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ABSTRACT: We have previously demonstrated native liquid extraction surface analysis (LESA) mass spectrometry imaging of
small intact proteins in thin tissue sections. We also showed calculation of collision cross sections for specific proteins extracted from
discrete locations in tissue by LESA traveling wave ion mobility spectrometry (TWIMS). Here, we demonstrate an integrated native
LESA TWIMS mass spectrometry imaging (MSI) workflow, in which ion mobility separation is central to the imaging experiment
and which provides spatial, conformational, and mass information on endogenous proteins in a single experiment. The approach was
applied to MSI of a thin tissue section of mouse kidney. The results show that the benefits of integration of TWIMS include
improved specificity of the ion images and the capacity to calculate collision cross sections for any protein or protein complex
detected in any pixel (without a priori knowledge of the presence of the protein).

■ INTRODUCTION

Native mass spectrometry enables the analysis of tertiary and
quaternary protein structure in the gas phase.1 Noncovalent
interactions such as hydrogen bonds and salt bridges that were
present in solution are preserved in the gas phase through the
use of mild electrospray ionization conditions including native-
like solvents. Typically, native mass spectrometry results in
lower charge states and a narrower charge state distribution
than observed under denaturing conditions, due to more
folded protein conformations with limited available proto-
nation sites and solvent-accessible surface areas.2−4 Native
mass spectrometry is often integrated with ion mobility
spectrometry. In particular, traveling wave ion mobility
spectrometry (TWIMS) has found widespread use for over a
decade since the introduction of commercially available
TWIMS-enabled mass spectrometers.5−9 Structural informa-
tion may be inferred from collision cross section (CCS) values
derived from drift tube ion mobility spectrometry (DTIMS) or
calibrated TWIMS measurements.10 The CCS is a measure of
the rotationally averaged 3D shape of a gas-phase ion and has
been used as further evidence for the retention of solution
phase structures in the gas phase.11,12 The CCS may be
evaluated against theoretical CCS values predicted from X-ray
crystallography structures, which can provide insight into the

protein conformation, e.g., folded or unfolded.6,13,14 TWIMS
may also serve as a filter, for example, enabling the separation
of isobaric signals with differing size-to-charge ratios. TWIMS
separation of singly charged species from multiply charged
peptide and protein signals was recently demonstrated for
desorption electrospray ionization.15

Liquid extraction surface analysis (LESA) MS is an ambient
surface sampling technique that is particularly suited to the
direct analysis of intact proteins from biological substrates.16,17

LESA mass spectrometry imaging (MSI) allows the spatial
distribution of analytes, including proteins, to be mapped.18 As
LESA MS makes use of electrospray ionization, the technique
is suitable for native mass spectrometry through use of native-
like solvents. We have previously demonstrated native LESA
MS of folded proteins and protein complexes from dried blood
spots and thin tissue sections.19−21 More recently, we
demonstrated native LESA MSI of thin tissue sections of
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mouse brain and liver.21 In that work, discrete locations on
adjacent tissue sections were sampled by native LESA coupled
with TWIMS-MS enabling calculation of CCS of small
proteins. Here, we have developed a LESA TWIMS-MSI
workflow, in which ion mobility separation is integral to the
imaging experiment and which provides spatial, conforma-
tional, and mass information for proteinaceous constituents of
tissues within a single experiment. The advantages of TWIMS
are, first, the filtering of interfering signals associated with
direct sampling of tissue and consequent improved specificity
of the ion images and improvement in the signal-to-noise ratio
and, second, the capacity for calculation of the CCS for any
protein detected in any pixel. We have applied native LESA
TWIMS-MSI to a thin tissue section of mouse kidney. We
demonstrate the measurement of the CCS values of proteins,
including the 64 kDa tetrameric Hb complex, directly from
tissue during MSI, and improved ion images, especially for
proteins with low intensity signals that are obscured by isobaric
species.

■ METHODS

Materials. Kidney from wild-type mice (extraneous tissue
from culled animals) was the gift of Dr. Caroline Chadwick
(University of Birmingham). Tissue was frozen in liquid
nitrogen and then stored at −80 °C until sectioned. Tissue was
sectioned at −22 °C at a thickness of 10 μm with a CM1810
Cryostat (Leica Microsystems, Wetzlar, Germany) and thaw
mounted to glass microscope slides. Sections were stored at
−80 °C until use. The tissue was not subjected to washing
prior to analysis.
Sodium iodide (2 μg/μL in 50% isopropanol) for TOF

calibration was obtained from Waters Corporation (Man-
chester, UK). Ammonium acetate and the protein standards
ubiquitin (bovine, U6253), cytochrome C (equine, C2506),
and myoglobin (equine, M0630) were obtained from Sigma-
Aldrich (Gillingham, UK). Argon (purity >99.998%), nitrogen
(>99.995%), and helium (>99.996%) gases were obtained
from BOC (Guildford, UK). MS grade water and methanol
were obtained from Fisher Scientific (Loughborough, UK).

Figure 1. (a) Kidney section with pixel grid overlaid. (b) Ion image for m/z 2894.7 (11+), corresponding to hemoglobin heterodimer. (c) The raw
mass spectrum (i.e., without arrival time filtering) obtained from pixel 48. Peaks corresponding to a hemoglobin heterotetramer and heterodimer
are observed. (d) The raw mass spectrum obtained from pixel 42 reveals low ion abundance.
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LESA TWIMS-MSI. “Contact” LESA was performed using a
Triversa NanoMate (Advion Biosciences, Ithaca, NY). The
diameter of the sampled area was approximately 600 μm
(external diameter of pipet tip), with sampling locations
separated by 1 mm, the smallest spacing available in the
Triversa NanoMate control software ChipSoft (version 8.3.3)
(see Figure 1). A 5 μL aliquot of extraction solvent (200 mM
ammonium acetate + 5% methanol) was aspirated into the
conductive pipet tip and moved to the location above the
tissue. The tip was pressed into the tissue surface, and 2.1 μL
of solvent was dispensed. After 1 min, a 2.2 μL volume was
aspirated, and the tip was moved to the nanoESI chip. ESI was

initiated with a potential of 1.8 kV and back pressure of 0.15
PSI.
IM-MS data were recorded with a Synapt G2-S HDMS

(Waters Corporation). The instrument was operated in
“mobility-TOF mode” and “sensitivity mode”. The backing
pressure was raised to approximately 6.35 mBar using a
Speedivalve on the roughing pump. The trap and transfer cells
were provided with argon (5 mL/min) to give a pressure of
approximately 3 × 10−2 mBar. Helium was introduced to the
helium cell at 180 mL/min. Nitrogen was provided to the
TWIMS cell at 90 mL/min to give a pressure of ∼3 mBar. The
laboratory temperature was approximately 20 °C.

Figure 2. Ion images for Hb αH 7+ monomer (a−c), αβ2H 11+ dimer (d−f), and (αβ2H)2
15+ tetramer (g−i) produced without arrival time (tA)

filtering (a,d,g), with a broad selection rule that predominantly removed singly charged signals (b,e,h), and with a specific tA selected for each ion of
interest (c,f,i). Color bars indicate normalized signal intensity after baseline subtraction.
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The source conditions were as follows: source temperature,
100 °C; sampling cone, 30−80 V; source offset, 30 V; cone gas
flow, 10 L/h. The StepWave ion guide settings were left at
default values. The trap DC entrance and DC bias were set to
3 and 42 V, respectively. The TWIMS device was operated
with a fixed wave velocity of 500 m/s and a wave height of 25
V. Additionally, pixels 15, 43, 48, and 49 were sampled and
analyzed a second and third time with wave heights of 24 and
26 V to assess CCS measurement errors. Transfer collision
energy was set between 10 and 15 V to improve mass accuracy.
A manual quadrupole profile was set to assist higher m/z
transmission (see Table S1, Supporting Information). Waters
.raw files were acquired with the discrete “Drift Time function”
option checked in the MS Tune acquisition window. Data were
acquired for 5 min per pixel over the m/z range 1000−8000
(pusher frequency, 138 μs; enhanced duty cycle coefficient,
1.57 ms).
Collision Cross Sections. IM-MS data were collected for

ubiquitin, cytochrome C, and apo-myoglobin by direct infusion
nanoESI under denaturing conditions (10 μM in water/
MeOH/acetic acid 49:49:2 v:v:v). The cone voltage and
source offset voltages were both set to 150 V to maximize
unfolding of the calibrant ions. The m/z range was 700−8000
(pusher frequency; 138 μs, enhanced duty cycle coefficient;
1.57 ms). Each standard was analyzed at three TWIMS
traveling wave heights (24, 25, 26 V). The arrival times for ions
of each charge state were determined from the apex of the
most intense arrival time peak. Mean smoothing (±1 scan, 1
smooth) of the arrival time distribution (ATD) plot was

performed using MassLynx 4.1. Previously published drift tube
ion mobility CCS values obtained in nitrogen (DTCCSN2) were
used for generating a calibration curve for calculation of
TWCCSN2→N2.

10 TWCCSN2→N2 was calculated by a previously
published method adapted for N2 calibration values.21 For
proteins detected in pixels analyzed at the three wave heights
(pixels 15, 43, 48, and 49), the standard deviation of
TWCCSN2→N2 was calculated. CCSN2 calculated from crystal
structures were obtained using the trajectory model (TM) in
IMoS v1.09 and .pdb files as inputs.22

Image Processing. Data files in the Waters .raw format
were converted to mzML using MSConvert (Version 3.0,
ProteoWizard Software Foundation).23 mzML files were
imported into MATLAB (version R2019a, MathWorks,
Natick, USA.) with the imzML converter using code adapted
from Spectral Analysis software (downloaded from https://
github.com/AlanRace/SpectralAnalysis on 21/03/2017).2425

In-house code from previous work was adapted to enable the
extraction of mass spectra from specific regions of interest from
the arrival time versus m/z plot (see Supplemental File S1).21

The software is freely available from http://www.biosciences-
labs.bham.ac.uk/cooper/software.php.
The mass spectra from multiple scans were summed at each

location to form a single spectrum (retaining arrival time
information) per position. Broad f iltering: selection rules
(arrival time (tA), m/z) were defined in DriftScope (v2.9,
Waters) and then exported as a text file and imported into the
in-house software. Specif ic f iltering: the arrival time window at
approximately full width half-maximum for the peak (m/z) of

Figure 3. Comparison of ion images for m/z 1241.65 ± 1 where (a) includes signals at all arrival times (tA), whereas (d) is restricted to signals with
tA between 5.4 and 8.2 ms. The raw spectrum for pixel 34 (b) shows low intensity peaks for β-thymosin 4 are lost within the baseline signals, but tA
filtering increases the S/N ratio (e). With baseline subtraction during image processing, real ion signals within the baseline may be lost entirely (c).
The increased S/N provided by specific tA filtering in (e) improved detection of β-thymosin signals in pixel 34 (f). Color bars in (a) and (d)
indicate normalized intensity after baseline subtraction.
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interest was selected in Driftscope and exported as a text file
and imported into the in-house software. After filtering (either
broad or specific), baseline subtraction (max baseline corrected
at 25% base peak ion intensity, with a median filter setting
between 2000 and 8000) and normalization to total ion count
were performed to account for variability in absolute signal
intensity between pixels.

■ RESULTS AND DISCUSSION

A thin tissue section of mouse kidney was subjected to LESA
TWIMS-MSI. Figure 1a shows the kidney section with the 1 ×
1 mm pixel grid overlaid. The major blood vessels are located
toward the left side of the section at the renal pelvis. The renal
pelvis is the entry and exit point for the major renal artery and
vein, respectively. Figure 1b shows an arrival time (tA) filtered
ion image for m/z 2894.7, the 11+ charge state of the
hemoglobin heterodimer (αβ2H). The unfiltered mass
spectrum obtained for pixel 48 reveals strong (αβ2H)11+ signals
(Figure 1c), whereas the unfiltered mass spectrum of pixel 42
(Figure 1d) exhibits weak signals. Figure 2 shows ion images
generated for the heme-bound hemoglobin (Hb) tetramer
(αβ2H)2 (15+, MW 63.7 kDa), heterodimer αβ2H (11+, MW
31.8 kDa), and alpha-subunit monomer Hb (αH) (7+, MW
15.6 kDa). The images reveal that these hemoglobin-related
ions were most abundant near the large vascular structures at
the renal pelvis. The distributions of the monomer and dimer
correlate reasonably well, with signals detected across the
tissue, whereas the tetramer is confined to the renal pelvis
vasculature. In part, this observation can be explained by the
fact that tetrameric Hb is known to dissociate to dimers
following hemolysis, i.e., outside of red blood cells, with
subsequent clearance to the kidney.26 Another factor is the
lower signal intensity of the tetramers. Three sets of ion images
are shown: produced using no ion mobility filtering, with a
broad filtering rule, and with filtering specific to the ion of
interest. Broad filtering (see Figure S1, Supporting Informa-
tion) involved selection of a protein-containing region of

interest from the 2D heat-map plot of arrival time versus m/z.
This selection rule was applied to all pixels within the data set,
and ion images were generated from the resulting mass spectra.
Specific filtering involved selection of an arrival time (tA)
window set approximately at the full width half-maximum of
the arrival time peak of ions of interest, followed by image
generation for those ions. Additional ion images for small
proteins are shown in Figure S2, Supporting Information. The
images are generally comparable in appearance for all ion
mobility filtering options; however, there are clear differences
between the images for m/z 4245 (Figure 2g−i). The specific
tA filtering results in an image with the most intense signal
where the blood vessel is seen on the photograph of the kidney
section, whereas this is not the case for the unfiltered images.
This observation suggests that a lack of arrival time specificity
is detrimental to the accuracy of the image. Arrival time filtered
images for three charge states of each of the Hb-related ions
are shown in Figure S3, Supporting Information. In each case,
the middle charge state represents the most intense signal.
Dimer ions exhibit comparable images for charge states 12+−
10+. Images for the heme-bound α-monomer and tetramer ions
show consistency between the 7+, 6+ and 16+, 15+ charge states
respectively, while the 8+ and 14+ charge state images suffer
from low signal intensity and are visually less consistent.
The use of specific arrival time (tA) filtering is especially

useful where protein ion signals are of low intensity or
otherwise obscured by isobaric signals. As an example, Figure 3
shows how, with specific tA filtering, peaks for β-thymosin 4 [M
+ 4H]4+ in pixel 34 are revealed from baseline signals and are
thus incorporated into the ion image once further processed.
Without filtering, real ion signals were subtracted as if they
were part of the baseline, whereas tA filtering improved the
S/N prior to baseline subtraction. Figure S4, Supporting
Information, shows an alternative situation, where ubiquitin
[M + 5H]5+ signal is apparently detected in pixel 32 for the
unfiltered image (Figure S4a), but the signal results from the
noise. tA filtering reduces the noise but does not reveal any

Figure 4. (a) Mass spectrum for pixel 48 after background subtraction (MassLynx function, polynomial order 15, 10% below curve) with labels
indicating the peaks for heme-coordinated ions; hemoglobin tetramer (αβ2H)2, heterodimer (αβ2H), and monomer (αH). Arrival time distributions
are shown for (b) [(αβ2H)2]

15+, (c) [(αβ2H)]10+, and (d) [αH]7+. Errors indicate one standard deviation above and below the mean value of three
measurements at TW heights of 24 (red), 25 (blue), and 26 V (black).
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peaks attributable to ubiquitin ions, and as such, the reduced
pixel intensity is reported in the ion image (Figure S4d). It is
important to note that some baseline signals may be retained,
i.e., tA filtering results in improved rather than complete
specificity.
Figure 4a shows the mass spectrum obtained from pixel 48.

Peaks corresponding to heme-coordinated hemoglobin ion
signals, including the tetramer Hb (αβ2H)2, heterodimer Hb
(αβ2H), and alpha-subunit monomer Hb (αH), are detected.
The narrow charge state envelopes and presence of protein
complex ions is characteristic of native analysis conditions.
Arrival time distribution (ATD) plots obtained at three wave
heights are shown for [(αβ2H)2]

15+, (αβ2H)10+, and (αH)7+ (see
Figure 4b−d, respectively). CCS values may be obtained at a
single traveling wave height, but information from three
different wave heights enables estimation of the measurement
error. For each wave height, the same tissue location was
resampled (see Methods). The TWCCSN2→N2 for the Hb
tetramer was calculated for the 14+ (approximate m/z 4550,
4378 ± 89 Å2), 15+ (approximate m/z 4245, 4465 ± 41 Å2),
and 16+ (approximate m/z 3980, 4503 ± 33 Å2) charge states.
The CCSN2 of the Hb (αβ2H)2 crystal structure (3HRW)
calculated using the TM was 4699 Å2, up to 7% larger than the
experimentally determined TWCCSN2→N2 values. This discrep-
ancy indicates slightly compacted ions, explained by a degree
of gas-phase compaction of the tetramer as a consequence of
the traveling wave height in the ion mobility device, and has
been noted previously.9,27 A similar observation was made for
human hemoglobin ions by Scarff et al. with the suggestion
that polar side chains collapse in the gas phase.8,28 The
TWCCSN2→N2 for Hb (αβ2H)2 ions is larger for higher charge
states, as is often observed, due to Coulombic repulsion in the
gas phase.29 The 16+ charge state also features a second arrival
time peak (see Figure S5, TWCCSN2→N2 = 4714 ± 44 Å2),
suggesting that there was also a more unfolded conformation
present. Hemoglobin dimers, αβ2H, also exist naturally under
physiological conditions and have been observed in previous
native MS studies of hemoglobin.26,30 The presence of
abundant dimer and monomer peaks may also be the result
of natural dissociation due to low Hb concentration in the
extraction solution, occurring in the interval between
extraction and ionization.31 Peaks corresponding to αβ2H in
the 10+ (TWCCSN2→N2 = 2810 ± 29 Å2), 11+ (TWCCSN2→N2 =
3030 ± 17 Å2), and 12+ (TWCCSN2→N2 = 3221 ± 40 Å2)
charge states were detected. The 7+ charge state of αH had a
TWCCSN2→N2 of 1808 ± 19 Å2. An unidentified protein
(∼14 561 Da) was detected at m/z 2428 (6+, TWCCSN2→N2 =
1637 ± 4 Å2), m/z 2081 (7+, TWCCSN2→N2 = 1705 ± 10 Å2),
and m/z 1821 (8+, TWCCSN2→N2 = 1809 ± 10 Å2).
TWCCSN2→N2 for a further unidentified protein (∼14 866
Da) was similarly determined (7+, TWCCSN2→N2 = 1715 ± 10
Å2; 8+, 1791 ± 18 Å2). Ubiquitin (8560 Da (5+), TWCCSN2→N2
= 1089 ± 17 Å2) was found to have a comparable
TWCCSN2→N2 to those reported in the literature.32,33 β-
thymosin 4 (4960 Da (4+), TWCCSN2→N2 = 796 ± 9 Å2) was
also detectedthis is the first instance of its TWCCSN2→N2
being reported, although the TWCCSN2→He has been
reported.21 It is important to note that as ion mobility
measurements were performed in tandem with mass analysis,
no additional experiments were necessary for determination of
TWCCSN2→N2. As such, future native LESA MSI investigations
could study protein−protein and protein−ligand complexes

with location specificity on a single tissue section but without
additional sample preparation or instrument time required.

■ CONCLUSIONS
Mouse tissue was analyzed by contact LESA TWIMS-MSI
under native conditions. The ability to collect spatial,
conformational, and mass information for intact proteins in a
single experiment allows protein structure to be associated with
tissue features, e.g., the vascular regions here. IM-MS
measurements revealed that Hb was retained as a tetrameric
complex, among the other protein signals. The complex’s
TWCCSN2→N2 was found to be similar to that predicted from
the crystal structure. This finding demonstrates that room
temperature native LESA sampling retains delicate non-
covalent interactions. Ion images showed Hb-related ions
distributed toward the renal pelvis, where the largest blood
vessels are located. The ion mobility data was also used to filter
ion signals in the m/z dimension by arrival time. Broad tA
selection rules or specific tA selection may be used to further
improve specificity of ion images, for example, by increasing
signal-to-noise ratios for low intensity signals otherwise lost in
a noisy baseline.
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