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Abstract

Convolutional Neural Networks (CNNs) have become a prominent method of AI implementa-

tion in medical classification tasks. Grading Diabetic Retinopathy (DR) has been at the fore-

front of the development of AI for ophthalmology. However, major obstacles remain in the

generalization of these CNNs onto real-world DR screening programs. We believe these dif-

ficulties are due to use of 1) small training datasets (<5,000 images), 2) private and ‘curated’

repositories, 3) locally implemented CNN implementation methods, while 4) relying on mea-

sured Area Under the Curve (AUC) as the sole measure of CNN performance. To address

these issues, the public EyePACS Kaggle Diabetic Retinopathy dataset was uploaded onto

Microsoft Azure™ cloud platform. Two CNNs were trained; 1 a “Quality Assurance”, and 2. a

“Classifier”. The Diabetic Retinopathy classifier CNN (DRCNN) performance was then tested

both on ‘un-curated’ as well as the ‘curated’ test set created by the “Quality Assessment”

CNN model. Finally, the sensitivity of the DRCNNs was boosted using two post-training tech-

niques. Our DRCNN proved to be robust, as its performance was similar on ‘curated’ and

‘un-curated’ test sets. The implementation of ‘cascading thresholds’ and ‘max margin’ tech-

niques led to significant improvements in the DRCNN’s sensitivity, while also enhancing the

specificity of other grades.

Introduction

It is estimated that by 2040, nearly 600 million people will have diabetes worldwide [1]. Dia-

betic retinopathy (DR) is a common diabetes-related microvascular complication, and is the

leading cause of preventable blindness in people of working age worldwide [2, 3]. It has been

estimated that the overall prevalence of non-vision-threatening DR, vision-threatening DR

and the blinding diabetic eye disease were 34�6%, 10�2%, and 6�8% respectively [3–6]. Clinical

trials have shown that the risk of DR progression can be significantly reduced by controlling

major risk factors such as hyperglycaemia and hypertension [7–9]. It is further estimated that

screening, appropriate referral and treatment can reduce the vision loss from DR by 50% [10–

12]. However, DR screening programs are expensive to implement and administer and even in
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developed countries it is estimated that these programs do not reach up to 30% of people with

diabetes [13, 14]. Whilst the reasons patients do not present for eye screening vary, the lack of

a readily accessible local screening site or associated cost in absence of a public screening ser-

vice, are significant barriers to many.

Artificial intelligence (AI) and its subcategory of Deep Learning have gained popularity in

medical images processing, including DR screening. In deep learning, a convolutional neural

network (CNN) is designed and trained based on large datasets of ground truth data and dis-

ease labels. The CNN algorithm adjusts its weights and discovers which features to extract

from medical data (e.g. fundus photos) to achieve the best classification accuracy, when com-

pared to human performance [15–20], with one study (De Fauw et al.) demonstrating that its

AI was 2%-5% more accurate than 6 out of the 8 experienced clinicians in detecting referable-

DR. CNNs use layers with convolutions, which are defined as mathematical functions that use

filters to extract features from an image [21–23]. The output of a DR classifying CNN can be

either a binary classification such as Healthy vs Diseased; or a multi-class classification task

such as Healthy, Non-referable DR, Referable DR [16, 24].

The rapid initial advances of AI, especially in DR classification, raised expectations that AI

would be rapidly implemented within national DR screening programs, with attendant and

noticeable cost savings [25, 26]. To date, these systems have yet to be successfully translated

into clinical care, in a large part due to major generalizability issues of research-built AIs.

Some of the major flaws of research-built AIs that are hindering their generalizability are: 1)

using small training (<5,000 images) datasets, 2) repositories that are often private and

‘curated’ to remove images that are deemed to be of low quality, and 3) lack of external valida-

tion [17, 27–29]. Although 5,000 images for a training dataset is an arbitrary number, it has

been shown that large training datasets lead to improved performance and generalizability [30,

31]. These issues are often observed in research-driven AIs and have led to a slew of extremely

biased DR classifying neural networks in the published literature. Some recent publications

have pointed out the lack of generalizability of even the best of these AIs [32–35].

Our extensive investigation (to be published soon as a systematic review) has found only a

few published research-based AIs that could be closer to clinical translation [4, 16, 18, 19, 26,

36–38]. Although admirable achievements in their own right, these AIs often need dedicated

and TensorFlow compatible graphic cards (GPUs) to achieve rapid live image grading and in

reality public health providers rely on older and\or less expensive IT infrastructure, which

means that such a high computational demand would hinder their clinical translation.

Finally, the creators of DR-screening AIs have traditionally focused on improving the accu-

racy of their trained AIs, as measured by the AUC [17]. Although reasonable, it should be

noted that different diabetic eye screening programs will have different requirements. Estab-

lished programs, such the public screening system in New Zealand [39, 40] are designed to

delineate those patients with no/low risk disease from those with high risk “sight threatening”

disease. In this scenario a classifier CNN which is highly sensitive to sight threatening disease

and has a very high negative predictive value for a negative result, will potentially remove the

need for a significant (>80%) portion of images to be sent for human review, with an immedi-

ate and significant cost saving for the program. However, in rural community-based screening

programs, operating in remote and/or low socioeconomic regions on portable handheld cam-

eras where it is also important to identify those patients who would also benefit from review of

their systemic disease, arguably the emphasis should be on delineating those patients with no

disease from those with any disease in order to identify those individuals who need further

review. In such cases a high positive predictive value for a normal result may be more appro-

priate. There are then opportunities to build bespoke DRCNN’s tailored to the needs of indi-

vidual screening programs.
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In this, paper we report the use of two established post training techniques; cascading

thresholds and margin max to manipulate the sensitivity and specificity of a bespoke DRCNN

towards: 1. No disease and 2. Sight threatening DR. We are actively pursuing clinical imple-

mentation of our AIs and as such our recent findings would be of great interest for similar

groups around the world.

Methodology

Here is a short summary of the methodological steps in this project, which are explained in

more details subsequently. The original EyePACS Kaggle DR dataset was obtained and

uploaded onto the Microsoft Azure™ platform. Initially, a “Quality Assessment” CNN was

trained for assessing the quality of the retinal images. Next and to better match the New Zea-

land grading scheme, the original grading was modified in two ways [Healthy vs Diseased] and

[Healthy vs Non-referable DR vs Referable DR]. The uploaded dataset was then divided into

training (70%), validation (15%) and test (15%) sets. A separate DR classifier CNN was then

trained on the Microsoft Azure™ platform, using the ‘un-curated’ training and validation data-

sets. The not-seen-before test set was then analysed by the “Quality Assessment” CNN thus

creating a ‘curated’ test set in addition to the original ‘un-curated’ set. The performance of the

DRCNN was then assessed using both ‘curated’ and ‘un-curated’ test sets. Finally, the ‘cascad-

ing threshold’ and ‘margin max’ techniques were implemented post-training, to investigate

their effects on boosting the sensitivity of the DRCNN [Fig 1].

Quality assessment dataset

A subset of 7,026 number of images (8% of the entire dataset), randomly chosen from the orig-

inal set were used for creating the “Quality Assessment” CNN. The images were audited by a

senior retinal specialist (DS) and labelled as ‘adequate’ or ‘inadequate’ (3400 \ 3626) respec-

tively [Fig 2]. They were then split into (70%) training, (15%) validation and (15%) testing sets.

“Quality-assessment” CNN architecture

To choose the optimum CNN design, several architectures were tested on Microsoft Azure™
cloud platform. These included ResNet, DenseNet, Inception and Inception-ResNet and

Inception-ResNet-V2 [41]. The “Quality-Assessment” CNN was then based on a modified ver-

sion of the InceptionResNet-V2 architecture. This particular neural network structure, in our

experience, has faster convergence and avoids converging onto local minima. For our pur-

poses, the number of neurons in the final output layer was changed to two, corresponding to

‘adequate’ and ‘inadequate’ classes. The learning rate was 0.001, using ADAM optimizer, with

a mini-batch size of 30, and training was continued to 140 epochs.

Classifier dataset

The public Kaggle Diabetic Retinopathy was downloaded through EyePACS, which can be

found in https://www.kaggle.com/c/diabetic-retinopathy-detection/data. This dataset contains

88,700 high-resolution fundus images of the retina, labelled as No DR, Mild, Moderate, Severe,

Proliferative DR. To mimic the decision making of the New Zealand national DR Screening

program, the original grading was remapped to three cohorts of Healthy, Non-referable DR

and Referable DR [Table 1]. Furthermore, as one potential gain of using an AI in DR Screening

program is to quickly identify those that are healthy, separately the dataset was remapped to

the broad classification of Healthy vs Diseased [Table 2].
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Fig 2. Samples of ‘adequate’ and ‘in-adequate’ images as decided by a senior retinal specialist. Fundus images

deemed adequate are shown in the upper row. Fundus images deemed inadequate are shown in the bottom row.

https://doi.org/10.1371/journal.pone.0225015.g002

Fig 1. Flowchart of our AI design, implementation and test. The public data attaiment and upload onto the

Microsoft Azure cloud platform was the first step. “quality assessment” CNN was trained to identify adequate and

inadequate images. the entire public dataset was then devided to training, validation and test sets. The test set was then

‘curated’ by the “quality assessment” CNN. The DRCNN was trained on un-curated data, and then tested on ‘curated’

and ‘un-curated’ data. Its performance was also assessed using 2 or 3 DR labels.

https://doi.org/10.1371/journal.pone.0225015.g001
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Each re-categorized dataset was then split into training set, validation set and testing set

with corresponding ratios of 70%, 15% and 15% respectively. The ‘curated’ dataset was created

by excluding lower quality images from the ‘un-curated’ set, as identified by the “Quality

Assessment” CNN.

Pre-processing

The Kaggle EyePACS images were cropped and resized to 600�600. The choice of image size

was to minimize the computational load on the Microsoft Azure™ platform, while not

compromising the performance of the trained CNNs. According to existing literature [42] and

based on our experience, larger image sizes would have led to diminishing returns in accuracy

and overall performance of the designed CNNs. The resized cropped images were enhanced

by applying a Gaussian blur technique [43], using the equation below.

Ic ¼ aI þ bGðrÞ�I þ g

A series of Gaussian blur parameters were tried and an optimum set was chosen by a senior

retinal specialist (DS):

a ¼ 3; b ¼ � 3; g ¼ 128; r ¼ 14

The Gaussian blur technique has been designed to remove the variation between images

due to differing lighting conditions, camera resolution and image qualities [Fig 3].

DRCNN architecture

The DRCNN was then designed based on the Inception-ResNet-V2 architecture, since this

architecture has outstanding network capacity, faster convergence speed and better stability,

which are critical when training utilizing such a large dataset. Three sequential layers of a Glo-

balAveragePooling2D layer, a dropout layer (dropout rate = 0.3) and a fully connected layer

were added to the original architecture. The activation function of the added dense layer was a

Softmax function; and cross-entropy loss/error was utilized as the loss function, while Adam

algorithm was utilized as the optimizer. The CNN was initially trained using the ImageNet

dataset (i.e. transfer learning). An image shuffling function was applied prior to each mini-

Table 1. Re-categorization of the original Kaggle EyePACS grading scheme (5 grades) to three new categories.

Original Grade New Grade Number of images

No DR Healthy 65,300

Mild DR Non-referable DR 19,400

Moderate DR

Severe DR Referable DR 4,000

Proliferative DR

https://doi.org/10.1371/journal.pone.0225015.t001

Table 2. Re-categorization of the original Kaggle EyePACS grading scheme (5 grades) to two new categories.

Original Grade New Grade Number of images

No DR Healthy 65,300

Mild DR Diseased 23,400

Moderate DR

Severe DR

Proliferative DR

https://doi.org/10.1371/journal.pone.0225015.t002
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batch assembly and mini-batches were normalized prior to each epoch. In machine learning

literature, k-fold cross validation is routinely used for detect any potential model’s bias. Here,

due to the size of the dataset and the cloud implementation of DRCNN (i.e. resource con-

straints), it was ensured that the DRCNN is unbiased in its performance by using randomly-

split training, validation and testing sets.

The learning rate was 0.001 and a mini-batch size of 64 was used for model training, and

training was continued for 140 epochs [Fig 4]. Finally, a weighted loss-function was used here

to address the class imbalance of the Kaggle EyePACS dataset. It appeared that the DRCNN

was over-fitted after the 120th epoch. The best-performing epoch was then manually selected

based on minimum cross-entropy loss of the validation set.

Cascading thresholds

The cascading thresholds technique has been used previously in the literature, in order to

boost the sensitivity of a given CNN [35]. Normally, a classifying CNN has a Softmax layer fol-

lowed by a Classification Output layer as its last layers. The Softmax layer generates a list of

probabilities of given input (i.e. fundus photo), to belong to a certain class (i.e. Healthy, Non-

referable DR, Referable DR). The Classification Output layer will then choose the class with

maximum probability as the outcome of the classifier CNN. Alternatively, to increase the sen-

sitivity of the CNN towards a specific grade (e.g. Referable DR), sub-maximum probabilities of

that specific grade could be used.

An example of (~, 0.3, 0.3) cascading thresholds limit is presented here. Following AI’s

image analysis, if the output of the Softmax layer for the Referable class reaches the threshold

of 0.3, then regardless of the less severe grades probabilities, the image is classified as Referable.

If the image is not classified as Referable and if the Softmax layer output of Non-referable DR

grade reaches the threshold of 0.3, this image is then assigned to this grade, regardless of the

Healthy grade probability. Otherwise, the photos that are not classified as either Referable DR

or Non-referable DR, are classified as Healthy. Here, we experimented with the cascading

Fig 3. Contrast enhancement of the Kaggle EyePACS fundus image. The Gaussian blur technique was applied to the

raw fundus image (left). This technique minimizes intensity and contrast variability in fundus image dataset (right).

https://doi.org/10.1371/journal.pone.0225015.g003
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thresholds limits of (~, 0.4, 0.4) and (~, 0.3, 0.3), which are formatted for the corresponding

classes: Healthy, Non-referable DR and Referable DR.

Margin max

To our knowledge, the ‘margin max’ technique has not previously applied in similar studies.

In this method, if the top two less sever classes’ probabilities (e.g. Healthy and Non-referable

DR) are within a set given threshold, to boost the sensitivity of a certain class (e.g. Healthy) the

maximum rule will be ignored. As an example, consider the case of the ‘margin max’ of (0.2)

for boosting the sensitivity of the Healthy grade. If the Softmax scores of Healthy, Non-refer-

able and Referable DR were assigned as [0.3–0.45–0.25] respectively, the Healthy grade is cho-

sen although it is not the maximum of three probabilities.

Microsoft Azure parameters

A standard NV6 Windows instance (6 VCPUs, 56 GB memory) from East US 2 region was

selected as the training virtual machine. An additional standard SSD disk of 1023 GB storage

space was attached to the training virtual machine [Fig 5]. Resources rented on a cloud plat-

form, such as Microsoft Azure, have a direct impact on the cost of operating an AI as a screen-

ing tool. The Azure setup parameters for this project was very modest, as a very expensive but

efficient cloud infrastructure (i.e. GPU based Virtual Machines) will become a barrier to its

clinical implementation and scalability.

Fig 4. Training and validation process of DRCNN, with training cross-entropy loss (A), training accuracy (B),

validation cross-entropy loss (C) and validation accuracy (D) are presented.

https://doi.org/10.1371/journal.pone.0225015.g004

PLOS ONE Sensitivity boost for diabetic screening AI

PLOS ONE | https://doi.org/10.1371/journal.pone.0225015 April 10, 2020 7 / 18

https://doi.org/10.1371/journal.pone.0225015.g004
https://doi.org/10.1371/journal.pone.0225015


Definitions used in this paper

Sensitivity, or the true positive rate, is defined as the proportion of people with the disease who

will have a positive result:

sensitivity ¼
number of true positives

number of true positivesþ number of false negatives

“Specificity”, or the true negative rate, is defined as the proportion of people without the

disease who will have a negative result:

specificity ¼
number of true negatives

number of true negativesþ number of false positives

However the utility of the screening tests result will be influenced by the prevalence of the

diseased state being screened and as such it is also helpful to calculate the negative and positive

predictive values.

The positive predictive value (PPV) is the probability that subjects with a positive screening

test is diseased, defined by:

PPV ¼
number of true positives

number of true positivesþ number of false positives

The negative predictive value (NPV) is the probability that subjects with a negative screen-

ing test is disease free, defined by:

NPV ¼
number of true negatives

number of true negativesþ number of false negatives

In a disease like sight-threatening DR, where the prevalence of the diseased state is low

(<5%), a tool which drives the false negative rate to near zero will therefore generate not only

a high sensitivity, but also a very high negative predictive value of a negative test result.

Fig 5. Screenshot of the Microsoft Azure™ virtual machine. A Virtual Machine was created on Microsoft Azure East

US server. 6 CPUIs were avaialble to us on this Virtual Machine, and it was used for training and validation process.

https://doi.org/10.1371/journal.pone.0225015.g005
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F1 score is a measurement of classification accuracy that considers both positive predictive

value and sensitivity and is defined by:

F1 score ¼ 2�
PPV�sensitivity
PPV þ sensitivity

Results

Generate the curated testing set

The “Quality Assessment” CNN reached 99% accuracy and the validation loss of lower than

0.05. This CNN model was then used to create a ‘curated’ test set from the Kaggle EyePACS

dataset. The ‘curated’ test set included 6,900 images from the original 13,305 ‘un-curated’ set

(i.e. a 47% rejection rate).

Un-curated testing set versus curated testing set

The DRCNN was trained and validated using the Microsoft Azure™ cloud platform. This was

done twice, once for the binary DR grading classification Healthy vs Diseased, and once for

the DR grading classification Healthy, Non-referable DR, and Referable DR. The cross-

entropy and accuracy were tracked and recorded throughout the training and validation pro-

cess. The training progress was monitored for 140 epochs and the best set of weights that

resulted in minimal validation loss was picked and set for the proceeding CNN performance

assessment.

While, the DRCNN was trained and validated using ‘un-curated’ data, it was tested sepa-

rately using unseen ‘curated’ and ‘un-curated’ data. One would assume that using ‘curated’

(i.e. higher quality) data for the CNN test would improve the performance of the model. Here

and for the first time, we wanted to assess this hypothesis [Tables 3&4].

Interestingly, the DRCNN prediction performance improved only marginally for the

‘curated’ test sets, compared to the ‘un-curated’ set.

Table 3. Performance of the DRCNN based on three grades (healthy, non-referable, referable).

‘un-curated’ test set ‘curated’ test set

accuracy 0.8681 0.8884

Sensitivity Healthy 0.9665 0.9726

Sensitivity Non-referable DR 0.5855 0.6317

Sensitivity Referable DR 0.6093 0.6087

Specificity Healthy 0.9005 0.9127

Specificity Non-referable DR 0.7770 0.8163

Specificity Referable DR 0.6232 0.6300

F1 Score Healthy 0.9323 0.9417

F1 Score Non-referable DR 0.6678 0.7122

F1 Score Referable DR 0.6162 0.6192

PPV Healthy 0.9005 0.9127

PPV Non-referable DR 0.7770 0.8163

PPV Referable DR 0.6232 0.6300

NPV Healthy 0.8801 0.8943

NPV Non-referable DR 0.8934 0.9051

NPV Referable DR 0.9814 0.9879

https://doi.org/10.1371/journal.pone.0225015.t003
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Sensitivity uplift

Several implementations of ‘cascading thresholds’ and ‘margin max’ techniques were then

used to boost the sensitivity of the DRCNN, using the ‘curated’ and ‘un-curated’ test sets, for

both two and three grading level schemes.

It appeared that Cascading Thresholds (~, 0.3, 0.3) and Margin Max (0.4) were the most

effective techniques for sensitivity boosting. We then investigated the effects of these tech-

niques to boost the sensitivity of CNN towards either the Healthy or most Diseased grade

[Tables 5–8].

It appeared that boosting the sensitivity using both ‘cascading thresholds’ and ‘margin max’

had a similar effect for ‘curated’ and ‘un-curated’ datasets. Also, it seemed that uplifting the

sensitivity of the Healthy grade, also enhanced the specificity of the Diseased state, and vice

versa.

Here we have shown [Tables 7 & 8] that by adjusting the post processing of the outcome of

a CNN, we have outperformed the previously published best performance of Kaggle EyePACS,

which was later failed to be replicated [37].

There have been several studies that have used the EyePACS dataset for training a DR AI

[28, 44–47]. However, these studies are not directly comparable to the DRCNN presented

here, as each study uses different (sometimes private) training sets, validation sets, DR grading

schemes and performance reporting metrics. Regardless, a comparison of the performance of

these models against the un-boosted and boosted DRCNN is provided here [Table 9]. It can be

seen that while our DRCNN is not the best performing neural network (although different

studies are not directly comparable), different performance aspects of it (sensitivity to healthy

or diseased, etc.) would outperform other published CNNs, depending on the boosting strat-

egy. The confusion matrix of each study mentioned here is presented as a S1 Data.

Discussion

Diabetic retinopathy (DR) is the most common microvascular complication of diabetes and is

the leading cause of blindness among the working-age population [48]. Whilst the risk of sight

loss from DR can be reduced through good glycaemic management [49], if sight-threatening

DR develops, timely intervention with laser photocoagulation or injections of anti-vascular

endothelial growth factor is required [50, 51]. Thus, if the risk of sight loss is to be reduced,

individuals with diabetes should have their eyes screened regularly to facilitate the detection of

DR, before vision loss occurs [52]. Unfortunately, in many regions including New Zealand, the

Table 4. Performance of the DRCNN based on two grades (healthy, diseased).

‘un-curated’ test set ‘curated’ test set

accuracy 0.8963 0.9091

Specificity Healthy 90.05 91.27

Specificity Diseased 88.01 89.43

Sensitivity Healthy 96.65 97.26

Sensitivity Diseased 69.75 71.32

F1 Score Healthy 0.9323 0.9417

F1 Score Diseased 0.7783 0.7935

PPV Healthy 0.9005 0.9127

PPV Diseased 0.8801 0.8943

NPV Healthy 0.8801 0.8943

NPV Diseased 0.9005 0.9127

https://doi.org/10.1371/journal.pone.0225015.t004
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attendance at DR screening falls below the recommended rates [53–55], and this is particularly

true for those who live in remote areas and those of lower socioeconomic status [56–58].

There remain then significant challenges to ensure that delivery of these services is equitable

and that all patients at risk are being screened regularly. Currently, the existing model of DR

screening is resource intensive, requiring a team of trained clinicians to read the photographs.

They also have high capital setup costs, related to the retinal cameras required to take the pho-

tographs, and require an efficient administrative IT support system to support and run them.

Table 5. Sensitivity boost of the ‘curated’ dataset with three labels, for healthy and diseased categories.

Margin Max (0.4) Boosting Healthy Original Cascading Thresholds (~, 0.3, 0.3) Boosting Diseased

accuracy 0.8827 0.8884 0.8721

Sensitivity Healthy 0.9852 0.9726 0.9364

Sensitivity Non-referable DR 0.5755 0.6317 0.6676

Sensitivity Referable DR 0.5072 0.6087 0.7199

Specificity Healthy 0.8957 0.9127 0.9291

Specificity Non-referable DR 0.8374 0.8163 0.7245

Specificity Referable DR 0.6954 0.63 0.5284

F1 Score Healthy 0.9383 0.9417 0.9327

F1 Score Non-referable DR 0.6822 0.7122 0.6949

F1 Score Referable DR 0.5866 0.6192 0.6094

PPV Healthy 0.8957 0.9127 0.9291

PPV Non-referable DR 0.8374 0.8163 0.7245

PPV Referable DR 0.6954 0.6300 0.5284

NPV Healthy 0.9340 0.8943 0.7991

NPV Non-referable DR 0.8930 0.9051 0.9109

NPV Referable DR 0.9848 0.9879 0.9912

https://doi.org/10.1371/journal.pone.0225015.t005

Table 6. Sensitivity boost of the ‘un-curated’ dataset with three labels, for healthy and diseased categories.

Margin Max (0.4) Boosting

Healthy

Original Margin Max (0.4) Boosting

Diseased

accuracy 0.8680 0.8681 0.8444

Sensitivity Healthy 0.9831 0.9665 0.9154

Sensitivity Non-referable

DR

0.5503 0.5855 0.6203

Sensitivity Referable DR 0.5026 0.6093 0.7522

Specificity Healthy 0.8840 0.9005 0.923

Specificity Non-referable

DR

0.8004 0.777 0.6707

Specificity Referable DR 0.7624 0.6232 0.5052

F1 Score Healthy 0.9309 0.9323 0.9192

F1 Score Non-referable DR 0.6522 0.6678 0.6445

F1 Score Referable DR 0.6058 0.6162 0.6044

PPV Healthy 0.8840 0.9005 0.923

PPV Non-referable DR 0.8004 0.7770 0.6707

PPV Referable DR 0.7624 0.6232 0.5052

NPV Healthy 0.9297 0.8801 0.7659

NPV Non-referable DR 0.8862 0.8934 0.8978

NPV Referable DR 0.9767 0.9814 0.9879

https://doi.org/10.1371/journal.pone.0225015.t006
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As a result, the existing DR programs are relatively inflexible and are not easily scalable. All

these issues are more acute in the developing world, which lack both capital funds and trained

healthcare professionals [59]. Incorporating AI to accurately grade the retinal images for DR

would offer many benefits to DR screening programs; reducing their reliance on trained clini-

cians to read photographs, enabling point of contact diagnosis whilst reducing the need for

complex IT support systems. Research into AI design and its development for DR screening

has progressed significantly in recent years, and this field has enjoyed a good deal of attention

of late [60–62]. However, for all the excitement very little of this work has progressed to a clini-

cally useful tool which provides a real-world AI-solution for DR screening programs and this

is due largely to the challenges of the research-driven AI to generalize to a real-world setup.

Whilst there are many reasons for such a lack of generalisation, the principal ones are the use

of small and ‘curated’ datasets and an emphasis on overall accuracy, rather than sensitivity of

the developed AI. The AI’s reliance on powerful computers that are not available in most clini-

cal environments has been an additional contributory factor.

Traditionally, several metrics have been used to describe the performance of a DRCNN

including, but not limited to accuracy, sensitivity, specificity, precision, negative and positive

predictive values. However traditional screening is a binary exercise, categorising patients into

those at low risk of having disease from those at high risk of having disease. As such, there is

trade-off between the need for a high sensitivity with an acceptable specificity. Traditional

Table 7. Sensitivity boost of the ‘curated’ dataset with two labels, for healthy and diseased categories.

Margin Max (0.4) Boosting Healthy Original Margin Max (0.4) Boosting Diseased

accuracy 0.9022 0.9091 0.8968

Sensitivity Healthy 0.9852 0.9726 0.9343

Sensitivity Diseased 0.6467 0.7132 0.7815

Specificity Healthy 0.8957 0.9127 0.9294

Specificity Diseased 0.9340 0.8943 0.7942

F1 Score Healthy 0.9383 0.9417 0.9319

F1 Score Diseased 0.7642 0.7935 0.7878

PPV Healthy 0.8957 0.9127 0.9294

PPV Diseased 0.9340 0.8943 0.7942

NPV Healthy 0.9340 0.8943 0.7942

NPV Diseased 0.8957 0.9127 0.9294

https://doi.org/10.1371/journal.pone.0225015.t007

Table 8. Sensitivity boost of the ‘un-curated’ dataset with two labels, for healthy and diseased categories.

Margin Max (0.4) Boosting Healthy Original Margin Max (0.4) Boosting Diseased

accuracy 0.8921 0.8963 0.8810

Sensitivity Healthy 0.9831 0.9665 0.9154

Sensitivity Diseased 0.6346 0.6975 0.7836

Specificity Healthy 0.8840 0.9005 0.923

Specificity Diseased 0.9297 0.8801 0.7659

F1 Score Healthy 0.9309 0.9323 0.9192

F1 Score Diseased 0.7543 0.7783 0.7746

NPV Healthy 0.9297 0.8801 0.7659

NPV Diseased 0.884 0.9005 0.923

PPV Healthy 0.8840 0.9005 0.9230

PPV Diseased 0.9297 0.8801 0.7659

https://doi.org/10.1371/journal.pone.0225015.t008
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diabetic eye screening programs have therefore mandated a minimum sensitivity of>85% and

specificity of>80% for detecting sight-threatening diabetic retinopathy as there is a personal

and financial cost associated with unnecessary referrals to eye clinics [63]. Whilst it is appro-

priate that a screening program has to strike the correct balance between these parameters, we

envisage that in many situations, a classifier DRCNN will not be the sole arbitrator for grading

diabetic retinopathy. It is therefore appropriate to consider the role that a classifier DRCNN

could play in a diabetic eye screening program as currently there has been very little discussion

of this subject.

In this study, we report the results of two techniques, ‘cascading thresholds’ and ‘margin

max’ to assess how they could be used to drive up the sensitivity, the negative predictive value,

or the specificity and the positive predictive value in bespoke DRCNN’s depending on the

applications mode. In doing so, we boosted the AI’s sensitivity to detect Healthy cases to more

than 98%, while also improving the specificity of the other more severe classes. These tech-

niques also boosted the AI’s sensitivity of referable disease classes to near 80%.

Using the techniques described in this paper, it then becomes possible to develop classifier

DRCNNs, tailored to the specific requirements of the DR program they have been commis-

sioned to support [63]. The United Kingdom national Ophthalmology database study revealed

that of the 48,450 eyes with structured assessment data at the time of their last record, 11,356

(23.8%) eyes had no DR and 21,986 (46.0%) had “non-referable” DR [64]. Thus a sensitivity

Table 9. Comparison of un-boosted and boosted DRCNN with previous studies, which used the EyePACS dataset. The highlighted cells show the ‘performance gains’

due to different boosting strategy.

Ghosh et al

[44]

Pratt et al

[28]

Kwasigroch et al

[45]

Raju et al

[46]

Qummar et al

#1 [47]

Qummar et al

#2 [47]

DRCNN DRCNN boosted

for Healthy

DRCNN boosted

for Diseased

Healthy Sensitivity 95.04 95.05 50.5 92.29 97.35 97.26 97.26 98.52 93.64

Non-

Referable

55.86 18.09 60.25 62.45 34.87 77.04 63.17 57.55 66.76

Referable 80 31.56 84.75 81.65 62.11 75.09 60.87 50.72 71.99

Healthy F1 score 91.5 85.09 52.47 92.62 90.32 80.66 94.17 93.83 93.27

Non-

Referable

65.49 26.14 60.78 65.23 46.70 75.64 71.22 68.22 69.49

Referable 74.51 37.67 82.48 64.7 64.11 85.33 61.92 58.66 60.94

Healthy Specificity 67.19 29.99 89.5 80.28 49.66 88.62 71.32 64.67 77.97

Non-

Referable

95.86 94.02 74.67 91.95 95.91 83.5 96.11 96.94 93.05

Referable 97.80 98.3 86.17 96.65 98.49 99.36 98.89 99.31 98.00

Healthy NPV 83.99 69.44 87.85 78.71 87.18 99.2 89.43 93.40 79.91

Non-

Referable

88.54 79.55 73.81 89.84 83.9 85.45 90.51 89.30 91.09

Referable 98.72 96.82 89.45 99.11 98.19 85.07 98.79 98.48 99.12

Accuracy 85.55 74.66 68.1 85.33 81.98 80.40 88.84 88.27 87.21

Healthy Sensitivity 95.04 95.05 50.5 92.29 97.35 97.26 97.26 98.52 96.05

Referable 67.19 29.99 89.5 80.28 49.56 89.03 71.23 64.67 73.99

Healthy F1 score 91.5 85.9 52.47 96.62 90.32 80.66 94.17 93.83 93.94

Referable 74.66 41.88 88.67 79.49 63.18 93.85 79.35 76.42 79.94

Healthy Specificity 67.19 29.99 89.5 80.28 49.56 89.03 71.32 64.67 73.99

Referable 95.04 95.05 50.5 92.29 97.35 97.26 97.26 98.52 96.05

Healthy NPV 83.99 69.44 87.85 78.71 87.13 99.24 89.43 93.40 85.87

Referable 88.22 78.35 54.59 92.95 84.23 68.90 91.27 89.57 91.92

Accuracy 87.27 77.3 81.7 89.14 84.66 90.67 90.9 90.22 90.64

https://doi.org/10.1371/journal.pone.0225015.t009
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boosted classifier like the one described here, manipulated to detect eyes with referable DR

with a very high sensitivity (>95%) and ultra-high negative predictive value (>99.5%), could

be embedded into an existing eye screening program rapidly and safely triaging eyes with

referable disease from eyes which do not. Such a DRCNN would reduce the number of images

sent to the human grading team for review by between 70–80%, leading to immediate and sig-

nificant cost savings for the program.

In the context of a rural or developing-world setting, the ability to identify those patients

with no disease from those with any disease may be desirable as it is well-recognised that the

development of any DR, no matter how “mild” is a significant event [65]. Thus its detection

could be used to target valuable and scarce health care resources more effectively to those indi-

viduals at highest risk to ensure that their diabetes and blood pressure control are reviewed.

In effect, even if no other CNN approach was then used, the relatively simple cloud-based

DRCNN we described here would help identify those patients at increased risk of either

advanced disease or disease progression, and who therefore merit review of their systemic dis-

ease. Moreover, using the techniques described here, more sophisticated classifier CNNs could

also be developed, ones that are manipulated to detect disease with a very high sensitivity. It is

even conceivable that different classifier CNNs could then be run concurrently within diabetic

eye screening programs to sequentially grade differing levels of disease with high sensitivity,

ultimately leaving the human grading team with a relatively small number of images to review

for adjudication and quality assurance.

Arguably, one of the biggest challenges that faces all AI-based “diagnostic” systems is the

issue of public trust. Whilst it is accepted that in a traditional screening program with a sensi-

tivity of 90%, 1 in 10 patients will be informed that are healthy when in actual fact they have dis-

ease, well-publicised failures of AI systems suggest that the public would not accept such failure

rates from a “computer”. In this context, the negative predictive value is arguably more impor-

tant than traditional sensitivity and specificity. Whilst the relatively simple CNN described in

this paper lacks the required sensitivity to be the sole arbitrator for identifying referable disease

in a structured screening program, the fact that the methods we describe boosted both the sen-

sitivity of the DRCNN to detect disease by over 10%, and thus the negative predictive value to

near 100%, is noteworthy. We therefore believe that the techniques we describe here will prove

to be valuable tools for those looking to build bespoke CNN’s in the future.

In this research, we have endeavoured to address those issues that hinder the clinical trans-

lation of an in-house bespoke AI for DR screening. Our DRCNN was developed and tested

using real-world ‘un-curated’ data. Here we demonstrated that our DRCNN is ‘robust’, as its

performance is not critically affected by the quality of the input data. Furthermore, this process

of data management, model training and validation was performed using Microsoft’s Azure™
cloud platform. In doing so, we have demonstrated that one can build AI that is constantly re-

trainable and scalable through cloud computing platforms. Although few DRCNN’s are acces-

sible online, to our knowledge this is the first time that an AI has been fully implemented and

re-trainable through a cloud platform. Hence, provided there is internet access, our DRCNN is

capable of reaching remote and rural places; areas traditionally not well served by existing DR

screening services.

In conclusion, we have demonstrated how existing machine learning techniques can be

used to boost the sensitivity, and hence negative predictive value, and specificity of a DRCNN

classifier. We have also demonstrated how even a relatively simple classifier CNN, one that is

capable of running on a cloud-based provider, can be utilised to support both existing DR

screening programs and the development of new programs serving rural and hard to reach

communities. Further work is required to both develop classifiers that can detect sight-threat-

ening DR with a very high sensitivity, and evaluate how a battery of DRCNN’s each with
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differing specifications and roles, may be used concurrently to develop a real-world capable,

fully automated DR screening program.
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