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Abstract

Decarboxylative functionalization via hydrogen-atom transfer offers an attractive alternative to 

standard redox approaches to this important class of transformations. Herein, we report a direct 

decarboxylative functionalization of aliphatic carboxylic acids using N-xanthylamides. The unique 

reactivity of amidyl radicals in hydrogen-atom transfer enables decarboxylative xanthylation under 

redox-neutral conditions. This platform provides expedient access to a range of derivatives through 

subsequent elaboration of the xanthate group.

Graphical Abstract

Decarboxylative functionalizations constitute a diverse class of synthetic transformations 

that leverage the wide availability of carboxylic acids as substrates to deliver a variety of 

useful products.1 For example, the classic Barton decarboxylation via thiohydroxamate 

esters is a powerful approach to the modification of carboxylic acids.2 Oxidative processes 

are also featured in many reactions, from the Kolbe electrolysis to an array of Ag(II)-

mediated transformations. Recently, photoredox catalysis has significantly expanded the 

breadth of decarboxylative transformations. These typically involve either oxidations of 

carboxylate salts,3 or reductions of activated carboxylate derivatives (Figure 1).4 N-

hydroxyphthalimide esters have found much use in this reductive platform.5
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A complementary approach to decarboxylative functionalization would involve O─H 

hydrogen-atom transfer (HAT) of a carboxylic acid to generate a carboxyl radical under 

neutral conditions. Such a process presents a significant challenge, however: the O─H bond 

dissociation energy is approximately 112 kcal/mol, providing a large barrier to reaction.6 

Unsurprisingly, a ground state O─H HAT of a carboxylic acid is unknown and would 

require a highly reactive species to occur.7

We have demonstrated previously that N-functionalized amides can serve as precursors of 

amidyl radicals for achieving a range of intermolecular, site-selective aliphatic C─H bond 

functionalizations.8 The key thermodynamic driving force for these reactions is the 

formation of a strong amide N─H bond (BDE ~ 111 kcal/mol) from an unactivated 

aliphatic C─H bond (BDE = 96–101 kcal/mol).9 Considering that the range of BDEs for 

carboxylic acid O─H bonds (BDE ~ 112 kcal/mol) is similar to that of an amide N─H 

bond, we hypothesized that amidyl radicals could engage carboxylic acids directly via O─H 

HAT to facilitate decarboxylative transformations. Herein, we report a direct, 

decarboxylative xanthylation of carboxylic acids as a representative reaction of this type, 

demonstrating the unique ability of amidyl radicals to perform O─H HAT.10

Our studies commenced with hexanoic acid as substrate using 440 nm blue LED 

photoinitiation and our previously reported N-xanthylamide 1.8c We found that under these 

conditions, alkyl xanthate 3 was formed in moderate yield (59%, Table 1, entry 1). The use 

of dilauroyl peroxide (DLP) as initiator provided 3 with similar efficiency (entry 2). 

Switching to the use of a pentafluorophenyl-substituted N-xanthylamide (2) significantly 

increased the reaction yield (entries 3 and 4).

Chemical initiation of the xanthylation using reagent 2 was also successful, albeit with 

slightly decreased efficiency (entries 5 and 6). The reaction of a carboxylate salt using 

Cs2CO3 as base (entry 7) or performing a reaction in the absence of initiator (entry 8) led to 

no conversion of the carboxylic acid. We continued our studies using reagent 2 owing to its 

superior performance and ease of large-scale reagent preparation.

Figure 2 details our studies demonstrating the considerable scope of the decarboxylative 

xanthylation. Both chemical (10 mol % DLP) and photochemical (440 nm LEDs) modes of 

initiation were successful with virtually all of the substrates shown. The highest reaction 

yield of the two methods is provided in Figure 2; all yields and the corresponding conditions 

are provided in the Supporting Information. Primary carboxylic acids were converted to 

alkyl xanthates 3-8 in good yields. Alkyl bromides are tolerated (4), which is notable 

considering that substitution of alkyl halides is the most common method for the preparation 

of alkyl xanthates and thiols.11 The presence of aryl, ester, ketone, or alkene functionalities 

was also permitted (5-8). The functionalization of an N-Boc indole-substituted primary 

carboxylic acid delivered xanthate 9 in 62% yield.

Secondary carboxylic acids were also excellent substrates (Figure 2). The xanthylation of 

endo-norbornane-2-carboxylic acid provided solely the exo diastereomer of xanthate 12 in 

92% yield. The reaction of 1,4-cyclohexanedicarboxylic acid with 2 equiv of 2 provided 

dixanthate 13 in excellent yield (94%) as a mixture of diastereomers. Decarboxylative 
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xanthylation of 3-oxocyclobutanecarboxylic acid delivered bifunctional cyclobutane 14 
(85% yield), which is an attractive derivative for medicinal chemistry applications.12 

Transformations of 4-substituted tetrahydropyran and piperidine carboxylic acids were also 

efficient, providing 15 and 16 in 73 and 69% yield, respectively. Tertiary carboxylic acids 

were likewise excellent substrates, providing xanthates 17-20 in nearly quantitative yield. 

Ketopinic acid yielded xanthate 21 in 67% yield, which is notable considering that 

decarboxylation of this substrate is known to be challenging.13

We next applied the decarboxylative xanthylation as a tool for late-stage modification of a 

range of natural products and drug derivatives (Figure 2). Xanthylation of clotting agent 

tranexamic acid provided 22 in 90% yield as a mixture of diastereomers. Reactions of the 

nonsteroidal anti-inflammatory drugs (NSAIDs) ibuprofen and indomethacin delivered 

xanthates 23 and 24, respectively. We hypothesize that the decreased efficiency of these 

reactions is due to the increased stability of the intermediate conjugated radicals, which may 

lead to reversible xanthate transfer.14 Interestingly, ibuprofen was the sole substrate which 

we examined that gave a higher yield using xanthylamide 1. A number of complex 

terpenoids and steroids were also good substrates for the xanthylation (25-29), indicating 

compatibility with unprotected alcohol, ketone, and enone functionalities.15 The plant 

hormone gibberellic acid efficiently provided xanthate 30 in 72% yield as a single 

diastereomer. In addition, protected amino acids provided decarboxylative functionalization 

products 31 and 32 in good yields. Notably, glutamic acid provides opportunities for both 

unnatural amino acid synthesis and late-stage functionalization of peptides via the 

carboxylic acid side chain. As a representative example, we performed the decarboxylative 

xanthylation on a tripeptide to deliver an analogue of the antioxidant glutathione xanthate 33 
in moderate yield, albeit with good recovery of the remaining starting material. In light of 

the importance of cysteine-containing peptides in maintaining regulatory and metabolic 

functions in plants, animals, fungi and bacteria, we view the decarboxylative xanthylation as 

an attractive method for peptide modification in future biological studies.16

The xanthate functional group is readily elaborated to a wide range of derivatives.8c,17 For 

example, aminolysis of lithocholic acid-derived xanthate 26 with isopropylamine provided 

the corresponding thiol in excellent yield.18 Subsequent photochemical thiol-ene coupling 

with a glucose-derived allyl glycoside produced the conjugation product 34 in 54% yield 

over two steps. In addition, hydroxylation of gibberellic acid-derived xanthate 30 proceeded 

in 55% yield using conditions we previously developed for accessing hydroxyl or ketone 

functionality from alkyl xanthates via an alkoxyamine intermediate.8c Alternative 

approaches to accessing the products of a formal decarboxylative oxidation include the 

Barton decarboxylation via thiohydroxamate esters and decarboxylative borylation using N-

hydroxyphthalimide esters.19,20
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(1)

(2)

We envision the decarboxylative xanthylation herein to significantly expand the synthetic 

capabilities in decarboxylative functionalization via the versatile alkyl xanthate products.

In order to assess the unique reactivity of the amidyl radical in the O─H HAT process, we 

analyzed the reactivity of related xanthylsulfonamide 36 (Figure 3). The parent sulfonamide 

has a calculated N─H bond strength of 104 kcal/mol,9 which is somewhat lower than that of 

alkyl carboxylic acid O─H bonds. Indeed, in an attempted xanthylation of hexanoic acid 

using 36, no decarboxylative products were observed–a mixture of C─H functionalization 

products was formed instead.21 Furthermore, in an intermolecular competition between 

hexanoic acid and cyclohexane, xanthylsulfonamide 36 provided only cyclohexyl xanthate 

10 (Figure 3A). In contrast, the same experiments using xanthylamides were selective for 

decarboxylative xanthylation with a selectivity (kO─H/kC─H) of 10 and 24 for reagents 1 
and 2, respectively, correcting for the number of hydrogen atoms. This marked difference in 

reactivity profile between the amide and sulfonamide reagents offers opportunities for multi-

site xanthylations of carboxylic acids. As an example, adamantane carboxylic acid was 

transformed to either the decarboxylative xanthylation product 18 or the C─H xanthylation 

product 37 simply by selecting the appropriate reagent (Figure 3B).

While our results are consistent with a reaction mechanism involving direct O─H HAT, 

other potential mechanisms were considered, such as oxidation of a carboxylate salt by the 

xanthylamide reagent. No reaction was observed in the presence of a non-coordinating base 

(Table 1, entry 7) or with a cesium carboxylate salt as substrate, which is inconsistent with 

an oxidative pathway. Furthermore, no reaction was observed upon heating hexanoic acid 
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and xanthylamide 2 in the dark with no initiator. As further evidence for the intermediacy of 

carbon-centered radicals, an enantioenriched carboxylic acid provided the corresponding 

xanthate as a racemate (see Supporting Information for details).

With respect to the O─H HAT step, a primary kinetic isotope effect (KIE) of 5.4 was 

determined from a comparison of the initial rates of decarboxylative xanthylation between 

O─H and O─D forms of 1-methyl-1-cyclohexanecarboxylic acid, consistent with an 

irreversible O─H HAT (eq 3). The present study clearly indicates the possibility for HAT of 

a stronger O─H bond in the presence of weaker C─H bonds, such as activated benzylic, 

allylic, and α-heteroatom positions. We hypothesize that this chemoselectivity stems from 

the kinetic facility of HAT between heteroatoms.22

(3)

We additionally undertook a computational analysis of a model O─H HAT process 

involving the relevant nitrogen-centered radicals to support the proposed pathway. As 

depicted in Figure 4A, we evaluated the O─H HAT of n-propanoic acid by the 

pentafluorophenyl-substituted amidyl radical 2’ (from reagent 2) and the 3,5-

bis(trifluoromethyl)phenyl-substituted sulfonamidyl radical 36’ (from reagent 36). We 

optimized the transition state structures 38 (see Figure 4B) and 39, and tracked the evolution 

of the systems along the corresponding intrinsic reaction coordinates (IRC; see Figures S7 

and S8). We also determined the associated Gibbs free energy barriers (ΔG‡) and changes 

(ΔG).23

Our calculations suggested that the O─H HAT involving 2’ is slightly exergonic (ΔG = 

−1.68 kcal•mol−1), while that of 36’ is endergonic (ΔG = +5.90 kcal•mol−1). Similarly, the 

reaction of 2’ proceeds with a lower energy barrier (ΔG‡ = +20.04 kcal•mol−1) than that 

promoted by 36’ (ΔG‡ = +25.39 kcal•mol−1), with a ΔΔG‡ value of 5.35 kcal•mol−1. 

Overall, these computational data support a facile O─H HAT by amidyl radical 2’, with a 

somewhat larger barrier for the reaction of 36’. We also speculate that hydrogen bonding to 

the carboxylic acid may play a role in facilitating the O─H HAT step. Investigations 

targeting these mechanistic details are underway.24

In conclusion, we have developed a direct decarboxylative xanthylation of aliphatic 

carboxylic acids using N-xanthylamides. This transformation exhibits a broad substrate 

scope, excellent functional group tolerance, and serves as a general platform for 

decarboxylative functionalization via the synthetic versatility of alkyl xanthates. Mechanistic 

data support a pathway involving direct O─H HAT, which complements standard redox-
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based approaches to decarboxylative chemistry. We anticipate that this unique mode of 

direct hydrogen-atom transfer will prove valuable in a variety of synthetic contexts.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Decarboxylative functionalizations of carboxylic acids.
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Figure 2. 
Decarboxylative xanthylation of diverse substrates. a10 mol % DLP used as initiator. b440 

nm LEDs used as initiator. cYield refers to NMR yield with hexamethyldisiloxane as an 

internal standard. d50 mol % DLP used as initiator. eGC yield using dodecane as an internal 

standard. fReaction performed using reagent 1.
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Figure 3. 
Chemoselective O─H versus C─H HAT studies.
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Figure 4. 
A) O─H HAT processes modeled by computational means; the reported ΔG and ΔG‡ values 

were obtained at the SMD(CH2Cl2)-UωB97XD/def2TZVP//UωB97XD/def2TZVP level of 

theory (see SI for further details). B) Optimized structure of transition state 38 at the 

UωB97XD/def2TZVP level of theory (gas phase optimization).
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Table 1.

Decarboxylative xanthylation of hexanoic acid.

entry xanthylamide reagent initiation % yield
a

1 1 (1 equiv) 440 nm LED 59

2 1 (1 equiv) 10 mol % DLP 49

3 2 (1 equiv) 440 nm LED 81

4 2 (1.2 equiv) 440 nm LED 86

5 2 (1 equiv) 10 mol % DLP 55

6 2 (2 equiv) 10 mol % DLP 70

7
b 2 (1 equiv) 10 mol % DLP <2

8 2 (1 equiv) - <2

a
Determined by 1H NMR spectroscopy of the crude reaction mixtures using hexamethyldisiloxane as an internal standard.

b
Reaction was performed in the presence of 1 equiv Cs2CO3.
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