature was found between
Tgifl™"* and Tgifl "~ mice (Fig. 4d, n—p). These findings
suggest that the reduced incidence of bone metastases in
Tgifl”’~ mice might be independent of the bone marrow
vasculature and, at least in part, be mediated by active
osteoblasts.

Elevated expression of Semaphorin 3E in the absence of
Tgif1 impairs breast cancer cell migration

To better understand the molecular mechanism under-
lying the reduced metastatic burden in Tgifl ™~ mice, we
performed an unbiased RNA-seq analysis using osteo-
blasts obtained from 7gifl™* and Tgifl " mice (Fig. 5a).
Subsequently, we performed an in silico analysis for pre-
dicted Tgif binding sites in the proximal promoters of
the ten most abundantly expressed mRNAs that encode

secreted proteins using the TRANSFAC database
(Fig. 5a). Furthermore, we searched for factors that were
regulated at the mRNA and protein level using a pub-
lished secretome dataset (Stable Isotope Labeling with
Amino Acids in Cell Culture (SILAC), ProteomeX-
change dataset, identifier PXD012303). From these in-
vestigations, we selected Semaphorin 3E (Sema3E) for
further analysis since it is abundantly expressed by
Tgifl”~ osteoblasts, has nine Tgif binding sites in the
proximal promoter, and is secreted by osteoblasts. The
difference in Sema3E expression between TgifI** and
Tgifl™”~ osteoblasts was subsequently confirmed by RT-
qPCR analysis (Fig. 5b). Since Sema3E has been shown
to inhibit the migration of various cell types [42-44], we
hypothesized that Sema3E could also restrict the motility
of breast cancer cells. To test this hypothesis, we allowed
breast cancer cells to migrate towards increasing con-
centrations of Sema3E (100 ng/ml and 500 ng/ml). In
support of our concept, recombinant Sema3E dose-
dependently impaired breast cancer cell migration
(Fig. 5¢). Importantly, conditioned medium collected
from Tgifl " osteoblasts transfected with siRNA against
Sema3E partially but significantly restored breast cancer
cell migration to the level of medium conditioned by
Tgifl*’* osteoblasts (Fig. 5d). Together, these results
suggest that Tgifl in osteoblasts supports breast cancer
cell migration by suppressing Sema3E expression.

Discussion
In this study, we identified Tgifl as a novel regulator of
the osteoblast-breast cancer cell interaction. We propose
that the lack of Tgifl in osteoblasts attenuates breast
cancer cell migration and metastasis formation, presum-
ably through suppression of Sema3E expression (Fig. 5e).
Thus, our findings establish osteoblasts and Tgifl as im-
portant regulators of bone metastasis.

The metastatic cascade is a multistep process, and in
particular, migration and invasion are considered as hall-
marks of cancer malignancy [45]. For successful
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colonization of distant organs, an interaction between
tumor cells and the local environment is important.
Here, we demonstrate that osteoblasts mediate the
chemotactic migration of breast cancer cells in vitro. In
support of our results, medium conditioned by pre-
osteoblasts was recently demonstrated to stimulate col-
lective cell migration of metastatic breast cancer cells in
a wound healing assay [46]. Together, these findings
suggest that osteoblasts attract breast cancer cells to the
metastatic site, thereby playing a key role during the for-
mation of bone metastases.

Tgifl has been identified as a stimulator of cancer cell
migration as shown by an enhanced migration of colon
cancer cells upon overexpression of Tgifl [30]. Consist-
ently, the absence of Tgifl impaired the migration of
non-small lung cell cancer cells and MDA-MB-231
breast cancer cells in vitro [47, 48]. In breast cancer,
long-term exposure to the carcinogen cadmium was
shown to promote breast cancer cell migration and inva-
sion by increasing the expression of Tgifl [49]. Thus,
these studies indicate a cell-autonomous effect of Tgifl
in stimulating breast cancer cell migration. Here, we
aimed to investigate whether Tgifl in osteoblasts could
participate in regulating the osteoblast-induced breast
cancer cell migration. Indeed, medium conditioned by
control osteoblasts significantly stimulated the migration
of breast cancer cells, while medium conditioned by os-
teoblasts lacking Tgifl failed to activate breast cancer
cell migration. Hence, our data show for the first time
that Tgifl in osteoblasts supports breast cancer cell mi-
gration in a non-cell-autonomous manner.

To obtain further insights into the molecular
mechanisms underlying the role of Tgifl in the
osteoblast-mediated breast cancer cell migration, we
performed an unbiased RNA sequencing analysis in
osteoblasts isolated from TgifI*’* and Tgifl™’~ mice.
In this screen, Sema3E, a class 3 Semaphorin, was
identified as abundantly expressed by Tgifl " osteo-
blasts. Class 3 Semaphorins comprise a group of se-
creted molecules that were originally described as
chemorepulsive molecules regulating axon guidance
[50, 51]. Besides their function in the nervous sys-
tem, class 3 Semaphorins have been shown to re-
strict cell migration in a variety of biological systems
in a context-dependent manner [52]. For instance,
Sema3E plays an important role in leukocyte traffick-
ing by inhibiting inflammation-induced neutrophil
migration and recruitment to the lungs [53]. Fur-
thermore, migration of vascular smooth muscle cells,
osteoblasts, and thymocytes is inhibited by Sema3E
[54-56]. In addition, Sema3E produced by immature
dendritic cells inhibits the migration of natural killer
cells, demonstrating the role of Sema3E in regulating
cell-cell interaction [57]. Consistently, our findings
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suggest that osteoblast-derived Sema3E suppresses
breast cancer cell migration, providing a novel para-
crine function for Sema3E.

Besides stimulating breast cancer cell migration, an in-
creased abundance of Tgifl has been associated with
mammary tumorigenesis [31]. In support of this finding,
knockdown of Tgifl in MDA-MB-231 breast cancer cells
reduced the presence of lung metastases in mice [48],
suggesting that Tgifl promotes cell-autonomous breast
cancer growth and metastasis. While these studies estab-
lished the role of Tgifl in breast cancer cells, we deter-
mined whether Tgifl in the tumor microenvironment
affects the progression of bone metastases in a non-cell-
autonomous manner. Interestingly, the deletion of Tgifl
in the bone microenvironment reduced the presence of
single breast cancer cells and breast cancer micro-
metastases in the bone. Furthermore, metastatic growth
was attenuated in a Tgifl-deficient bone microenviron-
ment, resulting in a reduced breast cancer-mediated
bone destruction. Recently, it has been proposed that
static environments (i.e., endosteal surfaces covered by
lining cells, stable vasculature) maintain disseminated
tumor cells quiescent, while active environments (i.e.,
sprouting vasculature) trigger tumor cell growth in
bones [20]. Thus, modifying the bone microenvironment
might offer promising therapeutic approaches to restrict
tumor growth in bone [58].

As components of the heterogeneous bone micro-
environment, the vascular and endosteal niches are of
particular importance for metastatic breast cancer
growth in bones [16, 38, 59]. Our dedicated analysis of
the vascular network revealed no alterations of the num-
ber, length, or size of the Endomucin-positive vascula-
ture in the long bones of Tgifl-deficient mice.
Previously, it has been shown that silencing Tgifl ex-
pression decreased the proliferation while it increased
the tube formation of endothelial cells in vitro [60]. In
addition, an increased angiogenic potential as deter-
mined by vascular network formation assays was ob-
served upon silencing of Tgifl expression [60]. However,
our results indicate that these in vitro findings do not
translate into in vivo conditions and cause changes in
the mineralized surface, bone marrow vasculature. In
contrast, the number and activity of osteoblasts includ-
ing the bone formation rate, osteoid volume, and surface
were significantly reduced in Tgifl ”~ mice compared to
control littermates. This suggests that the attenuated
metastatic burden in Tgifl-deficient mice is, at least in
part, mediated by osteoblasts rather than by the bone
marrow vasculature. In vitro, Tgifl-deficient osteoblasts
reduced breast cancer cell migration in a Sema3E-
dependent manner. It is therefore likely that Tgifl in os-
teoblasts also regulates breast cancer cell migration to
the metastatic site in vivo. However, the strong
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reduction of the number of active osteoblasts suggests
that additional mechanisms independent of cell migra-
tion may exist that control osteoblast function and con-
sequently breast cancer cell proliferation and disease
progression in vivo. While the experimental approaches
used in this study do not allow distinguishing between
these possibilities, the contribution of the migration-
stimulating effect of Tgifl and the effect on osteoblast
activity would need to be elucidated in the future. Fur-
thermore, to better understand which step of the meta-
static cascade Tgifl controls precisely, additional in vivo
models could be employed. In the present study, a syn-
geneic mouse model was chosen to preserve an intact
immune system, which has an important role in bone
metastasis progression. However, the 4T1 breast cancer
cells grow very aggressively in the bone, which makes it
challenging to distinguish between the different steps of
disease progression such as cancer cell homing, dor-
mancy, micrometastasis formation, and relapse. There-
fore, future experiments may include less aggressive
xenograft models that recapitulate the corresponding
clinical situation more closely.

In summary, this work demonstrates that Tgifl in the
bone microenvironment is implicated in the establish-
ment and progression of breast cancer bone metastases
and might therefore provide novel therapeutic opportun-
ities to treat the initiation and progression of breast can-
cer metastasis to bones.

Conclusions

Breast cancer bone metastases are characterized by an
increased osteoclast-mediated bone resorption. Due to
the osteolytic nature of the disease, osteoclasts have been
considered as the cellular drivers of bone metastases
while little is known about bone-forming osteoblasts in
this process. Here, we show that osteoblasts and breast
cancer cells functionally interact in vitro and in vivo. We
identified the homeodomain protein Tgifl as an import-
ant mediator of this interaction and demonstrate that
bone metastases burden is reduced in the absence of
Tgifl in the bone marrow microenvironment. In conclu-
sion, our results suggest that Tgifl in osteoblasts is an
important regulator of breast cancer cell motility, and its
presence in the bone microenvironment affects metasta-
sis formation in the skeleton.
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