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This work presents a novel model of emergency medical logistics for quick response to
public health emergencies. The proposed methodology consists of two recursive mecha-
nisms: (1) the time-varying forecasting of medical relief demand and (2) relief distribution.
The medical demand associated with each epidemic area is forecast according to a modi-
fied susceptible-exposed-infected-recovered model. A linear programming approach is
then applied to facilitate distribution decision-making. The physical and psychological fra-
gility of affected people are discussed. Numerical studies are conducted. Results show that
the consideration of survivor psychology significantly reduces the psychological fragility of
affected people, but it barely influences physical fragility.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

A public health emergency is defined by the U.S. National Disaster Medical System as the emergency need for healthcare
or medical services in response to a disaster, the significant outbreak of an infectious disease, bioterrorist attack, and other
significant or catastrophic events. Examples of public health emergencies include the outbreak of H1N1 influenza, of the
Ebola virus disease in Congo, of severe acute respiratory syndrome (SARS), and of the Marburg hemorrhagic fever in
Angola, as well as widespread dysentery, cholera, measles, encephalitis B, and other diseases following significant disasters.

In addition to health threats and economic losses, public health emergencies also result in psychological suffering, such as
feelings of helplessness, sorrow, and panic. Studies conducted on the worldwide effects of the SARS outbreak in 2003 suggest
that the fear of SARS is a more severe pandemic than the disease itself (Cheng and Tang, 2004).

Most emergencies cannot be avoided, but their influence can be significantly reduced by an efficient framework of emer-
gency medical logistics. Medical logistics that direct responses to public health emergencies are vital. However, the field of
emergency logistics faces many challenges that have not been addressed effectively.

Emergency medical logistics has three characteristics that increase the complexity and difficulty of solving logistical
problems in contrast to general emergency logistics. First, limited demand-related information, such as the severity of inju-
ries and the number of casualties, challenges distribution-related decision making. In particular, the incubation period
results in a time delay in demand (Li et al., 1999, Zhang and Ma, 2003). Second, a disease can spread quickly from one area
to another and can even become a large-scale epidemic. Infection, recovery, and mortality rates typically vary across areas
because of different physical conditions of individuals, as well as habits, customs and medical services provided by the hos-
pitals in each area (Brauer and van den Driessche, 2001; Capaldi et al., 2012). Third, the substitutability of medical relief is
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imperfect, unlike other forms of relief such as food. A specific medicine cannot be perfectly substituted by another medicine
(Mete and Zabinsky, 2010).

The available literature inadequately addresses emergency medical logistics. Thus, the current work proposes a model of
emergency logistics for rapid response to public health emergencies. In particular, a modified epidemic susceptible-expose
d-infected-recovered (SEIR) model is developed to forecast time-varying demand as well as a linear programming model that
optimizes decisions regarding the distribution of emergency medical reliefs.

Specifically, this work contributes to the decision analysis of logistical responses to public health emergencies in the fol-
lowing ways:

(1) This interdisciplinary study contributes to the fields of public health and emergency logistics. Emergency medical
logistics differs from general emergency logistics in that the former involves many challenges that increase the com-
plexity and difficulty of solving logistical problems.

(2) This work applies a novel methodology to forecast the demand of multiple urgent medical reliefs and to distribute
these reliefs to multiple epidemic areas. The physical and psychological situations of those affected are considered.
The modified SEIR model contributes to forecasting by considering not only physical factors, such as the differences
in the infection conditions of survivors and the spatial interaction relationships among epidemic areas, but also the
psychological demand of exposed and undiagnosed individuals. In the distribution model, psychological fragility is
formulated and discussed in detail, unlike in previous studies. The relationship between emergency medical logistics
and the psychological effects on affected people is highlighted as well.

(3) This work conducts a case study using real data and a continuation study with experimental data to demonstrate the
applicability of the three proposed models. These models are then compared. Observations are provided and their
implements are discussed on this basis.

The remainder of this paper is organized as follows. Section 2 reviews related studies. Section 3 presents the proposed
basic methodology, including time-varying demand forecasting according to the epidemic diffusion rule and the distribution
of medical reliefs. Section 4 introduces two extended models. Section 5 presents a numerical study and discusses the ana-
lytical results. Section 6 provides managerial insights. Finally, Section 7 concludes and discusses the directions for future
work.
2. Literature review

Although some studies try to combine medical rescue with emergency logistics (Sheu and Pan, 2014), only a few studies
exist on emergency medical logistics for public health emergencies despite its importance and particularity. Only bioterror
response logistics, a special case in emergency medical logistics, has been discussed (Kaplan et al., 2003; Craft et al., 2005; Liu
and Zhao, 2011). These studies have aided in understanding the problems of evaluating existing proposals for logistics, dis-
tributing antibiotics, and providing hospital care after a bioterror attack. Methods such as atmospheric release models, dose–
response models, disease progression models and epidemic diffusion models have been used. However, these studies have
made limited contribution to medical logistics for public health emergencies. First, a terrorist attack has only two most
feared biological agents, namely, smallpox and anthrax (Craft et al., 2005), but other public health emergencies may be
aroused by other diseases that are less understood. Second, a terrorist attack focuses on only one or several cities, whereas
other public health emergencies may occur in large areas at the same time. Except for the distinctiveness of bioterrorism,
these studies ignored the differences in the infection conditions and survivor psychology. In practice, vulnerable groups, such
as children and the elderly, face different infection, recovery, and mortality rates. Moreover, the psychological suffering of
affected people in a bioterror attack is usually more serious than physical pain.

In addition, this work reviews the related literature by first focusing on demand forecasting and then discussing the
approaches to logistics distribution for an emergency and their objective functions.

Typically, demand forecasting is studied based on general supply chain management in business logistics but limited to
emergency logistics. The approaches adopted in business logistics forecast are based on historical values, which can be col-
lected easily during business processes. By contrast, emergency medical logistics lacks historical data. Gaur et al. (2007) dis-
cussed demand uncertainty in business logistics, but demand history was unavailable. Based on the characteristics of the
predictions of emergency resource demand, Sheu (2010) presented a dynamic model of relief-demand management for
emergency logistics operations under imperfect information conditions in large natural disasters. Mete and Zabinsky
(2010) proposed forecasting and optimization approaches to problems on medical storage and distribution for a wide variety
of disaster types and magnitudes. Hasan and Ukkusuri (2011) developed a novel model to understand the cascade of the
warning information flow in social networks during the hurricane evacuations. Fajardo and Gardner (2013) used a
bi-linear integer program to model diseases spreading through direct human interaction on a social-contact network.
Ekici et al. (2014) created an interesting approach to demand forecasting based on the characteristics of disease epidemics.
They also developed a SEIR model with a spatial component among communities, age-based structure, heterogeneous mix-
ing, and night/day differentiation to plan food distribution. Few studies have forecast demand in this way (Wang and Wang,
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2008; Liu and Zhao, 2011), even though scholars have conducted much research on preventing and controlling epidemics, as
well as identifying their characteristics and models.

The mathematical models of epidemic diffusion rules (Brauer and van den Driessche, 2001; Capaldi et al., 2012) can be
used to facilitate demand forecasting for public health emergencies. Most models, including the susceptible-infectious,
susceptible-infectious-removed, susceptible-infectious-susceptible, susceptible-infectious-removed-susceptible,
susceptible-exposed-infectious, and SEIR model, are suitable for studying the general laws of all epidemics. In particular,
SEIR model, which considers incubation period, has drawn considerable attention. In the real world, there is some duration
between the time that a person is infected and the time that he/she starts infecting others. SEIR model divided the people in
epidemic areas into four classes: susceptible, exposed, infectious and recovered. The model describes the transition among
these classes with differential equations. Basic reproduction number is an important concept in epidemic model. It determi-
nes the global dynamics and the outcome of disease. If it is less than or equal to 1, the disease-free equilibrium is globally
stable and the disease always dies out; otherwise, there exists a unique positive endemic equilibrium and the disease per-
sists at an endemic equilibrium state if it initially exists (Hethcote and Tudor, 1980; Greenhalgh, 1992; Li and Muldowney,
1995; Li et al., 1999; Zhang and Ma, 2003).

Based on these standard models, two main types of exploration are used to build multi-class models, but neither is per-
fectly appropriate for general medical emergency logistics in this work. The first type of exploration covers studies that con-
sider an ecosystem where two disease-affected populations thrive and epidemics can spread among these populations (Han
et al., 2001; Chaudhuri et al., 2012). In these studies, the two populations compete for survival resource or have a predator–
prey relation. The second type involves age-structured models (Cha et al., 1998; Li and Song, 2011) that are unable to
describe the vulnerable people because they can be distinguished not only by age but also by other characteristics, such
as gender. Therefore, demand forecasting based on these models, including standard models and previous multi-class mod-
els, may forecast demand that differs markedly from the real demand of emergency logistics.

Additionally, considerable effort has been made to optimize logistics under emergencies. Özdamar et al. (2004) con-
structed a distribution optimization model for a situation in which the supply is limited, current demand is known, future
demand can be predicted, and commands on vehicle allocation are composed of a series of breakpoints. Adıvar and Mert
(2010) proposed an international relief-planning model that can handle uncertain information while maximizing the cred-
ibility of international agencies in the most cost-efficient way. Ben-Tal et al. (2011) applied robust optimization for dynamic
evacuation traffic-flow problems with time-dependent uncertainty on demand. Liu and Ye (2014) proposed a sequential
approach for humanitarian logistics in natural disasters based on the Bayesian group information updates. Allahviranloo
et al. (2014) proposed three new formulations to account for different optimization strategies under uncertain demand or
utility level: reliable, robust, and fuzzy selective vehicle routing problems. And they developed three parallel genetic algo-
rithms and a classic genetic algorithm. Stochastic programming is also an appropriate tool for making emergency logistics
decisions and has been applied to different cases of emergency management (Barbaroso and Arda, 2004; Beraldi et al., 2004;
Chang et al., 2007; Zhan et al., 2014). Han et al. (2013) present a novel approach to consider a vehicle routing problem with
uncertain travel times in which a penalty is incurred for each vehicle that exceeds a given time limit.

Existing models can be divided based on their objective characterization. They can be categorized into models that (1)
minimize the distribution time or shipping distance (Zografos et al., 2002; Yan and Shih, 2009), (2) minimize cost of logistics
(Ben-Tal et al., 2011), (3) minimize the number of wounded and dead people (Fiedrich et al., 2000; Yi and Kumar, 2007), and
(4) maximize level of satisfaction of the relief demand (Özdamar et al., 2004; Sheu, 2007). Some studies developed
multi-objective models. Tzeng et al. (2007) constructed a relief-distribution model by multi-objective programming to
design relief delivery systems for a real case. As a part of the entire disaster salvaging system, sufficiently accurate informa-
tion is needed before model application. Vitoriano et al. (2009) presented a Humanitarian Aid Distribution System focusing
on the transportation problem to distribute humanitarian aid to affected people after a disaster in a developing country.
Vitoriano et al. (2011) proposed a new approach to solve humanitarian aid distribution problems, by constructing a goal pro-
gramming model based upon cost, time, equity, priority, reliability and security. Ortuño et al. (2011) presented a novel lex-
icographical goal programming model with a first level of priority with the goal of delivering the planned goods in the
operation verifying all the hard constraints or to deliver the largest possible quantity of commodity. Then the model con-
cerned other targets in a second level of priority.

Despite remarkable advances in emergency logistics modeling, the relationship between relief distribution and psycho-
logical utility or psychological cost for those affected has barely been assessed or formulated, although characterizing this
relationship may improve the rationality of models. Disasters have negative psychological effects on affected people and
can even manifest as a major depressive episode, acute stress disorder or post-traumatic stress disorder. Hu and Sheu
(2013) developed a multi-objective linear programming model to minimize total reverse logistical costs, corresponding envi-
ronmental and operational risks, and psychological trauma experienced by local residents while they waited for medical
treatment and removal of debris. Rooted in survival psychology and cognition theories, Sheu (2014) proposes a emergency
logistics operational model that aims at disaster relief-service distribution to maximize survivor resilience. In Hu et al.
(2014), a mixed-integer linear program is constructed for multi-step evacuation and temporary resettlement under mini-
mization of panic-induced psychological penalty cost, psychological intervention cost, and costs associated with transporta-
tion and building shelters. Negative psychological effects of widespread disease epidemics are usually more significant. For
the public, the psychological effect of an epidemic may be greater than the danger to physical health (Cheng and Tang, 2004).
Maunder et al. (2003) examined the psychological and the occupational effects of SARS in a large hospital in Canada in 2003.
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Their study showed that patients with SARS reported fear, loneliness, boredom and anger and worried about the adverse
effects of quarantine and their contagiousness on family members and friends. The patients experienced anxiety about fever
and the effects of insomnia. Healthy people were also adversely affected by the fear of contagion and infecting their family,
friends, and colleagues. Other studies on SARS have reported similar findings (Wang and Luo, 2003; Cheng and Cheung,
2005; Leung et al., 2005). These studies have identified approaches that can alleviate psychological suffering, such as sym-
metric information, on-time treatment, effective prophylactic methods, and social support. Most approaches have been con-
sidered part of medical logistics.

3. Model formulation

This section presents the proposed methodology. A modified SEIR model is developed based on a specification of an emer-
gency medical relief system, including the sequence of operational procedures and basic assumptions, to forecast
time-varying demand. The final part of this section presents the model for medical relief distribution.

3.1. System specification

The hypothetical network of emergency medical logistics is a specific two-layer supply chain that involves (1) local
Emergency Medical Reserve Centers (EMRCs) that serve as emergency medical logistics hubs, and (2) medical demand areas,
namely epidemic areas. EMRCs gather medical reliefs and distribute them appropriately to epidemic areas.

The government decides whether or not to issue an emergency medical response shortly after an infectious disease has
established itself. EMRCs then initiate a mechanism to forecast time-varying medical relief demand by collecting and esti-
mating epidemic characteristics. The mechanism of medical relief distribution is then triggered based on updated informa-
tion. Fig. 1 lists the sequence of the operation.

This figure presents the recurrent calculation time step in emergency medical logistics. Supply and epidemic information
(e.g., mortality, recovery, exposure, and infection rates) is updated at the beginning of each step.

Five basic assumptions are made to facilitate model formulation:

(1) The number of and geographic information on epidemic areas are available, and the location of EMRCs is known
because they have been established before emergencies.

(2) The corresponding socioeconomic statistics (e.g., population size, population composition, and natural mortality and
birth rates) are determined for each epidemic area. Such data can generally be obtained from government databases.

(3) Emergency medical suppliers are known. The number and the type of available medical suppliers are identified at the
beginning of each time step.
Fig. 1. Sequence of operational procedures in emergency medical logistics.
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(4) Different medical reliefs can be loaded on a vehicle that serves affected areas. Correspondingly, a vehicle is allowed to
load multiple medical reliefs for any distribution mission.

(5) Recovered individuals acquire permanent immunity.

On the basis of these assumptions, Sections 3.2 and 3.3 present a demand forecasting model and a distribution model,
respectively. Table 1lists the notations used:

3.2. Medical demand forecasting model

This mechanism forecasts the time-varying emergency medical demand of each affected area based on epidemic diffusion
rules. On the basis of previous models, this study constructs a modified SEIR epidemic diffusion model that accommodates
the differences between vulnerable and non-vulnerable or common groups to enhance forecast accuracy given that vulner-
able groups usually report different infection, recovery, and mortality rates. The SEIR model is considered because it reflects
the practical phenomena observed in incubation periods.

Fig. 2 shows the relationship and transition among different groups in a specific area.
where S, E, I, and R denote the number of susceptible, exposed, infectious, and recovered people in an area, respectively.

Superscripts c and v are the common and the vulnerable groups, respectively. Sc and Sv represent those who are susceptible
to infection. Ec and Ev correspond to those who are subject to incubation periods (or latent periods). The incubation period is
the time interval between exposure to a disease and the manifestation of initial signs or symptoms. An individual in this
period has been infected but is not yet infectious himself/herself. Ic and Iv represent those who are infectious. Rc and Rv

denote those who are cured and have permanent immunity. Generally, l > 0, d > 0, e > 0, Ac P 0, Av P 0 and
dv

> dc
> 0; bv > bc > 0;av > ac > 0; cc > cv > 0. These coefficients may vary with the increase in knowledge regarding an

epidemic disease. For instance, diagnosis rate may increase and mortality rate may decrease as doctors amass knowledge.
The modified SEIR model in this study is formulated as follows:
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A set of epidemic areas, A = {a1, a2, . . . , aJ}
A set of EMRCs, B = {b1, b2, . . . , bI}
A set of medical reliefs, M = Mp + Mt. Mp and Mt are sets of prophylactic and treatment reliefs, respectively. Mp = {m1, m2, . . . , ml},
Mt = {mlþ1, ml+2, . . . , ml+k}
Available amount of relief p in EMRC i in time period t
Available transportation capacity in EMRC i in time period t
Maximum budget in time period t
Unit distribution cost of relief p from EMRC i to area j in time period t

Demand of medical relief p needed per unit time per demander
Mortality increase caused by unit dissatisfaction of medical relief p; p 2 Mt
Infection rate increase caused by unit dissatisfaction of medical relief p;p 2 Mp
The highest mortality rate that can be withstood
The highest infection rate that can be withstood
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;Rv

j tð Þ Numbers of common and vulnerable recovered people in area j at moment t
v
jt The approximate average numbers of common and vulnerable susceptible people in area j in time period t
v
jt The approximate average numbers of common and vulnerable exposed people in area j in time period t

The approximate average numbers of common and vulnerable infectious people in area j in time period t
v
j Constant net input of common and vulnerable people to area j
v
j Common and vulnerable infection rate in area j

Contact coefficient in area j
Exposure rate (the rate at which exposed individuals become infectious)

v
j Common and vulnerable recovery rate in area j

Diagnosis rate in area j
v
j Natural mortality rate of common and vulnerable people in area j
v
j Disease mortality rate of common and vulnerable people in area j

Demand for medical relief p in area j in time period t
The inventory of relief p in area j at the beginning of time period t
The amount of medical relief p sent from EMRC i to area j in time period t



Fig. 2. Modified SEIR model.

Y. He, N. Liu / Transportation Research Part E 79 (2015) 178–200 183
dEv
j ðtÞ
dt

¼ bv
j djS

v
j ðtÞ Ic

j tð Þ þ Ivj tð Þ
� �

� eEv
j ðtÞ � dv

j Ev
j ðtÞ ð4Þ

dIc
j ðtÞ
dt
¼ eEc

j tð Þ � ac
j þ dc

j

� �
Ic
j tð Þ � cc

j ljI
c
j tð Þ ð5Þ

dIvj ðtÞ
dt

¼ eEv
j tð Þ � av

j þ dv
j

� �
Ivj tð Þ � cv

j ljI
v
j tð Þ ð6Þ

dRc
j ðtÞ

dt
¼ cc

j ljI
c
j tð Þ � dc

j Rc
j tð Þ ð7Þ

dRv
j ðtÞ
dt

¼ cv
j ljI

v
j ðtÞ � dv

j Rv
j ðtÞ ð8Þ
Eqs. (1) and (2) describe how the number of susceptible people varies in epidemic area j. This number increases because
of net input (such as susceptible input from non-epidemic areas and newborns) and decreases as susceptible people die nat-
urally or are exposed. Eqs. (3) and (4) indicate the transition from susceptible to exposed groups and from exposed to infec-
tious groups. Eqs. (5) and (6) describe the transition from exposed to infectious groups and from infectious to recovered
groups. Eqs. (7) and (8) indicate how the number of recovered people varies.

The modified SEIR model operates under continuous time forecasting, and distribution decisions are made in discrete
time periods (as explained in Section 3.1 and depicted in Fig. 1). Therefore, this study uses aggregation to approximate med-
ical demand further. t represents the tth time period, and the length of each time period depends on specific emergencies.
Time periods usually range from 4 h to 6 h for an anthrax attack and one to several days for an influenza outbreak.

In this study, two types of emergency medical reliefs are considered: prophylactic reliefs for susceptible people to reduce
the infection rate (denoted as Mp) and treatment reliefs for infectious people to lower the mortality rate (denoted as Mt).

Notably, this work forecasts demand based on both the physical and psychological effects of reliefs. Demand for prophy-
lactic reliefs is strongly correlated with the numbers of susceptible, exposed, and undiagnosed people. Prophylactic medici-
nes do not affect exposed and undiagnosed people physically, but demand remains because susceptible, exposed, and
infectious but undiagnosed individuals are impossible to distinguish. Demand for treatment reliefs is strongly correlated
with the number of infectious and diagnosed individuals. Medical reliefs are consumed continuously; therefore, demand
for both types is related to the length of each time period. Thus, the following demand forecasting model is established:
Dp
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where Sj tð Þ ¼ Sc
j tð Þ þ Sv

j tð Þ; Ej tð Þ ¼ Ec
j tð Þ þ Ev

j tð Þ; Ij tð Þ ¼ Ic
j ðtÞ þ Ivj ðtÞ; t0 is the beginning moment of period t; L is the length of a

time period.

3.3. Distribution decision model

In this section, a linear programming model is formulated and applied to distribute urgent medical reliefs from multiple
EMRCs to multiple epidemic areas.

The objective function of the distribution model considers the physical fragility of affected individuals. This function is
represented by mortality and infection rates.

The objective function is:
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The proposed objective function minimizes the aforementioned physical fragility (Fphy), which is given by a function of vari-
able xp

ijt .
The weights ðr1;r2;r3;r4Þ in Eq. (10) reflect the priorities of different groups. These weights are set by the decision

maker (usually the government or experts) based on the trend and the characteristic of the spreading disease, as drawn from
the modified SEIR model (Eqs. (1)–(8)). For example, the priority of prophylactic medicines should be not lower than that of
treatment medicines (r1 P r3 and r2 P r4) at the beginning because in this situation, the major object of emergency med-
ical logistics is to avoid a large-scale epidemic. Furthermore, the priority of vulnerable groups should be not lower than that
of common groups (r2 P r1 and r4 P r3) for humanitarian reasons. Recovered people are not included in Eq. (10) because
they are healthy. Exposed people are not included because they are no longer at risk of infection and do not suffer illness
until they become infectious.

In Eqs. (11)–(14), the demand for medical reliefs and the number of people in each group are forecasted using Eqs. (1)–(9).
�av

jt and �ac
jt are adopted to measure physical fragility. These variables refer to the expected epidemic mortality rates of vul-

nerable and common infectious individuals, respectively, after distribution in area j during time period t. Both variables
are related to the amount of treatment reliefs sent to epidemic area j in a specific time period. Similarly, �bv

jt and �bc
jt indicate

the expected epidemic infection rates of vulnerable and common susceptible people after distribution, respectively. These
variables are related to the amount of prophylactic medical reliefs sent to epidemic area j in time period t.

The following constraints are proposed:
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Among the constraints discussed above, Eq. (15) ensures that the aggregate amount of medical relief p sent from EMRC i does
not exceed the corresponding amount available in this EMRC in the given time period t. Eq. (16) guarantees that the aggre-
gate amount of medical relief p sent to a given area j does not exceed the corresponding demand in the given time period t.
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Eq. (17) ensures that the aggregate amount of medical reliefs distributed from any given EMRC i does not exceed the corre-
sponding transportation capacity. Eq. (18) guarantees that the aggregate distribution cost does not exceed the budget in time
period t. Eqs. (19) and (20) consider fairness and ensure that the mortality and infection rates in all epidemic areas do not
exceed the limit. These equations balance these rates among different areas to avoid the situation in which some areas
receive enough reliefs, whereas other areas report high rates because of a lack of medicines. Eq. (21) characterizes a feasible
numerical domain associated with xp

ijt .
In addition, two theorems are proposed for further discussion (proved in Appendix A). Theorem 1 helps analyze the trend

of epidemic diffusion after relief distribution. Theorem 2 shows the condition in which the effectiveness and fairness of
emergency medical logistics can be balanced.

Disease-free and endemic equilibrium are discussed, and Theorem 1 is proposed to explore the effects on the epidemic
diffusion of emergency logistics.

An equilibrium is defined as a state where dXi
dt ¼ 0 for all compartments Xi # Sc
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j tð Þ; Sv
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in a specific epidemic area j. In the system of Eqs. (1)–(8), let Nc
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jeÞ and they exist for all nonnegative values of their
parameters.

Theorem 1. In the system of Eqs. (1)–(8),
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j 6 1, there is no positive equilibrium.
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The three cases described in Theorem 1 are mutually exclusive and collectively exhaustive. R0
j is the basic reproduction

number of the epidemic in epidemic area j and represents the number of cases that one case generates on average over the
course of its infectious period. This metric is useful because it helps determine whether an epidemic can spread through a
population.

Instead ac
j ;av
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j in Theorem 1 by �ac
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j respectively, we can deduce there is no positive equilibrium
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Epidemic diseases die out in the long run if no positive equilibrium exists, and diseases can continue to spread in a pop-

ulation under other situations. Theorem 1 can facilitate emergency medical logistics by (1) setting ‘‘no positive equilibrium’’
as another constraint in the distribution model or by (2) checking Condition 1(b) after distribution decisions have been made
by the models regardless of equilibrium. This work applies the theorem in the second manner. Equilibrium is disregarded in
the distribution model (Eqs. (10)–(21)). The existence of a positive equilibrium is then determined. If equilibrium exists in
some areas, then the government should adjust relevant policies (not logistics policies) to prevent diseases from spreading in
the long run. An example of such adjustments involves investments in exogenous parameters, such as diagnosis rate and
contact coefficient. Equilibrium is not set as a constraint because this behavior is less important than the transient behavior
for a particular application to a sudden emergency related to a new strain of epidemic disease. Therefore, this work regards
equilibrium condition as a consequence and not a constraint of emergency logistics.

Theorem 2. Under the constraint of the given model, if aM < aU or bM < bU then the problem has no feasible solution, in which
aU ¼ av
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The objective function of the model involves effectiveness. Eqs. (19) and (20) are concerned with fairness, which is achieved by
ensuring that the mortality and infection rates do not exceed aM and bM in all areas. A feasible solution cannot be obtained when
extreme fairness (aM < aU or bM < bU) is required. Therefore, we can balance effectiveness and fairness only to some extent.
4. Model extension

In this section, the model is extended to improve its representation of real problems. The mechanism for demand fore-
casting is improved in the first part, and the distribution mechanism is enhanced in the subsequent part.

4.1. Extended Model 1

The basic model assumes that epidemic areas are independent and that all of the people moving into these areas are sus-
ceptible. In reality, an epidemic area is affected by another in a public health emergency given the infectiousness of an epi-
demic. Therefore, an extension that considers the spatial interaction relationships among epidemic areas is developed in this
section.

A migration matrix H is adopted.
H ¼

h11 � � � h1j � � � h1J

..

. . .
. ..

.

hj1 hjj hjJ

..

. . .
.

hJ1 � � � hJj � � � hJJ

2
666666664

3
777777775

; hj1j2 P 0 ð22Þ
where hj1 j2 is the rate at which the population in j1 moves to j2. Moreover, h11 ¼ h22 ¼ . . . ¼ hJJ ¼ 0 and
PJ

m¼1hjm 6 1;8j. The
corresponding epidemic model is formulated as follows:
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As with Eqs. (1)–(8), Eqs. (23) and (24) describe how the numbers of susceptible individuals vary in epidemic area j.PJ
m¼1hmjS

c
mðtÞ and

PJ
m¼1hmjS

v
mðtÞ indicate the numbers of common and vulnerable susceptible people moving to j from other

epidemic areas, respectively, whereas
PJ

m¼1hjmSc
j tð Þ and

PJ
m¼1hjmSv

j ðtÞ are the numbers of common and vulnerable suscepti-
ble people that move from j to other areas, respectively. Similar migration is also formulated in Eqs. (25)–(30).

The demand forecasting model is:
Dp
jt ¼

hp R t0þL
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h i

dt � Invp
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The definitions of other notations are similar to those provided for the basic model.
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4.2. Extended Model 2

This section extends the model by integrating survivor psychology with medical relief logistics.
As mentioned in Sections 1 and 2, previous studies presented strong evidence for the adverse psychological effects of pub-

lic health emergencies on affected people. These studies also suggest that providing on-time treatment and applying an
effective prophylactic method help alleviate psychological suffering. These approaches are closely related to on-time logis-
tics and a sufficient amount of medical relief.

A distribution time threshold is set on the basis of the results of previous studies; that is, emergency medical distribu-
tion is completely effective only when it is delivered within the time limit. Affected people suffer extra psychological
distress, such as anxiety, anger, panic, and fear if distribution time exceeds its limit. Therefore, a ‘‘suffering’’ coefficient
is adopted to represent additional psychological suffering as a result of distribution delay. Similarly, an insufficient amount
of medical reliefs can also increase psychological suffering. The mental states of different groups vary. Three additional
‘‘suffering’’ coefficients are then adopted to denote suffering due to the insufficient amount of relief. The new notations
are as follows:
u1: suffering coefficient for diagnosed people caused by unsatisfactory amounts of treatment reliefs
u2: suffering coefficient for susceptible, exposed, and infectious but undiagnosed people caused by unsatisfactory
amounts of treatment reliefs
u3: suffering coefficient for susceptible, exposed, and infectious but undiagnosed people caused by unsatisfactory
amounts of prophylactic reliefs
u4: suffering coefficient caused by delay
TM: transportation time threshold
Tijt: transportation time from EMRC i to epidemic area j in time period t
The objective of the extended model is formulated as follows:
min F ¼ Fphy þ ð1�xÞFpsy ð32Þ
where Fphy is given as in Eq. (10) and Fpsy is the psychological fragility of affected people.
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The first two terms in Eq. (33) reflect the additional psychological suffering caused by unsatisfactory amounts of treatment
reliefs. Disease-caused mortality increases as unsatisfied demand increases. Thus, the fear of disease-caused death increases.
That is, psychological fragility increases as unsatisfied demand for treatment relief increases. The third term in Eq. (33)
reflects the additional psychological fragility of individuals who are susceptible, exposed, and infectious but undiagnosed
as a result of the unsatisfactory amounts of prophylactic reliefs. Exposed people have already been infected, and prophylactic
reliefs do not have physical effects on them. However, psychological effects remain because these individuals are impossible
to distinguish from the susceptible group. The psychological suffering of infectious people who have not been diagnosed is
also affected by prophylactic reliefs because they do not realize that they have been infected. The fourth term corresponds to
the additional pain caused by delayed distribution. A long transportation time increases the psychological fragility of all
affected individuals.

The other denotations and constraints are similar to those presented in the basic model.
5. Numerical study

This section conducts a case study using real data and a continuation study with experimental data to demonstrate the
applicability of the proposed methodology. The case study involves the SARS outbreak in China during the first quarter of
2003. All computational processes are conducted with MATLAB on a personal computer with a 2.53 Hz CPU and 2G RAM.
Following an introduction of the case background, the main procedures executed in this numerical study are the validation
of forecasting model, testing with real data, and experimental testing.
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5.1. Background

The SARS outbreak originated in Guangdong Province, China, in November 2002. The epidemic spread across almost the
entire country. When the severity of this public health emergency was determined, the Chinese central government
responded. The government reported 305 cases and 5 deaths to the World Health Organization on 10th February 2003.

The numerical study focuses on Guangdong. It is also known as Canton or Kwangtung Province and is located on the South
China Sea coast. Guangdong is among the most populous provinces in China and registers 79.1 million permanent residents,
as well as 31 million migrants who lived in the province for at least six months of the year. These numbers account for 7.79%
of Mainland China’s population. Given the epidemic-related information and the basic state of the distribution network, the
proposed methodology is used to forecast the trend of the spread of SARS and to make medical logistics decisions for
Guangdong. The unit interval is one day.

Cases of SARS infection were reported in the following prefectures in Guangdong: Guangzhou, Foshan, Jiangmen, Heyuan,
Zhongshan, and Shenzhen. The province has four EMRCs. Fig. 3 shows the simplified geographical relationships among these
affected areas and among the EMRCs. Three types of treatment and two types of prophylactic reliefs were provided as
urgently needed. The four EMRCs concentrated their supplies of reliefs and distributed them to the six epidemic areas.
The case background indicates that a simplified 5 � 4 � 6 medical logistics network is formed (5 types of medical reliefs,
4 EMRCs, and 6 epidemic areas). People older than 45 are regarded as the vulnerable ones in this case.

To elucidate the methodology, this work explains the decisions made on 10th February 2003 in detail as an example.
5.2. Testing of the forecasting model

Demand is forecasted using Eqs. (9) and (31). These two forecasting models are compared with moving average method
and standard SEIR model, which are presented in Appendix D.

This study uses Eqs. (1)–(8) and (23)–(30) to compare the numbers of corresponding demanders instead of comparing
demands because demands for both types of prophylactic reliefs are positively correlated with the numbers of susceptible,
exposed, and undiagnosed people. Moreover, demands for all three types of treatment reliefs are correlated with the number
of infectious and diagnosed individuals.

The parameters are presented in Table B.1, and they are set as follows: (1) the parameters for population are set (National
Bureau of Statistics of P.R. China, 2004). (2) The parameters for disease (recovery rate, diagnosed rate, mortality, and incu-
bation period) are set. Dctors and medical experts can generally estimate the expected values of these parameters shortly
after a new disease is recognized in a region. In this study, they are obtained from several medical reports and statistics
(National Health and Family Planning Commission of P.R. China, 2004; Chinese Center for Disease Control and
Prevention; Kamps and Hoffmann, 2003). (3) Infection rates are set with two methods. First, these rates can be obtained
by fitting the forecasting curve with observations given epidemic areas with adequate infectious cases. In this study, the
infection rates in Guangzhou (j = 1) and Zhongshan (j = 5) are set in this manner. The objective function of fitting is to min-

imize
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

k¼1 obsk � estkð Þ2
q
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q	 

, where obsk refers to the kth observed value and estk refers to the kth
a1: Guangzhou a2: Foshan a3: Jiangmen a4: Heyuan

a5: Zhongshan a6: Shenzhen b1,b2,b3,b4: EMRCs

Fig. 3. Study areas.
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estimated value. Given epidemic areas with a few infectious cases, these rates can also be set by comparing specific areas
with the areas listed above in terms of previous cases of similar epidemic outbreak. In this study, infection rates in the other
four areas (j = 2, 3, 4, 6) are set in this manner. For example, the infection rates of influenza and pneumonia in Guangzhou
(j = 1) is 0.05 lower than those in Foshan (j = 2). Thus bc

2 ¼ bc
1 þ 0:05 and bv

2 ¼ bv
1 þ 0:05.

The following table compares demand forecasting in Guangzhou (j = 1) as an example. Although accurate parameters can
be obtained at present, this study attempts to recreate a specific situation in which a new, little-know epidemic outbreak is
reported.

Table 2 shows that all four models are valid in terms of forecasting prophylactic demanders. In combination with Fig. 4,
this table illustrates that the performance of these models differ with respect to forecasting the numbers of treatment
demanders. The methods proposed in this paper perform better than standard SEIR model and moving average method in
the initial two weeks, but then the error rate increases rapidly. The main reason for this trend is the development of preven-
tive and therapeutic methods as doctors amass additional knowledge about SARS. Nonetheless, accurate forecasting for two
weeks is enough to facilitate distribution decision-making. In addition, the models proposed in this paper can forecast every
group in the population, unlike the moving average method. This advantage is useful in distributional decision-making.

5.3. Testing with real data

In this section, the three models proposed in Sections 3 and 4 are solved and their results compared. This paper summa-
rizes and compares the numerical analysis results for these three models. The parameters and statistics are reported in the
appendix.

Table 3 shows the main indices of the three models. Extended forecasting method (proposed in Section 5.2) is adopted in
Extended Model 2. The psychological fragility determined with the basic model and with Extended Model 1 are also calcu-
lated for comparison. The computation times for solving these three models are 1.94, 2.48 and 2.53 s, respectively.

The horizontal axis in Fig. 5 shows four EMRCs, whereas the vertical axis indicate epidemic areas. Circles with different
colors correspond to the five types of reliefs, and the colored areas refer to the corresponding distributed amounts (specific
numbers are reported in Table C.1).

The following observations are made based on the analytical results presented above.

(1) The amounts of prophylactic reliefs distributed to specific epidemic areas differ when the spatial interaction relation-
ships among epidemic areas are considered. As a result, the average infection rate decrease slightly although the total
distributed amount does not increase.

(2) The total amount of treatment reliefs distributed increases when survivor psychology is considered. In the process,
psychological fragility declines significantly.

(3) The amount of reliefs distributed increase for epidemic areas with a large input population that originates from
severely infected areas when the spatial interaction relationships among epidemic areas are considered. In this case,
additional prophylactic reliefs are sent to Shenzhen (j = 6) to avoid the spread of SARS. The reason for this outcome is
that this area has a large input population coming from Guangzhou (j = 1) and Zhongshan (j = 5). These areas are the
most severely. Moreover, the number of residents in Shenzhen (j = 6) is small. Guangzhou (j = 1) is less affected
although the input from Zhongshan (j = 5) to this area (j = 1) is larger given that Guangzhou (j = 1) has much more
residents.

(4) The amount of prophylactic reliefs distributed increases for epidemic areas with low diagnosis rates when survivor
psychology is considered. In this case, the diagnosis rate of Heyuan (j = 4) is the lowest and many infectious people
have not realized that they are infected. Infectious but undiagnosed individuals share a physical state with those who
have been diagnosed, but their psychological characteristics differ. Therefore, more prophylactic relief is sent to
Heyuan (j = 4) in Extended Model 2 than in Extended Model 1.

(5) The number of distribution paths that report long transportation times decreases when survivor psychology is con-
sidered. A long distribution time increases psychological fragility. In this case, the distribution paths from EMRC 4 to
Guangzhou (j = 1) and to Jiangmen (j = 3) are avoided in Extended Model 2, unlike in the other two models. In a case of
emergency medical logistics following a large-scale disaster, the effect of survivor psychology on path selection is
strengthened because destroyed infrastructure may increase transportation time.
Table 2
Comparison of different forecasting methods.

Forecasting methods Average forecasting error of prophylactic demanders Average forecasting error of treatment demanders

In one week (%) In two weeks (%) In one month (%) In one week (%) In two weeks (%) In one month (%)

Basic model 0.01 0.03 0.06 3.55 3.99 45.84
Extended Model 1 0.01 0.03 0.06 3.54 3.96 44.80
Standard SEIR model 0.02 0.03 0.05 12.02 13.75 43.07
Moving average method 0.02 0.03 0.05 11.61 8.17 13.10

⁄ The original point of forecasting is 10th February.



Fig. 4. Forecasting of treatment demanders.

Table 3
Numerical results of testing with real data.

Model Basic model Extended Model 1 Extended Model 2

Average mortality ratea 0.497 0.497 0.091
Average infection ratea 0.573 0.572 0.571
Total amount of prophylactic reliefs 436,994 436,980 436,405
Total amount of treatment reliefs 181 195 770
Cost 443,342 520,878 461,523
Physical fragility 3,869,667 3,862,785 3,881,985
Psychological fragility 2,269,299 2,291,386 1,172,696

a Average mortality rate is the average of mortality rates of all areas after distribution, that is, the average of �am
j ðj ¼ 1;2; . . . ;6; m ¼ c; vÞ; and average

infection rate is the average of infection rates of all areas after distribution, that is, the average of �bm
j ðj ¼ 1;2; . . . ;6; m ¼ c; vÞ.
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5.4. Experimental testing

Four observations are made based on the analysis presented with actual SARS data. An analysis using experimental data is
conducted to test these observations in different epidemic situations.

We test four typical types of situations as follows. Situation 1: not easily spread and not especially lethal (small a and
small b); Situation 2: easily spread but not especially lethal (small a and large b); Situation 3: not easily spread but especially
lethal (large a and small b); and Situation 4: easily spread and especially lethal (large a and large b).

The effects of a and b alone are reported and discussed in this section to induce brief observations given the similar effects
of d and b, as well as the inverse effects of a and c.

The other parameters are similar to those in Section 5.3. We make distribution decisions in the four situations as in the
analysis with real data. The main indices and specific decisions are summarized in Tables C.2–C.9 in Appendix C.

The following four observations are made based on the results of experimental testing:
(1) All four situations exhibit results similar to those in the first and second observations made by analyzing real data.

That is, the amounts of prophylactic reliefs distributed to specific epidemic areas differ when the spatial interaction
relationships among epidemic areas are considered, although the total amount does not increase. Moreover, the total
amount of treatment reliefs distributed increases when survivor psychology is considered, thus reducing psycholog-
ical fragility considerably.

(2) All four situations show the results similar to those in the third observation made by analyzing real data. That is, more
prophylactic reliefs are distributed to epidemic areas with large input populations that originate from severely
infected areas when the spatial interaction relationships among such areas are considered.

(3) Situations 2 and 4 display results similar to those in the fourth observation made by analyzing real data. More pro-
phylactic reliefs are sent to areas with low diagnosis rates when survivor psychology is considered. However,
Situations 1 and 3 fail to provide strong evidence for these changes. The effect of the variation in prophylactic relief
on physical and psychological fragility is insignificant in these situations given the low infection rate.

(4) In all four experimental situations, distribution paths that report long transportation times are avoided when survivor
psychology is considered, as in the analysis with real data.
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6. Implications

Academic literature and popular press both indicate that the decision-makers for public health emergencies have long
been advised to control physical factors, such as mortality and infection rates, and economic factors, such as transportation
cost. This study underscores the importance of survivor psychology in such emergencies and provides suggestions on effi-
cient, effective, and fair medical rescue.

This work highlights the necessity and feasibility of reducing the psychological fragility of affected people during emer-
gency medical logistics. Aside from inducing health threats and economic losses, public health emergencies also have neg-
ative psychological effects on both patients and healthy people. Affected people may feel helplessness, sorrow, panic,
anxiety, and fear. Such individuals may even develop mental illnesses. Widespread serious psychological problems may also
threaten economic order and public security. Numerical results show that the consideration of survivor psychology signif-
icantly reduces the psychological fragility of affected people and that it hardly affects the physical fragility. Aside from high-
lighting survivor psychology, this work also indicates the benefits of considering the spatial interaction relationships among
epidemic areas, especially in response to public health emergencies with high infection rates in areas with high population
density.

In addition, the specific effects of incubation period and diagnosis rate are emphasized in the discussion of the relation-
ship between logistics and survivor psychology. Additional treatment reliefs generally help improve psychological states.
Conversely, prophylactic reliefs are significant to epidemics with long incubation periods. Such reliefs do not exert physical
effects on exposed people, and such individuals cannot infect others. However, psychological effects remain. Similarly, the
psychological suffering of infectious but undiagnosed people is affected by prophylactic rather than treatment reliefs.
Therefore, additional prophylactic but not treatment reliefs are sent to areas with low diagnosis rates. The increase in diag-
nosis rate lowers the demand for prophylactic reliefs and the corresponding logistics capacity.

Overall, this work provides managerial insights to improve decisions made on medical distribution as per demand fore-
casting for quick response to public health emergencies. These insights also enhance the physical and psychological status of
affected individuals.
7. Conclusions

This work presents a novel model of emergency medical logistics for rapid response to public health emergencies. The
proposed model consists of two mechanisms: (1) medical demand forecasting and (2) relief distribution. The medical
demand associated with each epidemic area is forecast using a modified SEIR model. This process is followed by a linear
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programming approach to making distribution decisions. On the basis of a basic model that applies the proposed method,
two extended models are generated by assessing (1) the spatial interaction relationships among epidemic areas and (2) sur-
vivor psychology.

A numerical study conducted on a real SARS outbreak in China demonstrates the applicability of the proposed method.
The numerical results of the three models are compared to identify the advantages of each model. The psychological status of
affected people improves significantly when survivor psychology is considered. Four experimental situations are tested to
support and supplement the analysis with real data. Managerial insights are also provided.

The performance of emergency medical logistics may be improved significantly. The first mechanism of the proposed
model is used in demand forecasting and supports the distribution mechanism in which the government is the real
decision-maker. Nevertheless, the forecast demand information can be shared with non-governmental organizations and
local charities for medical logistics coordination. This issue is worthy of further research. Furthermore, survivor psychology
is discussed on the basis of providing the public with transparent information. However, emergency logistics may influence
affected people in different ways as a result of imperfect information. Therefore, additional research must be conducted to
explain this issue. Such research is particularly important for medical logistics and rescue in large public health emergencies.

Finally, the proposed approach to emergency medical logistics not only improves the performance of medical relief dis-
tribution but also clarifies the importance of further research in the fields of emergency logistics and public health. Thus, the
physical and psychological fragility of affected people can be minimized.
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Appendix A. Proofs of theorems

A.1. Proof of Theorem 1
Proof 1. For an equilibrium in system of Eqs. (1)–(8), we can obtain
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with Eqs. (1)–(8) we can obtain
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Appendix B. Parameters in the numerical study

See Tables B.1–B.5.
Appendix C. Results of the numerical study

See Fig. C.1 and Tables C.1–C.9.
able B.1
arameters for epidemic and population.

Area j = 1 j = 2 j = 3 j = 4 j = 5 j = 6

Ac
j 504 229 114 80 92 556

Av
j 80 16 �8 �1 6 84

bc
j 0.4 0.45 0.46 0.5 0.48 0.4

bv
j 0.5 0.55 0.56 0.6 0.58 0.55

dj 1.02 � 10�8 1.14 � 10�8 0.33 � 10�8 0.13 � 10�8 1.05 � 10�8 3.11 � 10�8

e 0.23 0.23 0.23 0.23 0.23 0.23
cc

j 0.1 0.13 0.1 0.08 0.1 0.1
cv

j 0.05 0.08 0.05 0.03 0.05 0.05
ac

j 0.003 0.003 0.006 0.01 0.008 0.005
av

j 0.005 0.005 0.008 0.015 0.01 0.007
lj 0.8 0.7 0.6 0.5 0.7 0.6
dc

j 1.00 � 10�5 0.996 � 10�5 1.03 � 10�5 1.01 � 10�5 0.991 � 10�5 1.00 � 10�5

dv
j 3.00 � 10�5 2.99 � 10�5 3.00 � 10�5 2.98 � 10�5 2.99 � 10�5 3.01 � 10�5

Sc
j (0) 6,875,080 4,174,889 2,738,309 1,657,264 1,739,502 5,898,274

Sv
j (0) 2,971,785 1,391,632 1,288,616 823,680 643,378 1,567,896

Ec
j (0) 316 41 22 29 50 10

Ev
j (0) 136 20 10 15 15 3

Ic
j (0) 198 12 17 15 29 8

Ivj (0) 85 7 8 7 11 2

able B.2
arameters for medical reliefs.

Area j = 1 j = 2 j = 3 j = 4 j = 5 j = 6

m1(p = 1) h1 ¼ 0:01;b1 ¼ 0:3
Inv1

t 24,000 12,000 6000 5000 1500 3000
c1

1jt 0.04 0.24 0.94 2.07 0.91 1.63
c1

2jt 0.23 0.11 0.78 2.23 0.74 1.91
c1

3jt 0.10 0.28 1.03 2.05 1.04 1.73
c1

4jt 1.63 1.91 2.63 1.70 2.54 0.06

m2(p = 2) h2 ¼ 0:02;b2 ¼ 0:1
Inv2

t 131,000 41,000 57,000 10,000 200 85,000
c2

1jt 0.08 0.48 1.88 4.14 1.82 3.26
c2

2jt 0.46 0.22 1.56 4.46 1.48 3.82
c2

3jt 0.20 0.56 2.06 4.10 2.08 3.46
c2

4jt 3.26 3.82 5.26 3.40 5.08 0.12

m3(p = 3) h3 ¼ 1; b3 ¼ 0:1
Inv3

t 21 5 0 0 0 2
c3

1jt 0.04 0.24 0.94 2.07 0.91 1.63
c3

2jt 0.23 0.11 0.78 2.23 0.74 1.91
c3

3jt 0.10 0.28 1.03 2.05 1.04 1.73
c3

4jt 1.63 1.91 2.63 1.70 2.54 0.06

m4(p = 4) h4 ¼ 1; b4 ¼ 0:3
Inv4

t 20 0 0 0 0 0
c4

1jt 0.12 0.72 2.82 6.21 2.73 4.89
c4

2jt 0.69 0.33 2.34 6.69 2.22 5.73
c4

3jt 0.30 0.84 3.09 6.15 3.12 5.19
c4

4jt 4.89 5.73 7.89 5.10 7.62 0.18

m5(p = 5) h5 ¼ 3; b5 ¼ 0:2
Inv5

t 300 8 0 0 6 2
c5

1jt 0.04 0.24 0.94 2.07 0.91 1.63
c5

2jt 0.23 0.11 0.78 2.23 0.74 1.91
c5

3jt 0.10 0.28 1.03 2.05 1.04 1.73
c5

4jt 1.63 1.91 2.63 1.70 2.54 0.06



Table B.3
Parameters for EMRCs.

Q1
it Q2

it Q3
it Q4

it Q5
it Wit

i = 1 25,000 0 50 0 100 25,000
i = 2 0 100,000 0 75 0 110,000
i = 3 130,000 175,000 150 25 270 300,000
i = 4 60,000 2000 40 0 60 100,000

Table B.4
Migration matrix for Extended Model 1.

hj1 j2
j2 = 1 j2 = 2 j2 = 3 j2 = 4 j2 = 5 j2 = 6

j1 = 1 0 4.57 � 10�7 9.04 � 10�7 5.27 � 10�7 2.88 � 10�7 13.75 � 10�7

j1 = 2 6.00 � 10�7 0 2.94 � 10�7 1.71 � 10�7 0.93 � 10�7 4.46 � 10�7

j1 = 3 44.82 � 10�7 11.14 � 10�7 0 12.84 � 10�7 7.01 � 10�7 33.51 � 10�7

j1 = 4 49.57 � 10�7 12.32 � 10�7 2.44 � 10�7 0 7.76 � 10�7 37.06 � 10�7

j1 = 5 14.92 � 10�7 3.71 � 10�7 7.34 � 10�7 4.28 � 10�7 0 11.16 � 10�7

j1 = 6 0.93 � 10�7 0.23 � 10�7 0.46 � 10�7 0.27 � 10�7 0.15 � 10�7 0

Table B.5
Additional parameters for Extended Model 2.

Tijt j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 TM

i = 1 0.25 0.40 1.57 2.78 1.52 2.05 2
i = 2 0.88 0.52 1.30 3.38 1.23 3.18
i = 3 0.67 0.47 1.72 3.42 4.13 2.08
i = 4 2.72 2.35 4.38 2.83 4.23 0.43
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Fig. C.1. Sensitive analysis of suffering coefficients with real data.
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Table C.1
Optimal solutions of three models with real data.

j = 1 j = 2 j = 3 j = 4 j = 5 j = 6

Basic model i = 1 m1:25,000
i = 2 m2:10,285 m2:66,175 m2:23,540 m4:4.983 m4:5.867 m4:2.567

m4:54.72 m4:0.5867 m4:6.403
i = 3 m1:75,475 m1:34,270 m1:20,225 m2:64,329

m2:55,665 m4:6.259
i = 4 m3:23.00 m1:18,666 m1:19,810 m1:2075 m1:19,449

m5:60.00 m2:2000
m3:17.00

Extended Model 1 i = 1 m1:25,000
i = 2 m4:66.20 m2:35,586 m4:5.871 m2:64,414

m4:2.933
i = 3 m1:74,480 m1:1486 m1:34,244 m1:19,790 m4:7.569

m2:65,960 m2:32,533 m2:21,487 m4:5.750
m4:0.6667 m4:6.403

i = 4 m3:20.00 m1:17,185 m2:2000 m1:22,328 m1:20,487
m5:60.00 m3:20.00

Extended Model 2 i = 1 m1:2522 m3:14.00 m1:22,328
m3:36.00
m5:100

i = 2 m2:67,694 m2:23,487 m2:8819 m4:35.00
m4:8.000 m4:17.00 m4:15.00

i = 3 m1:71,958 m1:23,798 m1:34,244 m2:62,414
m2:57,141 m3:3.000 m3:3.000 m4:8.000
m3:144.0 m4:17.00 m5:52.00 m5:7.000
m5:144.0 m5:66.00

i = 4 m1:19,873 m1:19,790 m1:20,337
m3:17.00 m3:15.00 m2:2000

m5:45.00 m3:8.000
m5:15.00

Table C.2
Optimal solutions of three models in Situation 1.

j = 1 j = 2 j = 3 j = 4 j = 5 j = 6

Basic model i = 1 m1:25,000
i = 2 m2:31,821 m2:68,179 m4:4.524 m4:4.767 m4:11.41 m4:2.450

m4:51.63
i = 3 m1:32,254 m1:43,666 m1:34,270 m1:19,810 m2:62,329

m2:34,129 m2:23,540
m4:1.596

i = 4 m1:18,221 m3:17.00 m1:22,330 m1:19,449
m3:23.00 m2:2000
m5:60.00

Extended Model 1 i = 1 m1:25,000
i = 2 m2:35,586 m4:9.511 m2:64,414

m4:62.69 m4:2.800
i = 3 m1:33,154 m2:68,114 m1:34,245 m1:19,790 m1:20,483

m2:30,381 m2:21,489 m4:5.500 m1:22,328
m4:6.480

i = 4 m1:16,329 m1:43,671 m2:2000
m3:20.00 m3:20.00
m5:60.00

Extended Model 2 i = 1 m1:2522 m3:3.000 m1:22,328
m3:11.00 m3:36.00

m5:100.0
i = 2 m2:65,967 m2:34,033 m4:18.00 m4:15.00 m4:34.00

m4:8.000
i = 3 m1:23,794 m2:62,414

m3:132.0 m2:33,652 m2:23,489 m4:8.000
m5:142.0 m4:17.00 m3:18.00 m5:7.000

m5:66.00 m5:54.00
i = 4 m1:19,877 m1:19,790 m1:20,333

m3:17.00 m3:15.00 m2:2000
m5:45.00 m3:8.000

m5:15.00
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Table C.3
Numerical results of experimental testing in Situation 1.

Model Basic model Extended Model 1 Extended Model 2

Average mortality rate 0.498 0.498 0.089
Average infection rate 0.373 0.372 0.372
Total amount of prophylactic reliefs 436,998 436,984 436,455
Total amount of treatment reliefs 177 191 770
Cost 481,090 610,594 464,306
Physical fragility 2,425,069 2,418,231 2,420,013
Psychological fragility 2,297,467 2,323,959 1,149,958

Table C.4
Optimal solutions of three models in Situation 2.

j = 1 j = 2 j = 3 j = 4 j = 5 j = 6

Basic model i = 1 m1:5190 m1:19,810
i = 2 m2:12,131 m2:23,540 m4:4.767 m4:11.41 m2:64,329

m4:52.92 m4:4.229 m4:2.450
i = 3 m1:74,475 m1:33,195 m4:1.891 m1:22,330

m2:51,820 m2:68,178
i = 4 m2:2000 m1:5282 m1:34,270 m1:20,448

m3:23.00 m3:17.00
m5:60.00

Extended Model 1 i = 1 m1:25,000
i = 2 m2:35,586 m4:6.480 m4:5.500 m4:12.84 m2:64,414

m4:47.13 m4:2.800
i = 3 m1:32,294 m1:43,671 m1:34,245 m1:19,790

m2:28,374 m2:68,121 m2:23,489
m4:15.93

i = 4 m1:17,186 m3:20.00 m1:22,328 m1:20,486
m2:2000
m3:20.00
m5:60.00

Extended Model 2 i = 1 m1:2522 m3:3.000 m1:22,328
m3:11.00 m3:36.00

m5:100.0
i = 2 m2:30,417 m2:67,692 m4:18.00 m2:1891 m4:34.00

m4:8.000 m4:15.00
i = 3 m1:71,958 m1:23,797 m1:34,245 m5:1.000 m2:62,414

m2:33,652 m4:17.00 m2:23,489 m4:8.000
m3:132.0 m5:66.00 m3:18.00 m5:7.000
m5:142.0 m5:54.00

i = 4 m1:19,874 m1:19,790 m1:20,336
m3:17.00 m3:15.00 m3:8.000

m5:45.00 m3:8.000
m5:15.00

Table C.5
Numerical results of experimental testing in Situation 2.

Model Basic model Extended Model 1 Extended Model 2

Average mortality rate 0.498 0.498 0.089
Average infection rate 0.772 0.772 0.772
Total amount of prophylactic reliefs 436,998 436,984 436,405
Total amount of treatment reliefs 177 191 770
Cost 527,057 539,718 451,672
Physical fragility 5,307,370 5,307,397 5,312,915
Psychological fragility 2,171,765 2,314,800 1,156,000
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Table C.6
Optimal solutions of three models in Situation 3.

j = 1 j = 2 j = 3 j = 4 j = 5 j = 6

Basic model i = 1 m1:25,000
i = 2 m2:35,671 m4:11.20 m4:27.20 m2:64,329

m4:31.55 m4:5.050
i = 3 m1:74,475 m1:15,266 m2:21,540 m1:19,810 m1:20,449

m2:30,280 m2:67,781 m4:13.65 m4:11.00
m3:103.6
m5:270.0

i = 4 m3:25.00 m1:3400 m1:34,270 m1:22,330
m5:60.00 m3:15.00 m2:2000

Extended Model 1 i = 1 m1:25,000
i = 2 m2:12,097 m4:1.320 m2:23,489 m4:11.92 m4:27.20 m2:64,414

m4:29.16 m4:5.400
i = 3 m1:49,480 m1:3461 m1:34,245 m1:22,328 m1:20,486

m2:53,863 m3:16.00 m4:14.56
m3:177.0 m4:10.44
m5:270.0

i = 4 m3:40.00 m1:40,210 m1:19,790
m5:60.00 m2:2000

Extended Model 2 i = 1 m1:2522 m5:24.28 m1:22,328
m3:50.00
m5:75.72

i = 2 m2:32,308 m2:67,692 m4:13.00 m4:27.20
m4:16.80 m4:18.00

i = 3 m1:71,958 m1:23,797 m1:34,245 m2:62,414
m2:33,652 m4:3.000 m2:23,489 m4:6.000
m3:134.0 m5:11.00 m3:16.00
m5:259.0 m4:16.00

i = 4 m3:5.000 m1:19,874 m1:19,790 m1:20,336
m3:16.00 m3:13.00 m2:2000
m5:44.00 m3:6.000

m5:16.00

Table C.7
Numerical results of experimental testing in Situation 3.

Model Basic model Extended Model 1 Extended Model 2

Average mortality rate 0.472 0.472 0.303
Average infection rate 0.372 0.372 0.372
Total amount of prophylactic reliefs 436,601 436,572 436,405
Total amount of treatment reliefs 574 603 770
Cost 767,627 555,226 443,918
Physical fragility 2,418,860 2,418,920 2,419,981
Psychological fragility 1,942,086 1,776,862 1,151,773
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Appendix D

Standard SEIR model
dSjðtÞ
dt ¼ Aj � djSj tð Þ � bjdjSj tð ÞIj tð Þ

dEjðtÞ
dt ¼ bjdjSj tð ÞIj tð Þ � djEj tð Þ � eEj tð Þ

dIj tð Þ
dt ¼ eEj tð Þ � djIj tð Þ � ajIj tð Þ � cjIj tð Þ

dRjðtÞ
dt ¼ cjIj tð Þ � djRj tð Þ

8>>>>>><
>>>>>>:
The number of prophylactic demanders in time period t is
R t0þL

t0
Sj tð Þ þ Ej tð Þ
� �

dt and the number of treatment demanders in

time period t is
R t0þL

t0
Ij tð Þdt, where t0 refers to the beginning moment of period t and Lis the length of a time period.

Parameters are set as follows (j = 1): A1 ¼ 584; d1 ¼ 0:00002;a1 ¼ 0:0045; b1 ¼ 0:4; d1 ¼1.02 � 10�8, e ¼ 0:23;
c1 ¼ 0:08; S1 0ð Þ ¼ 9847978; E1 0ð Þ ¼ 452; I1 0ð Þ ¼ 283;R1 0ð Þ ¼ 0.



Table C.8
Optimal solutions of three models in Situation 4.

j = 1 j = 2 j = 3 j = 4 j = 5 j = 6

Basic model i = 1 m1:25,000
i = 2 m2:65,951 m2:10,509 m2:23,540 m4:27.20 m4:5.05

m4:31.55 m4:11.20
i = 3 m1:29,734 m1:43,667 m1:34,269 m4:11.00 m1:22,330 m2:64,329

m3:89.59 m2:55,272 m4:13.65
m5:270.0 m3:15.00

i = 4 m1:19,741 m2:2000 m1:19,810 m1:20,449
m3:40.00
m5:60.00

Extended Model 1 i = 1 m1:25,000
i = 2 m2:65,960 m4:1.320 m4:11.92 m4:27.20 m2:34,040

m4:29.16 m4:5.400
i = 3 m1:74,480 m1:18,671 m1:34,245 m1:2604 m2:28,374

m3:136.7 m2:67,706 m2:23,489
m5:270.0 m4:10.44 m4:14.56

i = 4 m3:24.00 m3:16.00 m1:19,790 m1:19,724 m1:20,486
m5:60.00 m2:2000

Extended Model 2 i = 1 m1:2522 m5:11.00 m3:16.00 m1:23,328
m3:34.00 m5:21.67
m5:67.33

i = 2 m2:65,153 m2:10,551 m2:23,489 m2:1807 m4:27.20
m4:16.80 m4:18.00 m4:13.00

i = 3 m1:71,958 m1:23,797 m1:34,245 m2:62,414
m3:150.0 m2:57,141 m4:16.00 m4:6.000
m5:270.0 m4:3.000

i = 4 m3:5.000 m1:19,874 m1:19,790 m1:20,336
m3:16.00 m3:13.00 m2:2000
m5:44.00 m3:6.000

m5:16.00

Table C.9
Numerical results of experimental testing in Situation 4.

Model Basic model Extended Model 1 Extended Model 2

Average mortality rate 0.472 0.472 0.304
Average infection rate 0.772 0.772 0.772
Total amount of prophylactic reliefs 436,601 436,569 436,405
Total amount of treatment reliefs 574 606 770
Cost 472,774 487,172 467,576
Physical fragility 5,308,059 5,308,123 5,312,750
Psychological fragility 1,759,643 1,742,787 1,161,607
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Moving average model
Njt ¼ 0:7Njt�1 þ 0:2Njt�2 þ 0:1Njt�3
where Njt refers to the number of demanders in area j in time period t.
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