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Abstract 

Background:  Vector-borne diseases are a major public health concern and cause significant morbidity and mortal-
ity. Zika virus (ZIKV) is the etiologic agent of a massive outbreak in the Americas that originated in Brazil in 2015 and 
shows a strong association with congenital ZIKV syndrome in newborns. Cache Valley virus (CVV) is a bunyavirus 
that causes mild to severe illness in humans and ruminants. In this study, we investigated the vector competence of 
Virginia mosquitoes for ZIKV and CVV to explore their abilities to contribute to potential outbreaks.

Methods:  To determine vector competence, mosquitoes were fed a blood meal comprised of defibrinated sheep 
blood and virus. The presence of midgut or salivary gland barriers to ZIKV infection were determined by intrathoracic 
inoculation vs oral infection. After 14-days post-exposure, individual mosquitoes were separated into bodies, legs and 
wings, and saliva expectorant. Virus presence was detected by plaque assay to determine midgut infection, dissemi-
nation, and transmission rates.

Results:  Transmission rates for Ae. albopictus orally infected (24%) and intrathoracically inoculated (63%) with ZIKV 
was similar to Ae. aegypti (48% and 71%, respectively). Transmission rates of ZIKV in Ae. japonicus were low, and 
showed evidence of a midgut infection barrier demonstrated by low midgut infection and dissemination rates from 
oral infection (3%), but increased transmission rates after intrathoracic inoculation (19%). Aedes triseriatus was unable 
to transmit ZIKV following oral infection or intrathoracic inoculation. CVV transmission was dose-dependent where 
mosquitoes fed high titer (ht) virus blood meals developed higher rates of midgut infection, dissemination, and 
transmission compared to low titer (lt) virus blood meals. CVV was detected in the saliva of Ae. albopictus (ht: 68%, lt: 
24%), Ae. triseriatus (ht: 52%, lt: 7%), Ae. japonicus (ht: 22%, lt: 0%) and Ae. aegypti (ht: 10%; lt: 7%). Culex pipiens and Cx. 
restuans were not competent for ZIKV or CVV.

Conclusions:  This laboratory transmission study provided further understanding of potential ZIKV and CVV transmis-
sion cycles with Aedes mosquitoes from Virginia. The ability for these mosquitoes to transmit ZIKV and CVV make them 
a public health concern and suggest targeted control programs by mosquito and vector abatement districts.
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Background
Vector-borne pathogens are a major public health con-
cern and cause significant morbidity and mortality 
globally. In recent years, vector-borne pathogens have 

appeared in new regions, even as endemic diseases have 
increased in incidence. Human travel and trade are often 
responsible for the introduction of invasive pathogens 
but ecological factors such as climate and presence of 
competent vectors will determine whether the pathogen 
becomes established. For example, since its introduction 
in 1999, West Nile virus (WNV) (family  Flaviviridae, 
genus Flavivirus) is now the leading cause of vector-borne 
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encephalitis in the USA [1]. Also impacting vector-borne 
disease emergence are invasive mosquitoes that may alter 
the transmission cycles of pathogens, whether native or 
introduced [2]. Aedes albopictus and Ae. japonicus are 
two of the most invasive mosquito species worldwide [3] 
and both have been known to function as competent vec-
tors for several enzootic mosquito-borne viruses in the 
USA [4, 5].

Zika virus (ZIKV) (family  Flaviviridae, genus  Flavivi-
rus) is an arthropod-borne virus (arbovirus) of humans 
and has been linked to congenital malformations and 
microcephaly in developing fetuses, and Guillain-Barré 
syndrome in adults [6]. Since its introduction to Brazil in 
2015, ZIKV has spread into many new areas within the 
Americas [7]. ZIKV is transmitted primarily by urban and 
sylvatic Aedes mosquitoes, with Ae. aegypti serving as the 
main vector for human infection outside of Africa [8–10]. 
This emerging mosquito-borne virus has caused epidem-
ics throughout Africa, Asia, the Pacific Islands and the 
Americas [11, 12]. Due to the lack of knowledge of ZIKV 
replication in North American mosquitoes, experimental 
vector competence studies are necessary to better under-
stand the potential transmission of ZIKV by additional 
species. Recent studies have shown that some Aedes, 
Culex and Coquillettidia mosquitoes from temperate 
regions of North America were not competent for ZIKV 
[13, 14], but this is a small representation of the species 
and strain diversity of mosquitoes that are found in the 
USA.

Cache Valley virus (CVV) (family Peribunyaviridae, 
genus Orthobunyavirus) is a neuroinvasive arbovirus that 
is also spread by mosquitoes. Although CVV infection 
typically causes mild symptoms in humans, fever, men-
ingitis, and encephalitis have been reported [15]. The 
symptoms of CVV infection are more severe in rumi-
nants, such as sheep or cattle, and include stillbirths, con-
genital malformations, spontaneous abortions, and death 
[16]. CVV has a widespread distribution in North Amer-
ica and has been isolated from many species of mosqui-
toes including Ae. albopictus and Ae. japonicus [17–20]. 
The principal vector is unknown, but vector competence 
studies and field isolations have shown that Anopheles 
quadrimaculatus and An. punctipennis may play a sig-
nificant role in the natural transmission cycle [21, 22]. 
Laboratory transmission studies have also shown that Cx. 
tarsalis, Ae. taeniorhynchus, Ae. sollicitans and Cq. per-
turbans are competent vectors of CVV [22–24].

Aedes aegypti and Ae. albopictus are the most impor-
tant mosquito species responsible for virus transmission 
to humans in urban environments. Both species are com-
petent vectors for ZIKV, dengue virus (DENV) and yellow 
fever virus (YFV) [25–27]. The Asian rock pool mosquito, 

Ae. japonicus, is a relatively new invasive species that 
can be found in subtropical and temperate regions of the 
USA. Although Ae. japonicus is not an aggressive human 
biter, blood meal analysis from field collected mosquitoes 
have shown high incidences of human blood consump-
tion [28]. Laboratory transmission studies show that Ae. 
japonicus is a competent vector of WNV, La Crosse virus 
(LACV), Eastern equine encephalitis virus (EEE) and St. 
Louis encephalitis virus (SLEV) [29–32]. Aedes triseria-
tus, the principal vector of LACV, is found extensively 
throughout eastern USA and parts of Central America 
[33]. Under laboratory conditions, Ae. triseriatus is a 
competent vector for WNV, DENV, YFV, EEE and SLE 
[34]. WNV has been isolated from Culex pipiens and Cx. 
restuans and both species have been shown to be compe-
tent vectors of the virus [35, 36]. Laboratory transmission 
studies have found that Cx. pipiens is refractory to CVV 
and ZIKV infections [13, 23, 25, 37, 38].

Between 2015 and 2018, there were more than 5000 
imported ZIKV cases in the USA, with over 100 cases 
in Virginia [39]. Within the continental USA, reports of 
local transmission by mosquito vectors have occurred in 
Florida and Texas [40–42]. There have been no human 
CVV cases reported in Virginia, but the virus has been 
isolated from field-collected Ae. japonicus within the 
state [20]. Although CVV has been detected in field mos-
quitoes, only a few transmission studies have been con-
ducted to determine potential vectors for the virus. With 
the wide distribution of Ae. albopictus, Ae. japonicus, 
Ae. triseriatus, Cx. pipiens and Cx. restuans throughout 
Virginia [43], it is crucial to determine the vector com-
petence of these local mosquito strains. In this study, we 
investigated the vector competence of Virginia mosqui-
toes common in urban and suburban environments for 
ZIKV and CVV to explore their abilities to contribute to 
potential outbreaks and help inform local mosquito con-
trol strategies.

Methods
Mosquito collection and rearing
All eggs were derived from female mosquitoes collected 
using gravid traps in forested areas around Blacksburg, 
VA. After laying eggs, adult mosquitoes were tested 
for arboviruses by Vero cell plaque assay to ensure the 
absence of virus in the F1 progeny. A laboratory strain of 
Ae. aegypti from Vero Beach, FL, was used as our refer-
ence vector species and was subsequently tested for CVV 
vector competence. Mosquitoes were reared in environ-
mental chamber conditions set at 24 °C with 75% RH and 
16L:8D photoperiod using methods by Jackson et al. [44] 
to ensure consistent adult size.
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Cells and virus
African green monkey kidney (Vero) cells (American 
Type Culture Collection, Manassas, VA, USA) were cul-
tured in Dulbecco’s Modified Eagle’s Medium (DMEM, 
Corning, Corning, NY, USA) with 10% fetal bovine serum 
(FBS), 100 U/ml of penicillin and 100 μg/ml of strepto-
mycin, and maintained at 37 °C with 5% CO2.

The Asian lineage of ZIKV, PRVABC59 (GenBank: 
KU501215) and CVV strain 4B (GenBank: KX583998) 
was used in this study. PRVABC59 was isolated from the 
serum sample of a patient traveling from Puerto Rico in 
2015. CVV4B was isolated from field-caught Ae. japoni-
cus during a 2015 field study in Blacksburg, VA. Both 
viruses were maintained through passage on Vero cells 
and stored at − 80 °C. Infected blood meals consisted of 
1 ml of virus mixed with 9 ml of defribinated sheep blood 
(Colorado Serum Company, Denver, CO, USA).

Mosquito infection
For oral infection, 1-week-old female mosquitoes were 
starved 24 h before blood-feeding and provided cot-
ton balls soaked with deionized water. Approximately 
40–50 female mosquitoes were placed into 1-gallon cages 
covered with a mesh screen top. The mosquitoes were 
offered infected blood meals contained in a glass water-
jacketed membrane feeder attached to a circulating 37 °C 
water bath. Pig intestine sausage casing was used as the 
membrane. After a 2-h feeding period, fully engorged 
females were anesthetized on ice and transferred to a new 
1-liter cage. A 0.5 ml sample of the infected blood was 
removed after the feeding period and stored at − 80  °C 
for later virus titer. Parenteral infection was done by 
intrathoracic inoculation of week-old females that had 
never taken a blood meal with 0.2 µl of virus [45]. Table 1 
shows the titers of virus infected blood meals and virus 
inoculum. Infected mosquitoes were maintained at 24 °C 
with 75% RH and 16L: 8D photoperiod and provided 10% 
sucrose solution for sustenance.

Saliva extraction
After 14-DPE, female mosquitoes were removed from 
cages and immobilized by chilling on ice. Saliva was 
extracted by inserting the proboscis into a capillary tube 

filled with a 1:1 mixture of 10% sucrose and fetal bovine 
serum (FBS) [46]. The mosquitoes were given 30 min to 
feed and salivate. The saliva, legs and wings and body 
were placed into separate microcentrifuge tubes with 
DMEM and stored at − 80 °C until virus testing.

Virus detection
Mosquito bodies, leg and wing and saliva samples were 
homogenized with metal pellets in 2 ml of Vero media 
on a vortex mixer and then clarified by centrifugation at 
1500× g for two min. Supernatants were tested for infec-
tion using Vero cell plaque assay following the methods 
of Barker et al. [47]. If virus was recovered from the body 
but not the legs and wings, the mosquito was classified as 
having a non-disseminated infection; if virus was detected 
in the wings and legs, the mosquito was classified as hav-
ing a disseminated infection; mosquitoes with virus in 
saliva were classified as transmitting. Infection rate was 
determined as the percentage of the orally infected mos-
quitoes positive for virus in the body. Dissemination rate 
was determined as the percentage of orally infected mos-
quitoes that were positive for virus in the legs and wings, 
regardless of infection status. Transmission rate was 
determined as the percentage of orally infected mosqui-
toes that had virus in the salivary expectorant, regardless 
of infection status. Infectious blood meals were thawed at 
room temperature, diluted with a series of 10-fold serial 
dilutions and tested for virus concentration using plaque 
assay.

Statistical analysis
A Chi-square test was used to compare mean infection, 
dissemination and transmission rates among mosquito 
species followed by Fisher’s exact tests for pairwise com-
parisons [48]. GraphPad Prism 6.0 (La Jolla, CA, USA) 
was used for all statistical analysis. All statistical analyses 
were carried out at a significance level of α = 0.05.

Results
Vector competence for ZIKV following oral infection
There was a significant difference among infection (χ2 = 
58.73, df = 5, P < 0.05), dissemination (χ2 = 71.21, df = 5, 

Table 1  ZIKV and CVV blood meal titers

Species CVV high blood meal titer 
(pfu/ml)

CVV low blood meal titer (pfu/
ml)

ZIKV blood meal titer (pfu/
ml)

ZIKV intrathoracic 
inoculation titer (pfu/
ml)

Aedes albopictus 5.25 × 106 2.90 × 103 3.00 × 106 5.25 × 104

Aedes aegypti 1.98 × 107 6.28 × 103 6.50 × 106 5.25 × 104

Aedes japonicus 1.99 × 106 4.60 × 103 3.72 × 107 7.50 × 104

Aedes triseriatus 2.99 × 106 1.40 × 103 4.50 × 107 1.80 × 105
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P < 0.05) and transmission (χ2 = 60.17, df = 5, P < 0.05) 
rates for Ae. aegypti, Ae. albopictus, Ae. japonicus and Ae. 
triseriatus after oral infection with ZIKV (Fig.  1). Rates 
for infection, dissemination and transmission were high-
est for Ae. aegypti (68%, 60% and 48%, respectively) and 
Ae. albopictus (49%, 41% and 24%, respectively). Aedes 
japonicus rates of infection, dissemination and transmis-
sion (20%, 9% and 3%) were significantly lower than Ae. 
aegypti (Fisher’s exact test, P < 0.0001, OR: 0.9257, 95% 
CI: 0.0326–0.2629; P < 0.0001, OR: 0.05970, 95% CI: 
0.0187–0.1899; P < 0.0001, OR: 0.03052, 95% CI: 0.0061–
0.1527) and Ae. albopictus (Fisher’s exact test, P < 0.0006, 
OR: 0.2077, 95% CI: 0.0849–0.5076; P = 0.0002, OR: 
0.1313, 95% CI: 0.0454–0.3800; P = 0.0008, OR: 0.08764, 
95% CI: 0.0178–0.4314) (Fig.  1). Although 25% of Ae. 
triseriatus became infected after imbibing an infectious 
blood meal, there was no dissemination or transmission 
of the virus. Neither Cx. pipiens nor Cx. restuans were 
infected after oral exposure to ZIKV (Table 2). 

Transmission of ZIKV following parenteral infection
Parenteral infection by intrathoracic inoculation resulted 
in significantly higher rates of transmission compared to 
oral infection in Ae. albopictus (63% parenteral vs 24% 
oral) (Fisher’s exact test, P = 0.0080, OR: 0.1875, 95% CI: 
0.0566–0.6209) and Ae. japonicus (19% parenteral vs 3% 
oral) (Fisher’s exact test, P = 0.0212, OR: 0.1197, 95% CI: 
0.0202–0.7088) (Table 3). Mode of infection had no effect 
on transmission by Ae. aegypti (71% parenteral vs 48% oral) 
(Fisher’s exact test, P = 0.1395, OR: 0.3693, 95% CI: 0.1079–
1.2630). No virus was detected in the saliva of Ae. triseriatus 
from either orally or parenterally infected groups (Table 3).

Vector competence to CVV
When fed a high titer (ht) virus blood meal, Ae. albopic-
tus and Ae. triseriatus showed significantly higher rates 
of infection (χ2 = 127.5, df = 5, P < 0.0001), dissemina-
tion (χ2 = 107.8, df = 5, P < 0.0001) and transmission 
(χ2 = 88.08, df = 5, P < 0.0001) than Ae. japonicus or Ae. 
aegypti (Table 4). However, when fed low titer (lt) blood 
meals, there were no differences among rates for any of 
the species (χ2 = 5.61, df = 3, P > 0.05) (Table 4). Aedes 
albopictus was the most susceptible to CVV oral infec-
tion (ht: 100%, lt: 24%) and had the highest rate of dis-
semination (ht: 85%, lt: 24%) and transmission (ht: 68%, 
lt: 24%). Aedes triseriatus was also susceptible to CVV 
infection (ht: 72%, lt: 15%), dissemination (ht: 69%, lt: 
11%) and transmission (ht: 52%, lt: 7%). None of the Ae. 
japonicus fed a low titer blood meal developed midgut 
infections. For Ae. aegypti¸ CVV was able to establish 
midgut infections (ht: 48%, lt: 11%), cause a disseminated 
infection (ht: 25%, lt: 11%) and transmit virus (ht: 10%; 
lt:7%). Figure 2 shows significant differences in infection, 
dissemination and transmission between high and low 
titer blood meals for Ae. albopictus, Ae. triseriatus and 
Ae. japonicus. Virus titer resulted in significant differ-
ences in infection for Ae. aegypti but not dissemination 
or transmission rates. Neither of the Culex species was 
able to transmit CVV. No Cx. restuans became infected 
and only one Cx. pipiens was positive for infection and 
dissemination (Table 2).

Fig. 1  Vector competence for ZIKV PRVABC59. Aedes albopictus (n = 
37), Ae. triseriatus (n = 28), Ae. japonicus (n = 73) and Ae. aegypti (n = 
25) were provided infectious blood meals with an average titer of 2.57 
× 107 pfu/ml (range = 5.75 × 106 to 7.5 × 107 pfu/ml). After 14 days, 
mosquitoes were dissected and the number infected (% mosquitoes 
with virus in the body), disseminated (% mosquitoes with virus in 
legs and wings, independent of infection status) and transmitting (% 
mosquitoes with virus in saliva expectorant, independent of infection 
status) were determined by Vero cell plaque assay. Different letters 
denote significance by two-tailed Fischer’s exact test and presented 
as mean % infected, disseminated and transmitting, α = 0.05

Table 2  Vector competence of ZIKV and CVV in Culex pipiens and Cx. restuans 

Mosquito species Sample size (n) Mean titer (pfu/ml) Mean non-disseminated 
infection (%)

Mean disseminated 
infection (%)

Mean 
transmitting 
(%)

ZIKV

 Cx. pipiens 30 3.00 × 107 0 0 0

 Cx. restuans 28 5.25 × 106 0 0 0

CVV

 Cx. pipiens 67 1.12 × 108 1 1 0

 Cx. restuans 30 7.70 × 107 0 0 0
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Discussion
Assessing the vector competence of local mosquitoes 
for imported and emerging viruses is critical for public 
health officials to anticipate patterns of arbovirus trans-
mission, determine the relative roles of the different 
species for virus amplification and spread, and to select 
appropriate control responses. This study aimed to deter-
mine the risk of local ZIKV transmission and the emer-
gence potential of CVV in Virginia by evaluating the 
vector competence of the most common mosquito spe-
cies found in urban and suburban habitats.

A meta-analysis by McKenzie et al. [49] suggested that 
the vector competence of Ae. albopictus for Zika virus 
varied among geographically disparate populations. We 
found that the vector competence of a Virginia strain of 
Ae. albopictus was equivalent to that of a Florida strain 
of Ae. aegypti. Culex mosquitoes were found to be refrac-
tory to ZIKV infection. Other studies have also observed 
similar results, suggesting that it is unlikely this group 

plays a role in ZIKV transmission [13, 37, 50, 51]. We 
also found that Ae. japonicus from Virginia was capable 
of transmitting ZIKV, but at a much lower rate compared 
to Ae. aegypti and Ae. albopictus. A study by Aliota et al. 
[13] showed that laboratory strains of Ae. triseriatus were 
able to become infected with ZIKV PRVABC59, the same 
strain that we used, but no dissemination or transmission 
resulted. Our study showed similar results working with 
an F1 generation of field-caught Ae. triseriatus where 
only midgut infections resulted from oral exposure.

Upon ingesting an infectious blood meal, the virus 
must surmount several tissue barriers associated with 
the midgut and salivary glands [52]. We assessed the 
presence of tissue barriers by intrathoracic inoculation 
of ZIKV. Injecting virus directly into the hemolymph 
bypasses the midgut and permits the virus to reach and 
infect the salivary glands. We detected infectious virus 
in salivary expectorant of Ae. japonicus, but not Ae. tri-
seriatus, which indicated the presence of salivary gland 

Table 3  Transmission rate of Aedes japonicus and Ae. triseriatus intrathoracically inoculated with ZIKV

Notes: Differing letters denote significance of transmission rates of the same species after oral or intrathoracic infection by two-tailed Fischer’s exact test, α = 0.05

Mosquito species Infection method Sample size (n) Virus titer (pfu/ml) Transmission 
(%)

Ae. albopictus Intrathoracic 19 5.25 × 104 63a

Oral 37 3.00 × 106 24b

Ae. aegypti Intrathoracic 21 5.25 × 104 71a

Oral 25 6.50 × 106 48a

Ae. japonicus Intrathoracic 21 7.50 × 104 19a

Oral 73 3.72 × 107 3b

Ae. triseriatus Intrathoracic 23 1.80 × 105 0a

Oral 28 4.50 × 107 0a

Table 4  Vector competence for CVV 4B by Aedes albopictus, Ae. triseriatus, Ae. japonicus and Ae. aegypti presented as mean % infected, 
disseminated and transmitting

Notes: Different letters denote significance between different species within respective categories of high or low titer blood meals by two-tailed Fischer’s exact test, α 
= 0.05

Species Sample size (n) Mean blood meal titer 
(pfu/ml)

% infected % disseminated % transmitting

High titer

 Ae. albopictus 34 5.25 × 106 100a 85a 68a

 Ae. triseriatus 29 2.99 × 106 72a 69a 52a

 Ae. japonicus 74 1.99 × 106 41b 38b 28b

 Ae. aegypti 52 1.98 × 107 48a,b 25b 10b

Low titer

 Ae. albopictus 21 2.90 × 103 24a 24a 24a

 Ae. triseriatus 55 1.40 × 103 15a 11a 7a

 Ae. japonicus 21 4.60 × 103 0a 0a 0a

 Ae. aegypti 44 6.28 × 103 11a 11a 7a
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barriers. Although transmission for intrathoracically 
inoculated Ae. japonicus was significantly higher than 
orally infected mosquitoes, the rates were low. The low 
midgut infection and transmission rates lead us to believe 
that there are potential midgut and salivary gland barriers 
that limit Ae. japonicus and prevent Ae. triseriatus from 
ZIKV transmission. Although Ae. albopictus was capable 
of ZIKV transmission after oral infection, intrathoracic 
inoculation significantly increased its transmission rates, 
indicating the presence of a midgut barrier. Studies of 
virus and vector systems have shown that these barriers 
play an important role during the extrinsic incubation 
period and may limit the ability of the virus to infect the 
mosquito for successful transmission [53, 54]. In addi-
tion, gut microbiota and immune pathways may also be 
involved when the virus enters the midgut [55–57]. It has 
been hypothesized that midgut and salivary gland barri-
ers are responsible for the geographical variation in vec-
tor competence seen in Ae. aegypti and Ae. albopictus for 
ZIKV [58–60].

Although Ae. japonicus was capable of ZIKV trans-
mission, it is not an aggressive human biter and pre-
dominantly inhabits forested areas, which limits its role 
in ZIKV transmission. Surprisingly, Ae. triseriatus, Cx, 

pipiens and Cx. restuans were not competent for ZIKV 
even though they are competent vectors of other flavivi-
ruses, such as WNV or SLEV [61–63]. Aedes albopictus, 
on the other hand, was highly competent for ZIKV and 
exhibits aggressive, anthropophilic behaviour. The likeli-
hood for this species to contribute to ZIKV transmission 
in Virginia is much higher compared to other Aedes mos-
quitoes in this region.

This study also found that Ae. albopictus, Ae. triseria-
tus, Ae. japonicus and Ae. aegypti were susceptible to 
CVV infection and capable of virus transmission. The 
combination of high vector competence, previous isola-
tions from the field, and anthropophilic behavior sug-
gests that Ae. albopictus could play a major role in CVV 
transmission in endemic areas [64, 65]. Aedes triseria-
tus and Ae. japonicus were also competent for CVV and 
blood meal analysis has shown that all three species feed 
on deer, the primary amplifying vertebrate host for CVV 
[28, 66–69]. We used high and low CVV blood meal titers 
that bracketed the range of titers found in experimen-
tally infected deer [22] and showed that Ae. albopictus, 
Ae. triseriatus and Ae. aegypti were susceptible to CVV 
infection and subsequently transmitted virus even when 
exposed to low titer blood meals. There is currently no 

Fig. 2  Vector competence for CVV with high versus low titer blood meals. Mosquitoes were provided low titer (lt) (1.2 × 103 to 4.6 × 103 pfu/ml) 
or high titer (ht) (1.6 × 105 to 5.5 × 107 pfu/ml) infectious blood meals. After 14 days, the mosquitoes were dissected and the number infected (% 
mosquitoes with virus in the body), disseminated (% mosquitoes with virus in legs and wings, independent of infections status) and transmitting (% 
mosquitoes with virus in saliva expectorant, independent of infection statues) were determined using Vero cell plaque assay. a Aedes albopictus (lt: 
n = 21; ht: n = 34). b Aedes triseriatus (lt: n = 55; ht: n = 29). c Aedes japonicus (lt: n = 21; ht: n = 74). d Aedes aegypti (lt: n = 44; ht: n = 52). Data are 
presented as mean % infected, disseminated and transmitting. *P < 0.01, **P < 0.001 and ns, not significant by two-tailed Fischer’s exact test
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evidence of field isolation of the virus from Ae. aegypti, 
but the distribution of CVV includes the southern USA 
where Ae. aegypti is commonly found [18]. Even though 
CVV has been isolated from wild Ae. japonicus [20], and 
this species has been shown to feed on deer [28], it is 
unclear if it serves as a major vector in enzootic or local 
transmission of the virus. We also tested vector com-
petence of field-caught Cx. pipiens and Cx. restuans for 
CVV, and found no evidence of transmission by either 
species. The existence of a dose-dependent infection or 
escape barrier can determine how certain mosquito spe-
cies and strains are refractory to infection. Studies look-
ing at dose-dependent interactions between mosquito 
vectors and the virus typically find that high titers result 
in greater midgut infection and transmission poten-
tial while low titers result in low midgut infection and 
transmission rates [70–73]. The dose-dependent tissue 
barriers are often associated with midgut escape barri-
ers or RNA interference (RNAi) pathways [56, 72], while 
incompatibility between the virus and cells of the midgut 
or salivary glands are dose-independent barriers [52, 53]. 
With laboratory evidence of low titer vector competency 
and abundant distribution throughout North America, 
Ae. aegypti, Ae. albopictus, Ae. japonicus and Ae. triseria-
tus could play major roles in CVV transmission.

Outbreaks of mosquito-borne diseases can have large 
economic and devastating impacts on human and animal 
health. Experimental vector competence studies allow 
us to understand the potential for a mosquito species to 
contribute to an outbreak and facilitate more targeted 
surveillance and control. Due to the wide variability of 
mosquito and virus infectivity, it is not possible to make 
the assumption that studies involving vectors from dif-
ferent geographical locations will have similar compe-
tencies. Therefore, it is not appropriate to extrapolate 
results from other studies for a single conclusion. Several 
studies clearly show considerable variability in the sus-
ceptibility of the same vector species for viral infection 
for DENV [74, 75], CHIKV [76] and ZIKV [59, 77]. In 
addition, when arboviruses are detected in field-caught 
mosquitoes, we cannot assume that it is competent and 
able to transmit the virus. The mosquito may have an 
undigested blood meal that was recently taken from an 
infected host, which can yield a false positive. Labora-
tory vector competence studies allow us to determine if 
a mosquito species is capable of transmitting the virus. 
When conducting laboratory vector competence stud-
ies, it is important to consider laboratory-reared versus 
field-caught mosquitoes. For example, some vector com-
petence studies have shown that laboratory-reared Cx. 
quinquefasciatus is able to become infected and transmit 
ZIKV [78, 79], while studies using field populations were 
not able to transmit the virus [38].

There are many knowledge gaps in CVV dynamics, 
especially our understanding of its natural cycle of com-
petent vectors and susceptible amplifying hosts. In addi-
tion, CVV infections are often misdiagnosed for other 
flu-like illness, which presents itself as a challenge for 
accurate reporting to local or state health departments. 
In contrast, the ZIKV outbreak in 2015 sparked high 
demand for all areas of research to understand and con-
trol the virus. Although cases have dropped significantly 
in the USA, ZIKV is still present in parts of Africa, Asia 
and South America, and may remain indefinitely [11, 80].

Conclusions
Our studies show that a species that has not been tested 
for ZIKV vector competency, Ae. japonicus, was able to 
transmit the virus, but at a low rate. Aedes japonicus, 
however, was competent for CVV transmission. Aedes 
albopictus, the most widespread anthropophilic mos-
quito in Virginia, was competent for both ZIKV and 
CVV. Aedes aegypti was competent for both viruses, 
but its inability to overwinter in colder climates reduces 
this species’ likelihood of ZIKV transmission in Virginia. 
With the abundance of highly competent mosquito spe-
cies, there may be greater concern for increased CVV 
transmission in temperate regions of the USA.
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