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Abstract

Background: Better risk stratification strategies are needed to enhance clinical care and trial 

design in HFpEF.

Objective: To assess the value of a targeted plasma multi-marker approach to enhance our 

phenotypic characterization and risk prediction in HFpEF.

Methods: We measured 49 plasma biomarkers from TOPCAT trial participants (n = 379) using a 

Multiplex assay. We assessed the relationship between biomarkers and the risk of all-cause death 

or heart failure-related hospital admission (DHFA). A tree-based pipeline optimizer platform was 

used to generate a multimarker predictive model for DHFA. We validated the model in an 

independent cohort of HFpEF patients enrolled in the Penn Heart Failure study (PHFS, n = 156).
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Results: Two large, tightly related dominant biomarker clusters were found, which included 

biomarkers of fibrosis/tissue remodeling, inflammation, renal injury/dysfunction and liver fibrosis. 

Other clusters were composed of neurohormonal regulators of mineral metabolism, intermediary 

metabolism, and biomarkers of myocardial injury. Multiple biomarkers predicted incident DHFA, 

including two biomarkers related to mineral metabolism/calcification (FGF-23 and OPG), 3 

inflammatory biomarkers (TNF-alpha, sTNFRI and IL-6), YKL-40 (related to liver injury and 

inflammation), two biomarkers related to intermediary metabolism and adipocyte biology 

(FABP-4 and GDF-15), angiopoietin-2 (related to angiogenesis), MMP-7 (related to extracellular 

matrix turnover), ST-2 and NT-proBNP. A machine-learning derived model using a combination of 

biomarkers was strongly predictive of the risk of DHFA (Standardized HR = 2.85; 95%CI = 

2.03-4.02; P<0.0001) and markedly improved the risk prediction when added to the MAGGIC risk 

score. In an independent cohort (PHFS), the model strongly predicted the risk of DHFA 

(Standardized HR=2.74; 95%CI=1.93-3.90; P<0.0001), which was also independent of the 

MAGGIC risk score.

Conclusions: Various novel circulating biomarkers in key pathophysiologic domains are 

predictive of outcomes in HFpEF and a multi-marker approach coupled with machine-learning 

represents a promising approach for enhancing risk stratification in HFpEF.

Condensed Abstract:

We assessed the relationship between 49 plasma biomarkers and the risk of death of heart failure 

admission (DHFA) in HFpEF. We used machine-learning to construct a multi-marker-based 

predictive model in the TOPCAT trial and validated the model in the Penn HF Study. Two main 

biomarker clusters were found, which included biomarkers of fibrosis/tissue remodeling, 

inflammation, renal injury/dysfunction and liver fibrosis. Multiple individual biomarkers predicted 

the risk of DHFA, including several biomarkers not previously studied in HFpEF. The multimarker 

model markedly improved the prediction of DHFA in the TOPCAT and Penn HF Study cohorts, 

above and beyond the MAGGIC risk score.

Keywords

HFpEF; biomarkers; fibrosis; inflammation; kidney; liver; TOPCAT trial; Penn Heart Failure 
Study

Introduction

The prevalence of heart failure (HF) has markedly increased and now represents an 

enormous clinical and public health problem. HF with a preserved ejection fraction (HFpEF) 

accounts for approximately half of all HF cases, a proportion that will likely increase as the 

population ages. To date, no pharmacologic interventions have clearly proven to improve 

outcomes in randomized trials in HFpEF.

HFpEF is a heterogeneous condition and accordingly, patients with HFpEF exhibit a variable 

clinical course and prognosis. At present, more accurate risk-stratification strategies are 

required, which need to be incremental and independent of clinical prediction scores. 

Advances in peripheral blood analytical techniques provide an opportunity to measure 
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multiple biomarkers using small volumes of plasma, an approach that could be readily 

implemented in clinical practice and in participant selection for clinical trials. Targeted 

multi-marker approaches may offer the capability to enhance risk prediction and to better 

understand underlying biologic abnormalities in HFpEF.

In this study, we primarily aimed to assess the value of a targeted multi-marker approach in 

plasma, coupled with machine learning (ML) methods, to enhance the prediction of 

outcomes in HFpEF. We also assessed the patterns of co-variation in a plasma biomarkers in 

this population.

Methods

Study population

We primarily utilized data and biosamples from the Treatment of Preserved Cardiac 

Function Heart Failure with an Aldosterone Antagonist Trial (TOPCAT). We also utilized 

data and samples from the Penn Heart Failure Study (PHFS) for external validation of a ML-

based outcome prediction model derived from the TOPCAT cohort.

TOPCAT: TOPCAT data and samples were obtained from the National Heart, Lung, and 

Blood Institute. The parent trial data are available to other researchers through the National 

Institutes of Health Biolincc website. TOPCAT was a multi-center, international, 

randomized, double-blinded, placebo-controlled trial of spironolactone that enrolled 3,445 

adults with HFpEF across 6 countries from 2006-2012. The primary goal of the trial was to 

determine if spironolactone was associated with a reduction in the composite outcome of 

cardiovascular mortality, aborted cardiac arrest, or heart failure hospitalization. The design, 

general characteristics of the study population and primary results of the trial have been 

previously published.(1-3) Key inclusion and exclusion criteria for TOPCAT are listed in the 

online supplemental section. All study participants provided written informed consent.

In this analysis, we examined the relationship between biomarkers a composite endpoint of 

death or heart failure-related hospitalization (DHFA), which is increasingly utilized in 

HFpEF studies,(4) and was also prospectively adjudicated in our validation cohort (PHFS). 

Of the 3,445 participants, 379 patients provided baseline (pre-randomization) plasma 

samples for analysis.

PHFS: The PHFS is a prospective cohort study of ambulatory HF patients recruited 

between 2003-2011 at the University of Pennsylvania (Philadelphia, PA), Case Western 

Reserve University (Cleveland, OH), and the University of Wisconsin (Madison, WI).(5,6) 

Patients with a clinical diagnosis of HF as determined by a HF specialist were enrolled. At 

the time of enrollment, standardized questionnaires were administered to participants and 

their physicians to obtain detailed clinical data as described previously.(5,6) Participants 

with expected mortality of 6 months or less from a non-cardiac condition, as judged by their 

treating physician, mechanical circulatory support, or inability to provide informed consent 

were excluded. Participants provided written informed consent. Venous blood samples were 

obtained at the time of enrollment and stored at −80 °C. An institutional review board from 

each of the participating centers approved the protocol. For the present analyses, we only 
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included PHFS participants with HFpEF, rather than HFrEF or HF with recovered EF. The 

PHFS sample with available plasma samples was composed of 156 subjects, of whom 125 

had data available for computation of the MAGGIC risk score.

Biomarker analyses

We measured 48 protein analytes using a Luminex® Bead-Based multiplexed assay (Bristol-

Myers-Squibb; Ewing Township, NJ). Analytes were chosen to represent a diverse number 

of physiologic processes related to cardiovascular disease and downstream effects including 

angiogenesis, atherothrombosis, cardiomyocyte injury, extracellular matrix turnover, cell-

matrix interactions, tissue remodeling, inflammation, adipocyte signaling, intermediary 

metabolism, kidney function/injury, calcification/mineral metabolism, neurohormonal 

regulation and myocyte stretch (Table 1, Central Illustration). The assay range per analyte is 

shown in Online Table 1. We note that this is assay is different from the one previously 

utilized by Small et al.(7) All biomarkers were measured from the same aliquot of each 

patient’s baseline sample.

Machine learning methods

Biomarker clustering and network analysis: To examine the clustering and co-

variance of biomarkers, we generated a biomarker correlation matrix and represented it as a 

heatmap. We also performed formal variable cluster analyses to identify biomarker clusters 

that exhibit shared variability. We used the variable cluster module from Jmp-Pro v13 for 

Mac (SAS Institute; Cary, NC), which is based on the SAS VARCLUS procedure. This 

procedure is an iterative unsupervised ML technique, which divides a set of numeric 

variables into either disjoint or hierarchical clusters based on similarity. The clusters are 

created in a way that variables from the same cluster are correlated with each other but have 

a low correlation with any other cluster. It starts with all variables in a single cluster, and 

proceeds by iteratively splitting and assigning variables to new clusters until no new splits or 

assignments are possible. We also applied network analysis, with the nodes representing 

individual biomarkers and the edges (connections) between nodes representing the 

correlation coefficient between a given biomarker (node) pair. In order to better visualize 

structural patterns within this connection matrix, we extracted the connectivity backbone, 

which reveals dominant connections and clusters of dense connectivity, as previously 

described.(8)

Development of predictive models for outcomes: We utilized the model selection 

with tree-based pipeline optimizer (TPOT) platform to generate a classification predictive 

model for our data set of interest. TPOT is an automated ML tool that employs “genetic 

programming” to build pipelines of ML methods for classification or regression along with 

preprocessing operators such as data transformers and feature selectors (9). This technique 

was inspired by biologic genetic mutational processes and the subsequent selection of "fit" 

genes during evolution. “Genetic” programming in the setting of ML algorithm optimization 

refers to the fact that ML pipelines are subjected to rounds (generations) of modifications in 

the form of mutation and recombination. At the end of each generation after modifications 

are implemented, the performance of each individual ML pipeline is evaluated and the best-

fitted ones are selected for the next round. This technique allows the selections of the best-
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performing ML model for a given problem in a completely agnostic manner. TPOT 

classification pipelines are generated from the subset of ML methods and data preprocessing 

operators that are extracted from the Scikit-learn Python library and contains 11 

classification methods, 14 data transforming operators and 5 feature selection methods. 

During the optimization process, various combinations of transformers are combined with 

ML methods into a pipeline in a tree-based manner. The methodology for model selection 

with TPOT for clinical datasets was described previously (10).

We applied z-score normalization for all bbiomarkers, followed by TPOT optimizaiton for a 

maximum of 1000 generations or 24 hours, whichever occurred first, using 10-fold cross-

validation and balanced accuracy as classification performance estimate. Due to the 

stochastic nature of the algorithm, we ran TPOT 30 times per dataset and selected the best 

performing model pipeline for further investigation. We used the permutation feature 

importance (PFI) approach to calculate the predictive ability of the particular variables. In 

this approach, we first calculated a pipeline performance on the original data set, then 

permuted the values within a variable and calculated the performance of the pipeline on the 

modified dataset. The resulting difference in performances is the PFI coeficient. This 

procedure was replicated 100 times for each variable and the mean of the replicates was 

taken as a final PFI value. The PFI is the gain of model balanced accuracy(11) introduced by 

a biomarker, on top of the prediction provided by all other biomarkers in the model, thus 

measuring the non-redundant prediction provided by that particular biomarker.

Of note, the development of predictive models for outcomes is an independent analysis and 

does not depend on the results of cluster analyses described above.

Statistical Analyses

Participant characteristics were summarized using mean (SD) for normally distributed 

variables and median (interquartile range) for non-normally distributed continuous variables. 

Categorical variables are expressed as counts (percentages). Since not all TOPCAT 

participants had available samples, we compared subjects who had available samples for 

measurement of the biomarkers of interest vs. those who did not. We used the non-paired t 

test for normally-distributed variables, the Kruskal-Wallis test for non-normally distributed 

variables and the chisquare test or Fisher’s exact test, as appropriate, for categorical 

variables.

We assessed the relationship between individual biomarkers and the risk of DHFA using 

Cox regression. In order to provide an intuitive unit-independent comparison between the 

biomarkers, hazard ratios for all biomarkers are standardized (expressed per standard-

deviation increase, or 1-point increased in the z score, after boxcox transformation to 

improve normality of the distribution as needed). To visualize the prediction of each 

biomarker relative to each other, we plotted the standardized hazard ratio against the log-10 

P-value (i.e., in order of statistical significance) on a volcano plot, in which the Bonferroni-

corrected significance level was also displayed (corrected for 49 individual tests, one per 

biomarker). We also tested interactions between the pre-randomization level of each 

biomarker and randomized treatment with spironolactone, as predictors of DHFA.
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The incremental prediction provided by the multi-marker ML model was tested by adding 

the ML risk score to a baseline Cox model that contains the MAGGIC risk score, which is a 

well-validated prediction score that incorporates multiple demographic, clinical and 

laboratory variables (12). All of these variables were available for TOPCAT participants, 

except the time of heart failure diagnosis, for which no points were given to any subject. The 

model was independently validated in the PHFS. For each validation cohort participant, a 

ML-model risk score was computed and was analyzed as a predictor of DHFA, in models 

with and without the MAGGIC risk score. We assessed Schoenfeld and Martingale residuals 

to test the proportionality and linearity assumptions in Cox models. The Harrel’s c index, 

which is analogous to the receiver-operator characteristic curve, was computed to compare 

models. The Harrel’s c index, which is analogous to the receiver-operator characteristic 

curve, was computed to compare various models.

Statistical significance was defined as a 2-tailed P value<0.05. All probability values 

presented are 2-tailed. Statistical analyses were performed using the Matlab statistics and 

ML toolbox (Matlab 2019a, the Mathworks; Natwick, MA) and SPSS for Mac v22 (SPSS 

Inc., Chicago, IL).

Results

TOPCAT population

A comparison of trial participants who had vs. those who did not have available frozen 

plasma samples for biomarker measurements is shown in Table 2. Subjects with available 

samples were slightly older, with a slightly greater proportion of males. Subjects with 

available samples were also more obese, and exhibited a higher prevalence hypertension, 

ACE inhibitor/ARB, and statin use, lower blood pressure and a higher prevalence of atrial 

fibrillation, previous myocardial infarction and advanced NYHA class (III/IV). There were 

no subjects with available samples from Georgia, Brazil or Argentina, whereas 29.4% of 

subjects without available samples were enrolled in these countries.

Clustering of biomarkers

Figure 1 shows a heatmap representing the correlation between different biomarkers in the 

study population. Figure 2 shows a plot of the network connectivity backbone, also 

representing the relationships between biomarkers. Online Table 2 shows the results of 

formal variable cluster analyses. There were 6 dominant clusters observed, as shown in 

Figure 1 (and numbered according to the results of variable cluster analysis in Online Table 

2). Two large related clusters (labeled as clusters 1 and 4) were found, which included 

biomarkers of fibrosis/tissue remodeling (MMP-2, 3 and 9, Tenascin C, TIMP-1, 

Galectin-3), inflammation (Fas, sTNFRII, MPO), liver fibrosis (YLK-40/chitinase 3-like 

1[CHI3L1]) and renal injury/function (NGAL, cystatin C). Another cluster (cluster 3) 

included neurohormonal regulators of intermediary (FGF-21, GDF-15) and mineral (OPG, 

FGF-23) metabolism. As expected, biomarkers of myocardial injury (troponin T and 

hFABP) clustered together, along with osteopontin. Endoglin, sFLT-1 and KIM also 

clustered together (cluster 5) and demonstrated strong interrelationships. Finally, a less-well 

defined cluster was identified (cluster 2), which included inflammatory mediators related to 
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the TNF-alpha pathway (TNF-a, sTNFRII), ST2, FABP4 (adipocyte-related protein), renin 

and angiopoietin-2 (related to angiogenesis). The results of network analyses in general, 

demonstrated similar patterns of biomarker connectivity (Figure 2).

Relationships between biomarkers levels and outcomes

During a median follow-up of 2.86 years, 94 subjects in the sample experienced death or a 

HF-related admission. Online Table 3 shows standardized hazard ratios and 95%CIs for 

DHFA for all examined biomarkers in unadjusted analyses (one model per biomarker). 

Figure 3A shows a volcano plot for these hazard ratios plotted against the log-10 P-value, 

showing the biomarkers that were predictive at the Bonferroni-corrected level of 

significance.

In non-adjusted analyses, multiple biomarkers predicted DHFA, including ST-2, three 

inflammatory biomarkers (TNF-alpha, sTNFRI and IL-6), two biomarkers related to 

metabolism and adipocyte biology (FABP-4 and GDF-15), two biomarkers related to 

mineral metabolism/calcification (FGF-23 and OPG), angiopoietin-2 (related to 

angiogenesis), MMP-7 (related to extracellular matrix turnover), YKL-40 (related to liver 

injury and inflammation), and NT-proBNP.

A number of additional biomarkers tended to predict DHFA, meeting nominal uncorrected 

significance, but without meeting significance at the multiple comparison-corrected alpha 

level, including FGF21, NGAL, renin, sTNFRII, cystatin-C, IL-10, VEGF-A, osteopontin 

(OPN) and syndecan-4. The latter tended to be negatively associated with risk of DHFA 

(Online Table 3, Figure 3A).

In analyses adjusted for the MAGGIC risk score (Figure 3B), FGF-23, FABP-4 and IL-6 

were independently predictive of DHFA at the Bonferroni-corrected level of significance. 

Various other biomarkers tended to be associated with DHFA (only at nominal levels of 

significance) in adjusted analyses (Figure 3B).

Interactions with randomized arm

Interactions between randomized arm and endostatin (P=0.0322), TIMP-1 (P=0.0417), 

sTNFRII (P=0.03), MPO (P=0.0387), adiponectin (P=0.0242) and cystatin C (P=0.0492) 

were found for death/HFA, in all cases suggesting greater benefit with higher biomarker 

levels. However, none of these interactions reached statistical significance after accounting 

for multiple comparisons.

Combination of biomarkers as predictors of DHFA

The TPOT optimization process using all biomarkers in the panel produced a ML pipeline 

which contained Stacking Estimator operator as a feature transformer, Robust Scaler as a 

feature preprocessor, and Bernoulli Naive Bayes as a machine learning classifier.

Figure 4 shows the PFI coefficients of all 49 biomarkers included in the ML multimarker 

model for the prediction of DHFA. The PFI coefficient is a measure of the importance of 

each variable in the model, which in turn is influenced by its relationship with the outcome 

and any redundancy with other biomarkers.
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The ML model was was strongly predictive of the risk of DHFA (Standardized HR=2.86; 

95%CI=2.03-4.02; P<0.0001; Figure 5). In a model that included both the MAGGIC risk 

score and the ML score, the latter was a strong predictor of DHFA (Standardized HR=2.61; 

95%CI=1.84-3.71; P<0.0001), whereas the MAGGIC risk score was no longer a significant 

predictor DHFA (Standardized HR=1.23; 95%CI=0.98-1.54; P=0.07; Figure 5).

The ML score markedly improved the prediction of the endpoint when added to the 

MAGGIC risk score (Figure 6). The Harrel’s c index for the MAGGIC risk score was 0.621 

(95%CI= 0.56-0.682). The addition of the ML model score increased the Harrel’s c index to 

0.73 (95%CI= 0.669-0.790). The c index for a model containing the ML score only (0.743; 

95%CI=0.682-0.803) was similar to the c index of the model that included both the ML 

score and the MAGGIC risk score (Figure 6).

We found no significant interaction between the ML score and randomized spironolactone 

therapy in the prediction of DHFA (P=0.34).

Model Validation in the PHFS

During a median follow-up of 2.83 years, 69 subjects in the PHFS sample experienced a 

DHFA event. In this cohort, the ML score was was strongly predictive of the risk of DHFA 

(Standardized HR=2.74; 95%CI=1.93-3.90; P<0.0001). Figure 5 shows standardized HRs 

for the ML score and the MAGGIC risk score among subjects with available MAGGIC risk 

score data (n=125; 59 events). The ML score was was strongly predictive of the risk of 

DHFA (Standardized HR=2.91; 95%CI=1.94-4.38; P<0.0001). In a model that included both 

the MAGGIC risk score and the ML score, the latter was a strong predictor of DHFA 

(Standardized HR=2.68; 95%CI=1.71-4.22; P<0.0001), whereas the MAGGIC risk score 

was no longer a significant predictor DHFA (Standardized HR=1.15; 95%CI=0.81-1.63; 

P=0.43; Figure 5).

The ML score markedly improved the prediction of the endpoint when added to the 

MAGGIC risk score (Figure 6B). The Harrel’s c index for the MAGGIC risk score was 

0.622 (95%CI= 0.557-0.687). The addition of the ML model score increased the Harrel’s c 

index to 0.73 (95%CI= 0.646-0.814). The c index for a model containing the ML score only 

(0.717; 95%CI=0.643-0.791) was similar to the c index of the model that included both the 

ML score and the MAGGIC risk score (Figure 6B).

Discussion

In the current study, we assessed the prognostic value of a multi-marker approach for risk 

stratification in HFpEF. We measured 49 pre-selected proteins using a multiplex assay, using 

baseline visit plasma samples obtained from TOPCAT trial participants. We report on the 

clustering patterns of key biomarkers in HFpEF and the relationship between biomarker 

levels and risk of incident adverse outcomes. We found that several biomarkers related to 

mineral metabolism/calcification, liver fibrosis, inflammation, intermediary metabolism, 

myocardial fibrosis, adipocyte biology and angiogenesis were predictive of DHFA. Finally, 

we utilized advanced ML techniques to assess the predictive value of optimal non-linear 

combinations of biomarkers for risk prediction and found that a multi-marker approach 
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markedly improved prediction above the MAGGIC risk score. We validated this predictive 

model in an external cohort (PHFS). Our findings advance our understanding of circulating 

biomarker profiles in HFpEF and suggest that multi-marker approaches that can be 

implemented for enhancing risk stratification in this condition.

Biomarker clustering

Our biomarker panel included proteins related to key biological pathways which have been 

implicated in the pathophysiology of HFpEF (Central Illustration). Interestingly, although 

many of these biomarkers are known to represent specific pathways, the significance, tissue 

specificity, and correlates of circulating levels in specific disease states have not been 

thoroughly investigated. Clustering patterns of specific biomarkers can provide insights 

regarding the phenotypic signatures related to various circulating proteins. Our cluster 

analyses demonstrated a large biomarker cluster composed of biomarkers implicated in 

inflammatory and extracellular matrix turnover pathways, specifically, biomarkers of 

fibrosis, tissue remodeling (MMP-2, 3 and 9, Tenascin C, TIMP-1, Galectin-3), 

inflammation (Fas, sTNFRII, MPO). This pattern of clustering of inflammatory and tissue 

remodeling biomarkers in our study is noteworthy, because it is consistent with the 

molecular underpinning proposed by a current hypothesis that chronic inflammation in 

HFpEF may serve to propagate myocardial fibrosis and target organ dysfunction.(13) We 

also demonstrate that markers of renal injury, including cystatin C and NGAL, cluster with 

inflammatory and remodeling biomarkers, supporting a role for kidney injury/dysfunction in 

this systemic process. Interestingly, a biomarker of liver fibrosis (YLK-40/CHI3L1) also 

tightly clustered with the biomarkers above, suggesting that profibrotic and inflammatory 

processes may extend beyond the heart and the kidney, and that the cardiac-hepatic axis 

requires further investigation in HFpEF, especially considering that HFpEF shares many risk 

factors with non-alcoholic fatty liver disease.

Biomarkers as predictors of outcomes

We examined the relationship between circulating levels of biomarkers and prognosis. 

Various biomarkers significantly predicted DHFA, including two biomarkers related to 

mineral metabolism/calcification (FGF-23 and OPG), three inflammatory biomarkers (TNF-

alpha, sTNFRI and IL-6), YKL-40 (related to liver injury and inflammation), two 

biomarkers related to intermediary metabolism and adipocyte biology (FABP-4 and 

GDF-15), angiopoietin-2 (related to angiogenesis), MMP-7 (related to extracellular matrix 

turnover), ST-2 and NT-proBNP. Some of these biomarkers have been previously reported to 

predict incident events in HFpEF, including ST2(14) and GDF-15 (15). However, to the best 

of our knowledge, our study is the first to report a relationship between FGF-23, YKL-40, 

FABP-4, OPG, MMP7 and angiopoietin-2 with incident events. The relationship between 

inflammatory biomarkers is important, because it supports a role for inflammation in 

HFpEF, as discussed above. Of note, IL-6 was predictive of DHFA independent of the 

MAGGIC risk score, along with FGF-23 and FABP-4.

Among the examined biomarkers, FGF-23 demonstrated the strongest association to adverse 

outcomes, which was also independent of the MAGGIC risk score. FGF-23 is involved in 

phosphate homeostasis and increasing levels are observed as renal function decreases. 
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FGF-23 has been shown to be a powerful predictor of incident HF (16) and has also been 

shown to be a strong predictor of mortality in HFrEF.(17) However to our knowledge this 

has not been shown in HFpEF. The mechanisms by which FGF-23 is associated with 

incident cardiovascular events and HFpEF are likely multifactorial. In animal models, 

administration of FGF-23 led directly to cardiomyocyte hypertrophy, (18) and increased 

FGF-23 levels are associated with left ventricular hypertrophy in humans.(19) Additionally, 

FGF-23 has been shown to suppress angiotensinconverting enzyme-2, which normally 

degrades the vasoconstrictor angiotensin-II into vasodilator peptides.

We showed an association between FABP4 and incident risk of DHFA, which was 

independent of the MAGGIC risk score. FABP4 is expressed in adipocytes and macrophages 

and plays an important role in the development of insulin resistance and atherosclerosis in 

relation to systemic inflammation.(20) Increased levels even in healthy individuals have 

been linked to diastolic dysfunction(21) as well as in obese women.(22) Levels of FABP4 

have also been linked to atherosclerosis and increased carotid intimal medial thickness.(23) 

In HFpEF FABP4 may serve as an adipocyte-derived marker of the insulin resistance or 

inflammation, and may predict risk in this population on this basis.

We found YKL-40 to be associated with incident DHFA, which ranked second in 

importance to FGF-23 in the ML model. YKL-40 is considered a marker of liver fibrosis, 

and has been shown to be elevated in patients with NAFLD and more advanced fibrosis.(24) 

There are little data regarding the role of liver fibrosis in HFpEF; therefore, the finding that 

increased YKL-40 is a predictor of outcomes in HFpEF supports the need for further work 

in understanding mechanisms behind liver fibrosis in this population, as mentioned above.

We also found that angiopoietin-2, a biomarker for angiogenesis and endothelial 

dysfunction, was associated with incident DHFA in non-adjusted analyses. This adds to 

previous studies assessing the significance of biomarkers of angiogenesis in HFpEF. In a 

study of acute heart failure, biomarkers of angiogenesis, specifically angiogenin, were hubs 

of biomarker clusters, but only in HFpEF and not HFrEF or HFmrEF.(25) Neuropilin, 

another biomarker of angiogenesis, was associated with incident events in HFpEF, but not 

HFrEF, despite similarly increased levels in both groups. (26) The mechanisms underlying 

these findings remain unclear and should be the subject of future research.

Finally, we found that osteoprotegerin, a member of the TNF-receptor superfamily thar 

regulates both differentiation and function of osteoclasts, significantly predicted the risk of 

DHFA. Interestingly, osteoprotegerin clustered with FGF-23, which is also intimately 

involved in calcification processes and in a previous study, ostoprotegerin was shown to be 

an independent predictor of death in decomepnsated HFpEF (27). Finally, we demonstrate a 

relationship between MMP7 and DHFA, which supports prior work in which various 

biomarkers related to collagen deposition (including PINP, PIIINP, and osteopontin) were 

shown to be associated with adverse clinical endpoints in HFpEF.(26,28)
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Multimarker model

We found that a multi-marker ML model was strongly predictive of the risk of DHFA, and 

substantially improved the predictive power above and beyond the MAGGIC risk score, as 

shown by an important increase in the Harrel’s c index, a measure of model discrimintion.

Interestingly, the ML model alone was substantially more predictive than the MAGGIC risk 

score and in a model that included both the ML score and the MAGGIC risk score, only the 

former was an independent predictor of DHFA. These findings were reproduced in an 

independent US-based validation cohort (PHFS) in which the findings were very similar to 

those obtained from the primary cohort, increasing our confidence in the external validity of 

the model.

It is worth noting that the clustering patterns found at baseline were not necessarily 

informative regarding the predictive power of biomarkers in the context of outcome 

prediction. This is not surprising, since cluster analyses attempt to detect parallel variance 

between biomarkers that form a cluster, whereas outcome models attempt to maximize the 

orthogonal information provided by individual biomarkers.

The multimarker approach developed in this study can be applied in clinical trials and 

clinical practice, since analytical techniques that require minimal plasma volume to quantify 

a relatively large protein panel at reasonable cost are now available. The model developed in 

our study is suitable for clinical application upon refinement of automated assays, 

particularly if they can be deployed in standard clinical analyzers

Limitations

Strengths of our study include the inclusion of a well-characterized HFpEF cohort, the use 

of multiple biomarkers, advanced ML methods and the validation of our model in an 

independent HFpEF sample. Our study also has several limitations. We did not have 

available plasma samples from all TOPCAT trial participants, and had to restrict the study to 

a subpopulation with available samples. Although we found multiple highly significant 

associations between biomarkers and outcomes with strict Bonferroni correction, power to 

detect weaker associations was limited. This may be particularly relevant for interactions 

with randomized treatment, which did not reach formal significant after correction for 

multiple testing. Because we do not know the tissue origins for most of the circulating 

biomarkers, we are uncertain about whether they are reflecting systemic or regional 

pathologic responses. We note that our multiplex platform has assay-specific limits of 

detection that are not necessarily equivalent to established clinical assays, and the findings 

should be interpreted with this consideration in mind. In particular, our machine learning 

method was developed using this specific platform and is not intended for application using 

individually-measured analytes with clinically approved assays or other methods. 

Nevertheless, we provide convincing evidence that this multi-marker technology coupled 

with machine learning provides robust prognostic information.
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Conclusion

Our study demonstrates that a multi-marker approach using circulating biomarkers can be a 

powerful tool for enhancing risk stratification in HFpEF. Further research should further 

examine this approach, including the use of broader proteomic panels in HFpEF.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Clinical Perspectives

Competency in Patient Care: In patients with heart failure and preserved left ventricular 

ejection fraction (HFpEF), a combination of multiple plasma biomarkers centered around 

tissue remodeling, inflammation, renal dysfunction and liver fibrosis is predictive of 

clinical outcomes.

Translational Outlook: A combination of biomarkers could be employed in the design of 

future studies to guide clinical management of patients with HFpEF.
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Figure 1. Correlations between biomarkers.
The heatmap represents the correlation between the biomarkers. The most important 

biomarker clusters, derived from cluster analyses are shown.
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Figure 2. Network connectivity backbone of all measured biomarkers.
The nodes representing individual biomarkers and the edges (connections) between nodes 

representing the correlation coefficient between a given biomarker (node) pair.
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Figure 3. 
Standardized hazard ratios for examined biomarkers. The volcano plots show the 

standardized HRs for DHFA (one model per biomarker) in unadjusted analyses (left) and 

adjusted for the MAGGIC risk score (right), plotted against the Log-10 P-value. The dashed 

lines indicate the non-corrected (lower line) and Bonferroni-corrected (upper line) level of 

significance.
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Figure 4. Permutation feature importance coefficients for biomarkers in the machine-learning 
model.
Biomarkers are ranked according to importance.
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Figure 5. Standardized hazard ratios and 95%CIs for the risk of DHFA.
HRs for the machine learning score vs. the MAGGIC risk score are presented for non-

adjusted analyses and analyses adjusted for each other, in the derivation (TOPCAT) and 

validation (PHFS) samples.
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Figure 6. Harrel’s concordance statistic (c index) and 95%CIs for the prediction of DHFA.
Values are shown for the derivation (TOPCAT) and validation (PHFS) samples.
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Central Illustration. Multimarker-based Machine Learning Approach For Risk Prediction in 
Heart Failure with Preserved Ejection Fraction.
We performed multiplex-based measurements of 49 proteins related to key biologic 

pathways in the TOPCAT trial. We then derived a predictive model for outcomes using 

machine learning. We then validated the prognostic score in a separate cohort (Penn Heart 

Failure Study).
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Table 1.

Biomarkers included in the Luminex panel (selected a priori)

Pathophysiologic
domain

Biomarker Other common names

Angiogenesis Angiopoietin

Endoglin

Vascular Endothelial Growth Factor (VEGF) A

Soluble fms-like tyrosine kinase-1 (sFLT1) Soluble VEGF receptor-1

Endostatin

Athero-thrombosis Soluble P-selectin (sP-selectin)

Plasminogen activator inhibitor-1 (PAI-I)

Cardiomyocyte injury Troponin T

Heart-type Fatty Acid Binding Protein (hFABP) Fatty acid binding protein-3

Extracellular Matrix turnover Matrix metalloproteinase (MMP)-2

MMP-3

MMP-7

MMP-8

MMP-9

MMP-12

Tissue inhibitor of metalloproteinases (TIMP-)1

TIMP-4

Tenascin-C

Cell-matrix interactions Syndecan-1

Syndecan-4

Tissue remodeling, inflammation and 
fibrosis

sST-2 Soluble interleukin 1 receptor-like 1

Galectin-3

Liver fibrosis: YKL-40/chitinase 3-like 1 (CHI3L1) Chitinase-3-like protein-1 (CH3L-1)

Inflammation C-reactive protein (CRP)

Tumor Necrosis Factor (TNF)-α

Soluble TNF-receptor 1 (sTNF-RI)

Soluble TNF-receptor 2 (sTNF-RII)

Interleukin (IL)-1β

IL-6

IL-8 Chemokine (CXC) ligand 8

IL-10

Fas Apoptosis antigen-1, CD95

sICAM

Pentraxin-3 (PTX-3)

Myeloperoxidase (MpO)

Adipocyte biology Adiponectin

Fatty acid binding protein-4 (FABP-4)

Intermediary Metabolism Fibroblast growth factor 21 (FGF21)
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Pathophysiologic
domain

Biomarker Other common names

Growth differentiation factor-15 (GDF-15)

Kidney function or injury Neutrophil gelatinase-associated lipocalin (NGAL) Lipocalin-2

Cystatin-C

Kim-1

T-cell immunoglobulin and mucin domain 1 
(TIM-1), Hepatitis A virus cellular receptor 
1 (HAVcr-1)

Mineral metabolism/Calcification Fibroblast growth factor 21 (FGF21)

Osteopontin

Osteoprotegerin

Neurohormonal Endothelin-1

regulation and Renin

myocyte stretch NT-pro-BNP

NT-pro-ANP
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Table 2.

General characteristics of study participants with vs. without available plasma samples. Numbers represent 

Mean (SD), Median (IQR) or counts (%).

Participants without
available samples (n=

3063)

Participants with
available samples

(n=379)

P value

Demographic Characteristics

Age, years 69 (61,76) 70 (62,77) 0.0298

Male Sex 1465 (47.83%) 203 (53.56%) 0.0351

Race 0.115

 White 2712 (88.54%) 347 (91.56%)

 Black 274 (8.95%) 28 (7.39%)

 Other 77 (2.5%) 4 (1.1%)

BMI, kg/m2 30.8 (27.1,35.7) 31.8 (27.8,36) 0.0384

Heart rate, bpm 68 (62,76) 68 (60,73.8) 0.0080

Systolic BP, mmHg 130 (120,140) 126 (120,135) <0.0001

Diastolic PB, mmHg 80 (70,81) 75 (66,80) <0.0001

Country <0.0001

United States 980 (32%) 160 (44%)

Canada 273 (8.9%) 53 (14%)

Russia 908 (29.6%) 157 (41.4%)

Georgia, Brazil, Argentina 902 (29.4%) 0

Medical History

NYHA class III-IV 992 (32.42%) 144 (37.99%) 0.0295

Myocardial Infarction 777 (25.38%) 116 (30.61%) 0.0284

Stroke 235 (7.67%) 30 (7.92%) 0.8682

COPD 358 (11.69%) 45 (11.87%) 0.9174

Hypertension 2788 (91.05%) 358 (94.46%) 0.0254

Peripheral Arterial Disease 281 (9.18%) 38 (10.03%) 0.5907

Atrial Fibrillation 1051 (34.32%) 162 (42.74%) 0.0012

Diabetes Mellitus 990 (32.33%) 128 (33.77%) 0.5720

Medication Use

Beta Blockers 2375 (77.56%) 301 (79.42%) 0.4124

Calcium Channel Blockers 1159 (37.85%) 134 (35.36%) 0.3441

Diuretics 2504 (81.78%) 312 (82.32%) 0.7951

Glucose-lowering agents 849 (27.73%) 113 (29.82%) 0.3928

ACE Inhibitors or ARBs 2593 (84.68%) 306 (80.74%) 0.0468

Statins 1555 (50.78%) 250 (65.96%) <0.0001
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