Skip to main content
. 2020 Jan 6;10(3):1984–1992. doi: 10.1021/acscatal.9b03727

Table 1. Representative Catalytic Performance for Complexes 2 and 7 in 1-Butene Isomerization under Flow Conditionsa.

entry catalyst, mass (mg), moles flowb (mL/min) isobutene (%)c time (h) conversion (%)d cis:trans 2-butened WHSV (h–1)e apparent specific activity (mol 2-but. mol cat–1 hr–1)f kdg (h–1)
1 2 (6), 4.0 × 10–6 6.4 0 3 49–4 1.3:1 – 1:1 3.2 38.8–3.2 1.04
2 2 (6), 4.0 × 10–6 7.6 15 3 84–7 1.1:1 – 1.3:1 3.2 66.5–5.5 1.42
3 7 (6), 4.3 × 10–6 7.6 15 20 35–9 2.9:1 – 3.5:1 3.2 26.0–6.7 0.08
4 7 (15), 1.1 × 10–5 7.6 15 20 83–48 1.6:1 – 3.0:1 1.3 24.6–14.3 0.08
5 7 (15), 1.1 × 10–5 7.6 15 90 83–4 1.6:1 – 5.2:1 1.3 24.6–1.3 0.05
6 7 (15), 1.1 × 10–5 6.4 0 20 76–38 1:1 – 3.2:1 1.3 22.5–11.1 0.08
a

298 K, 1 atm, crushed microcrystalline samples. NBD-precatalyst 7 activated in situ with H2 for 10 min, then N2 flush.

b

1-Butene feed = 6.4 mL/min of a 2% mixture in N2.

c

15% isobutene = 1.2 mL/min of a 2% mixture in N2.

d

% Butenes determined by gas chromatography. Range is start and end values.

e

WHSV = weight hourly space velocity = mass 1-butene/(mass catalyst × time).

f

Apparent specific activity = (moles 2-butenes)/(total moles cat. × time). Range is start and end activities.

g

kd = [ln((1 – conv. end)/(conv. end)) – ln((1 – conv. start)/(conv. start))]/time, and assumes a first order deactivation mechanism.6