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Abstract

Many receptors can be activated by bile acids (BAs) and their derivatives. These include nuclear 

receptors farnesoid X receptor (FXR), pregnane X receptor (PXR), and vitamin D receptor (VDR), 

as well as membrane receptors Takeda G protein receptor 5 (TGR5), sphingosine-1-phosphate 

receptor 2 (S1PR2), and cholinergic receptor muscarinic 2 (CHRM2). All of them are implicated 

in the development of metabolic and immunological diseases in response to endobiotic and 

xenobiotic exposure. Because epigenetic regulation is critical for organisms to adapt to constant 

environmental changes, this review article summarizes epigenetic regulation as well as post-

transcriptional modification of bile acid receptors. In addition, the focus of this review is on the 

liver and digestive tract although these receptors may have effects on other organs. Those 

regulatory mechanisms are implicated in the disease process and critically important in uncovering 

innovative strategy for prevention and treatment of metabolic and immunological diseases.
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1. Introduction

Upon catalysis by hepatic and bacterial enzymes, cholesterol converts into bile acids (BAs).
1,2 In addition, BAs have bacteriostatic effects. Thus, BAs are the intrinsic links that explain 

how foods, through gut microbiota, affect host metabolism and immunity. Hepatic enzymes 

generate free primary BAs such as chenodeoxycholic acid (CDCA) and cholic acid (CA). 

Hepatic conjugation of BAs increases the hydrophilicity of BAs and changes their binding 

affinity to their receptors. In the gut, bacterial enzyme, i.e., bile salt hydrolase deconjugates 

BAs. Moreover, bacterial enzyme 7α- dehydroxylase that can be found in Firmicutes 
converts primary BAs into secondary BAs such as deoxycholic acid (DCA) and lithocholic 
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acid (LCA).3,4 Therefore, host and bacteria jointly produce various BAs, and eubiosis is 

essential for maintaining BA homeostasis. In contrast, dysregulated BA synthesis 

accompanied by dysbiosis is implicated in the development of metabolic diseases including 

obesity, steatosis, steatohepatitis, as well as liver and colon cancer.3,5–10

Free and conjugated primary as well as secondary BAs have differential binding affinities to 

various receptors including nuclear farnesoid X receptor (FXR) as well as membrane Takeda 

G protein receptor 5 (TGR5), and sphingosine-1-phosphate receptor 2 (S1PR2). 

Additionally, pregnane X receptor (PXR), vitamin D receptor (VDR), constitutive 

androstane receptor (CAR), and cholin-ergic receptor muscarinic 2 (CHRM2) can be 

activated by BAs or their precursors and metabolites (Table 1). Thus, BA receptors are 

essentially endobiotic and xenobiotic sensors. For an organism to adapt to constant 

environmental change, epigenetic mechanism is used to regulate host response. Epigenetic 

effects such as acetylation and methylation are ways to switch genes on and off without 

changing deoxyribonucleic acid (DNA) sequence. Thus, as nutrient and chemical sensors, 

epigenetic mechanisms should be important for regulating the expression and activity of BA 

receptors. This review article summarizes epigenetic regulation and post-transcriptional 

modification of BA receptors. The information is critically important to understand how 

these receptors are activated or silenced, thereby leading to metabolic or detoxification 

function or dysfunction. We focus on FXR, TGR5, and S1PR2 since the information 

available for other receptors in this area is limited. The search was done using combinations 

of following keywords: FXR, G protein-coupled bile acid receptor, TGR5, S1PR2, 

acetylation, methylation, glycosylation, epigenetics, and bile acid in the PubMed.

2. FXR

2.1. FXR introduction

BAs regulate glucose and lipid metabolism as well as the inflammatory process. This 

paradigm shift was spurred by identification of the BA receptor FXR. The function of FXR 

has been extensively reviewed by recent articles.1,26–34 We only provide a general 

introduction here. FXR activation plays a key role in regulating BA homeostasis in the liver 

and intestine.3,5,35–39 The activation of FXR leads to the regulation of genes whose function 

is to decrease the concentrations of BAs. FXR increases the expression of hepatic small 

heterodimer partner (SHP) and intestinal fibroblast growth factor 15 (FGF15), which in turn 

inhibits hepatic cholesterol 7α-hydroxylase (CYP7A1) and sterol 12α-hydroxylase 

(CYP8B1), reducing BA synthesis. In addition, FXR activation increases the expression of 

canalicular transporters, such as the bile-salt export pump (BSEP), providing a pathway for 

excreting cholesterol and BAs. These regulatory pathways are important in part because 

accumulation of hydrophobic BAs leads to inflammation, injury, cirrhosis, and 

carcinogenesis.40,41 In contrast to the dysregulated BA synthesis found in metabolic disease 

patients, activation of FXR increases metabolism and insulin sensitivity, and FXR agonists 

are used to treat non-alcoholic steatohepatitis.42 In consistency, whole-body FXR knockout 

mice, which have dysregulated BA synthesis and dysbiosis, spontaneously develop non-

alcoholic steatohepatitis and liver cancer.43–47 Moreover, reduced FXR is found in patients 

who have cirrhosis and colon or liver cancer as well as ulcerative colitis.48–51 Thus, it is 
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important to understand the mechanism by which FXR is regulated. Taken together, FXR, 

which is mainly expressed in the liver and intestine, has a pivotal role in regulating BAs 

homeostasis leading to metabolic and anti-inflammatory beneficial outcomes (Fig. 1).

2.2. Methylation regulates FXR expression and activity

Methylation is a mechanism that affects FXR activity. Silencing the FXR gene through CpG 

methylation is found in mouse models of colon cancer in adenomatous polyposis coli mutant 

mice, human colon cancer cells, and human colon cancers.51–53 By direct-sequence analyses 

of bisulfonated genomic DNA, there are 13 CpG methylation sites located in the region 

flanking the transcription start site on exon-3 of the FXR.52 In addition, methylation of the 

FXR is implicated in pregnancy related diseases. The intrahepatic cholestasis of pregnancy 

is a liver disorder that involves the inter-play between dysregulated BA synthesis, sex 

hormones, genetic susceptibility, as well as environmental factors. There is a clear 

relationship between the status of methylation in the FXR promoter and the profile of BAs in 

intrahepatic cholestasis of pregnancy patients compared with healthy pregnant women.54 

Specifically, reduced methylation of the FXR promoter is found in intrahepatic cholestasis 

of pregnancy cases when compared with healthy pregnancy controls. In addition, increased 

methylation level at the distal promoter (–1890) is positively correlated with elevated 

conjugated BAs; whereas methylation level at the proximal promoter (–358) is negatively 

correlated with serum CA and DCA concentration.54 Methylation of the FXR gene is also 

implicated in another pregnancy related disease, i.e., preeclampsia. Altered methylation 

pattern of the FXR as well as liver X receptor (LXR) is found in early onset of preeclampsia 

based on genome-wide methylation study using cord blood DNAs.55 These findings 

implicate the potential role of BAs and FXR in immunological disorders.

At the histone level, methylation of H3 and H4 occurs on lysine or arginine and is catalyzed 

by histone methyltransferases that use S-adenosylmethionine as a methyl donor. It has been 

shown that methylation by Set7/9, a lysine methyltransferase, increases FXR binding to its 

target gene leading to increased transcriptional activity.56 In addition, FXR activity 

incorporates histone methyl-transferase activity within the BSEP gene locus.57 This 

methyltransferase activity is directed specifically to arginine 17 of H3. By interacting with 

arginine methyl-transferase type I, the transcriptional activity of FXR is activated, thereby 

leading to increased expression of SHP and BSEP and decreased CYP7A1.58 Moreover, 5′-
deoxy-5′-methylthioadenosine, a methylation inhibitor, reduces the expression of BSEP.58 

In consistency, reduced recruitment of H3K4me3 to the BSEP and multidrug resistance-

associated protein 2 (Mrp2) promoter of the FXR-binding elements was found in mouse 

livers after bile duct ligation.59 Thus, histone 3 lysine 4 trimethylation (H3K4me3) is 

essential to increase the transcription of the BSEP, sodium-taurocholate cotransporting 

polypeptide (NTCP), and Mrp2 genes that are controlled by FXR.

2.3. Acetylation and FXR activity

The transcriptional activity of FXR can be modulated by sirtuin1 (SIRT1), a protein 

deacetylase. SIRT1 activity is dependent on nicotinamide adenine dinucleotide (NAD+) 

levels. Hepatic over-expression of microRNA (miR)-34a, which reduces nicotinamide 

phosphoribosyltransferase and NAD+ levels, decreases SIRT1 leading to reduced 
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transcriptional activity of FXR.60 It has been shown that the FXR acetylation site targeted by 

SIRT1 deacetylase and p300 acetylase is at lysine 217.61 Acetylated FXR has increased 

stability, but reduced capability to dimerize with retinoid X receptor α (RXRα), thereby 

leading to decreased transcriptional activity. In mouse models of metabolic disease, FXR 

acetylation level is elevated. Therefore, potentially, inhibiting FXR acetylation by increasing 

SIRT1 or reducing p300 can be used to treat metabolic disorders.61 Moreover, FXR 

acetylation increased pro-inflammatory gene expression, macrophage infiltration, and 

hepatic cytokine and triglyceride levels. Mechanistically, acetylated FXR prevented small 

ubiquitin-like modifier 2 (SUMO2) modification. SUMOylation of activated FXR increased 

its interaction with nuclear factor k B (NF-kB), but reduced the dimerization with RXRα.62 

Taken together, SIRT1 modulates the FXR signaling pathway by directly deacetylating FXR. 

Another mechanism by which SIRT1 regulates FXR transcriptional activity is through 

hepatocyte nuclear factor 1a (HNF1α). Knockout hepatic SIRT1 reduces FXR activity is 

mainly due to reduced occupancy of HNF1α in the FXR promoter leading to decreased FXR 

expression.63

The role of SIRT1 in regulating proliferation mediated by FXR is also revealed using a 

partial hepatectomy model. SIRT1 transgenic mice have increased mortality, impairs 

hepatocyte proliferation, and BA accumulation after partial hepatectomy. This is in part due 

to persistent deacetylation and reduced FXR expression. In contrast, 24-nor-ursodeoxycholic 

acid increases miR-34a and reduces SIRT protein, resulting in increased acetylation of FXR 

and neighboring histones. Thus, 24-nor-ursodeoxycholic acid is able to establish BA 

homeostasis and restores liver regeneration capability in SIRT1 transgenic mice.64 

Moreover, inversed expression of SIRT1 and FXR is also found in liver cancer; human 

hepatocellular carcinoma has increased SIRT1 and reduced FXR compared with normal 

liver.64

At the histone level, the occupancy of FXR and co-activator-associated arginine 

methyltransferase 1 on the human BSEP locus is associated with increased Arg-17 

methylation and Lys-9 acetylation of H3 of the BSEP.57 Moreover, by acetylating histones at 

the promoter and FXR itself, p300 acetylase is a coactivator of FXR to increase the 

expression of SHP.65 Taken together, acetylation and deacetylation of FXR should be a 

dynamic process to maintain FXR activity. Sustained FXR activation and deactivation lead 

to metabolic imbalance impaired liver regeneration, and potentially carcinogenesis.

2.4. Other mechanisms affecting FXR activity

O-GlcNAc transferase, responsible for O-GlcNAcylation, is a nutrient sensor that links 

glucose and the hexosamine biosynthetic pathway to the regulation of transcriptional factors 

that regulate energy homeostasis. By interacting FXR, hepatic carbohydrate response 

element-binding protein (ChREBP) can regulate glycolytic and lipogenic gene expression. It 

is interesting to note that FXR as well as ChREBP are both O-GlcNAcylated in response to 

glucose. High glucose increases FXR O-GlcNAcylation and enhances its stability as well as 

transcriptional activity. Moreover, in vivo fasting and refeeding experiments show that FXR 

undergoes O-GlcNAcylation in the fed condition, which is associated with increased 

expression of FXR target gene.66
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MiRNA regulation of protein deacetylases may indirectly affect FXR activity. MiR-34a is 

one example mentioned above. It is interesting to note that FXR-activation induced miR-22 

can also silence SIRT1, which in turn affects FXR stability or transcriptional activation. 

Such pathway potentially forms a self-regulatory loop.67,68

3. TGR5

3.1. Function of TGR5

In contrast to nuclear receptor FXR, TGR5 is a membrane receptor ubiquitously expressed 

in adipocytes, endocrine glands, muscles, as well as immune organs.69 It is also known as G 

protein-coupled bile acid receptor 1 (GPBAR1) or G-protein coupled receptor 19 (GPCR19). 

TGR5 is also expressed in the gut, liver, and gallbladder, where BAs are produced and 

stored.70,71 Because TGR5 is expressed in cells of the hematopoietic system, such as 

monocytes and macrophages, it confers a potent anti-inflammatory property at the systemic 

level.17,72–76 Our recent publication revealed the potential role of TGR5 in neuro-

inflammation as well as neuroplasticity.77 Activation of TGR5 also increases intracellular 

cyclic adenosine monophosphate (cAMP), thereby activating cAMP response element 

binding protein. One of the downstream effects of cAMP production is to induce the 

expression of thyroid hormone deiodinase 2, which generates thyroxine, a key player in 

basal metabolism.78 In addition to metabolism and inflammation, TGR5 also regulates 

proliferation, muscle relaxation, and itchiness among many others, which have been 

reviewed in recent articles (Fig. 1).69,79–82

In the liver, although TGR5 is not expressed in hepatocytes, it is found in Kupffer cells and 

endothelial and biliary epithelial cells, which are involved in regulating immune, 

inflammatory signaling, and circulation.83 In the intestine, TGR5 activation induces the 

expression of the preproglucagon gene (Gcg) and glucagon-like peptide-1 (GLP-1) secretion 

in the intestinal enteroendocrine L-cells.84,85 GLP-1 is an incretin that potentiates 

postprandial insulin secretion.86 Activation of TGR5 also releases neuropeptide hormone 

peptide tyrosine tyrosine (PYY), which regulates immune signaling and intestinal mobility.
87

Regarding the ligands, unconjugated BAs such as CDCA, DCA, and ursodeoxycholic acid 

(UDCA) induce a large cAMP response in neonatal mouse cardiomyocytes.88 Secondary 

BAs such as LCA and taurine-conjugated LCA are also endogenous ligands for TGR5 

(Table 1).16,17 In addition, TGR5 potentially can be activated by many other chemicals. 

Those include allogregnanolone, betulinic acid, linolenic acid, etc.89–91 We recently showed 

that supplementation of Western diet-fed mice with epigallocatechin-3-gallate activates 

TGR5 signaling pathways leading to a lean phenotype.10 Whether the effect is mediated via 

epigenetic regulation of TGR5 remains to be investigated.

3.2. Regulation of TGR5

FXR induces the expression of the TGR5 gene in mouse intestine. An inverted repeat with 

one-nucleotide spacing (IR1) that can be occupied by FXR/RXRα has been uncovered in the 

proximal promoter of the human TGR5 gene.92 FXR and TGR5 are co-expressed in the 
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enteroendocrine L cells, and activation of FXR induces TGR5 to stimulate the secretion of 

GLP-1.93 Because the expression of the TGR5 gene is transcriptionally regulated by FXR, 

methylation and acetylation likely influence TGR5 activity, which remains to be proved.

It is interesting to note that INT-777-mediated TGR5 activation induces renal expression of 

SIRT1 and SIRT3. Increased SIRT3 activity induces acetylation of mitochondrial superoxide 

dismutase 2 and isocitrate dehydrogenase 2 found in db/db mice.94 Since acetylation has a 

known role in regulating FXR expression and activity, it is possible TGR5-induced SIRT 

expression may have an impact on FXR activity as well. The hypothesis that TGR5 and FXR 

may mutually regulate each other warrants further investigation.

Methylation has a role in TGR5 expression. Methylation status of the TGR5 promoter has 

been studied in peripheral mononuclear cells in patients with acute-on-chronic hepatitis B 

liver failure. The frequency of TGR5 promoter methylation is significantly higher in liver 

failure patients than chronic hepatitis patients. In addition, hyper-methylation is 

accompanied by reduced TGR5 mRNA level.95 This study concludes that aberrant TGR5 
promoter methylation is a potential prognostic marker for acute-on-chronic hepatitis B liver 

failure. Hyper-methylation of the TGR5 promoter is also found in hepatocellular carcinoma 

patients by studying their circulating cell-free DNA. Moreover, the methylation rate of 

TGR5 is age-related, much higher in patients older than 60 than in those younger than 60 

years old. It has been suggested that a combination of serum TGR5 promoter methylation 

level along with the value of a-fetoprotein may increase the sensitivity for hepatocellular 

carcinoma diagnosis.96

4. S1PR2

S1PR2 or S1P2 is a G protein-coupled receptor for sphingosine-1-phosphate (S1P). S1PR2 

was also found to be the receptor for conjugated BAs such as taurocholic acid (TCA) and 

taurodeoxycholic acid (TDCA) (Table 1).18,97 S1P is a bioactive lipid mediator that 

regulates proliferation, immunity, cell trafficking, inflammation, etc.98,99 TCA-activated 

S1PR2 induces the expression and activity of sphingosine kinase (SphK2) to increase the 

conversion of sphingosine into S1P and leading to increased lipid and sterol metabolism in 

the liver.18 Thus, conjugated BAs have a pivotal role in S1P singling via SphK2 induction as 

well as S1PR2. Consistent with these findings, both SphK2 and S1PR2 knockout mice are 

susceptible to diet-induced fatty liver.97,100

It is interesting to note that nuclear S1P, produced by either induction of SphK2 or inhibition 

of S1Plyase, binds to histone deacetylases (HDAC) 1 and 2, thereby increasing histone 

acetylation and up-regulating the expression of metabolic genes.100 Through such HDAC 

inhibitory mechanism, sphingosine has a role in regulating apoptosis and metabolism. 

Furthermore, glycochenodeoxycholate (GCDC) via S1PR2 as well as cell entrance have an 

apoptotic effect in human liver cancer Huh7 cells.101 These results suggested that S1PR2 

activation has a pro-apoptotic effect in GCDC-treated liver cancer cells, but the effect is not 

simply due to just binding between the GCDC and S1PR2.

Conjugated BAs via S1PR2 also activate ERK1/2- and AKT- signaling pathways leading to 

the growth and invasion of cholangiocarcinoma cells.102 The role of conjugated BAs via 
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S1PR2 to regulate apoptosis or cancer progression remains to be dissected. Nevertheless, 

there is no doubt that the composition of free and conjugated BAs has an impact on 

regulating BA receptor activity.

5. Conclusions and perspectives

BA receptors can be found in many types of cells within and outside the digestive tract. By 

activating G protein-coupled membrane receptors, i.e., TGR5, S1PR2, and muscarinic 

receptor, BAs exert their effects without crossing the cell membrane. Similarly, those 

receptors are readily accessible to enzymes that regulate methylation, acetylation, 

glycosylation, etc. Thus, in addition to transcriptional regulation, it is important to study 

post–transcriptional modification of those receptors. It is likely that due to transcriptional 

and post-transcriptional modification, those receptors exert various biological effects ranging 

across metabolism, energy homeostasis in skeletal muscle and adipose tissue, inflammatory 

signaling in macrophages, muscle relaxation, hormonal secretion, as well as cell 

proliferation and apoptosis, etc. The current knowledge limits to acetylation and methylation 

of a few receptors. More research should be done to understand the mechanism that 

influences their expression, modification, and biological effects.
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Fig. 1. Schematic overview of the functions of bile acid receptors.
The key functions of bile acid receptors are summarized in the figure. Abbreviations: FXR, 

farnesoid X receptor; PXR, pregnane X receptor; VDR, vitamin D receptor; CAR, 

constitutive androstane receptor; TGR5, Takeda G protein receptor 5; S1PR2, sphingosine-1-

phosphate receptor 2; CHRM2, cholinergic receptor muscarinic 2.
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