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Abstract

Sickle cell anaemia (SCA) is a hereditary hemoglobinopathy characterised by extensive vascular 

dysfunction that stems from inflammation, thrombosis and occlusion of post-capillary venules. 

Cognitive impairment is a neurological complication of SCA whose pathogenesis is unknown. We 

hypothesised that cerebral venular abnormalities are linked to cognitive impairment in SCA. Thus, 

we employed 7T magnetic resonance imaging (MRI) to examine the association between venular 

density and cognitive function in homozygous SCA. We quantified the density of total, long, and 

short venules in pre-defined regions of interest between the frontal and occipital cornu on each 

hemisphere. Cognitive function was assessed using the Hopkins Verbal Learning Test – Revised 

(HVLT-R) test of learning and memory. Patients (n=11) were compared with race, age and gender-

equated controls (n=7). Compared to controls, patients had an overall venular rarefaction, with 

significantly lower density of long venules and greater density of short venules which was 

inversely related to HVLT-R performance and haemoglobin. To our knowledge, this is the first 7T 

MRI study in SCA and first report of associations between cerebral venular patterns and cognitive 

performance and haemoglobin. Future studies should examine whether these novel neuroimaging 
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markers predict cognitive impairment longitudinally and are mechanistically linked to severity of 

anaemia.
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1. Introduction

Sickle cell anaemia (SCA) is a hereditary hemoglobinopathy characterised by endothelial 

dysfunction, vaso-occlusion and thrombosis of post-capillary venules (Kaul et al., 1989). 

Neurological complications of SCA include overt and silent cerebrovascular infarction and 

cognitive impairment (CI) (DeBaun et al., 2012). While CI is associated with 

cerebrovascular infarction, it also occurs independently from it in SCA (Vichinsky et al., 

2010), and is responsible for functional limitations in schooling, occupation and compliance 

with therapy (Feliu et al., 2011). Our current understanding of the risk factors and 

pathophysiology of CI in SCA is limited, but based on the pathophysiology of SCA and the 

evidence in other diseases with CI and dementia (Brown and Thore, 2011; Hunter et al., 

2012; Moody et al., 1997; Sinnecker et al., 2013), it is likely that CI stems from small vessel 

disease. Post-mortem studies have found evidence of small vessel abnormalities in SCA 

patients, including congested and thrombosed venules (reviewed by Merkel et al., 1978), but 

did not assess the patients’ cognitive function. Hence, while large vessel stenoses are 

responsible for overt infarcts in SCA (Switzer et al., 2006), it is not known whether venular 

abnormalities are associated with CI. Magnetic Resonance Imaging (MRI) is increasingly 

useful in identifying microvascular abnormalities associated with CI (Rincon and Wright, 

2014). Prior MRI studies in adult SCA patients have, however, been limited by the use of 

lower field 1.5Tesla MRI systems (Alkan et al., 2010; Kugler et al., 1993; Vichinsky et al., 

2010), which only provide lower sensitivity markers of small vessel disease, hence 

hampering detection of microvascular abnormalities. Pre-clinical in vivo and in vitro 
evidence has shown that the inciting pathogenic event in SCA occurs in post-capillary 

venules (Kaul et al., 1989; Kaul et al., 1993), including cerebral post-capillary venules of 

transgenic sickle mice (Wood et al., 2004), and is characterised by increased cellular 

adhesion, inflammation and endotheliopathy. Thus, we hypothesised that the predominant 

microvascular abnormality of SCA patients with CI would manifest with markers of venular 

fragmentation and lower venular density. We applied ultrahigh field, state-of-the-art 7T MRI 

technology to test this hypothesis by quantifying venular structure in patients with 

homozygous HbSS SCA. Subjects without SCA underwent the same neuroimaging protocol 

for comparison. We then explored correlations of venular structure with cognitive function 

as measured by the Hopkins Verbal Learning Test – Revised (HVLT-R) and with total 

haemoglobin in the patients.
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2. Methods

2.1. Subjects

All participants provided informed consent (University of Pittsburgh IRB PRO12040139). 

We recruited a convenience sample of consecutive patients from the UPMC Adult Sickle 

Cell Disease Program outpatient clinic. The only inclusion criteria were HbSS disease 

(homozygous SCA) diagnosed by high-performance liquid chromatography and 

haemoglobin electrophoresis, and being in steady-state according to published criteria 

(Ballas, 2012). Exclusion criteria included the following: blood transfusion within the prior 

90 days, pregnancy, any contraindication to MRI and a history of traumatic brain injury or 

diseases known to cause cognitive dysfunction, including diabetes, systemic lupus 

erythematosus and other causes of cerebral vasculitis. The blood draw was performed during 

the patients’ routine clinic visit and the HVLT-R and MRI were completed at a separate visit 

occurring within 2 weeks from the blood draw and in the absence of any intercurrent 

transfusion or vaso-occlusive episode. Control African American subjects (n=7) with no 

family history of SCA were recruited from the community through IRB-approved flyers and 

SCA patient referral. They were equated to the patients for age and gender, and subjected to 

the same exclusion criteria.

2.2. MRI and cognitive assessment

The MRI scans were performed at the University of Pittsburgh using a 7T human MRI 

system (Magnetom, Siemens Medical Systems, Erlangen, Germany) and utilising an in-

house 2-ch transmit and 14-ch receive radiofrequency coil (Ibrahim et al., 2010). Structural 

image acquisition included a high-resolution Magnetization Prepared Rapid Gradient Echo 

T1 (MPRAGE-T1WI) image with 3D orientation, 0.6 mm × 0.58 mm × 0.58 mm resolution, 

TR/TE/TI=3430/3.69/1200 ms, a T2* Susceptibility Weighted Image (SWI) with axial 

orientation (64 slices), 0.25 mm × 0.25 mm × 1.5 mm resolution, TR/TE/TI=2000/15/NA 

and a T2* SWI with coronal orientation (50 slices), 0.25 mm × 0.25 mm × 1.5 mm 

resolution, TR/TE/TI=2000/15/NA. Scans were routinely inspected for stroke and 

unanticipated findings that warrant a report from the on call neuroradiologist. Small 

intraparenchymal veins (venules) were quantified from the SWI image within predefined 

ROIs (width 1 cm, length 4 cm) between the frontal and occipital cornu on each cerebral 

hemisphere, using a previously published protocol (Sinnecker et al., 2013) with the 

following modification: short venules were defined as being 3–5 mm in length (dashed 

arrow), long venules were defined as being 9–10 mm in length (solid arrow) and 

intermediate venules were defined as being between 6–8 mm in length. The proportion of 

short or long venules to the total number of venules was also computed for each participant 

(Fig. 1A).

Patients were administered the HVLT-R based on its brief testing time and sensitivity to the 

key domains of learning and memory in brain-disordered populations (Lacritz et al., 2001; 

Shapiro et al., 1999).
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3. Results

3.1. Patients

Patient characteristics and laboratory values are shown in Table 1. Eight of eleven patients 

were receiving hydroxyurea at the time of our study and had relatively high levels of foetal 

(HbF) and total haemoglobin. In spite of these findings, they had a history of multiple SCA-

related complications as outlined in Table 1. Haemoglobin A1 was not detected in any of the 

patients.

3.2. SCA patients have an abnormal venular pattern by 7T MRI

We employed SWI contrast, which is particularly sensitive to the microvasculature at the 7T 

field strength, to directly probe the integrity of small vessels in patients and controls (Ding et 

al., 2008). Total venular density was lower in patients compared with control subjects 

(33.1±12.0 vs. 42.3±8.6 venules/8 cm2, p=0.103) with the density of long venules being 

significantly lower (4.4±3.7 vs. 8.8±4.4 venules/8 cm2, p=0.028, Fig.1A). As a result of 

preferential loss of long venules, patients had a higher proportion of short venules compared 

to controls (Fig. 1B).

3.3. Venular pattern by 7T MRI correlates with cognitive function and anaemia in SCA 
patients

There was a non significant positive correlation between total venular count and HVLT-R 

retention score, a measure of episodic memory (rho symbol = 0.486, p = 0.154, Fig. 1C). 

Higher proportion of short venules was inversely correlated with HVLT-R retention score 

(ρ=−0.634, p=0.049, Fig. 1C) and with haemoglobin (ρ=−0.671, p=0.027, Fig. 1D). Higher 

proportion of long venules was directly correlated with haemoglobin (ρ=0.586, p=0.070, 

data not shown) and with HVLT-R retention score (ρ=0.498, p=0.143 Fig. 1D), although 

associations were more modest. The HVLT-R score was also correlated with haemoglobin 

(ρ=0.632, p=0.027, data not shown).

4. Discussion

To our knowledge, this is the first 7T MRI study in SCA and first report of a cerebral venular 

pattern associated with worse cognitive performance in SCA. Similar to the results of a 

published landmark study (Vichinsky et al., 2010), we have also found that lower 

haemoglobin is positively correlated with worse cognitive function.

Cerebral small vessel disease may arise from venular damage (Rincon and Wright, 2014). 

For instance, stenosis and occlusion of deep cerebral venules has been associated with 

leukoaraiosis (Moody et al., 1995). Our finding of venular rarefaction is particularly 

intriguing, as SCA preferentially targets post-capillary venules (Kaul et al., 1989). Small 

vessel density also decreases with age in normal subjects and has been observed in 

Alzheimer’s disease (Brown and Thore, 2011). Our vascular findings parallel those observed 

in patients with Alzheimer’s disease, ischaemic brain damage and age-dependent 

leukoaraiosis, where small vessel degeneration leads to the formation of characteristic 

“string” vessels resulting from the destruction of longer vascular structures, and associated 
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with poorer cognitive function (Brown, 2010; Hunter et al., 2012). Patients with Alzheimer’s 

disease were also found to have structural changes in retinal venular networks, including 

narrower and tortuous venules as compared with healthy controls (Cheung et al., 2014), 

suggesting that alterations in venular anatomy may be linked to decreased cognitive function 

across a spectrum of neurodegenerative diseases. This novel finding in SCA may, therefore, 

represent a candidate quantifiable radiological marker of cognitive decline. In keeping with a 

recent report by Mackin et al. (2014), we did not detect microhemorrhages, another 

recognised MRI marker of small vessel disease in other conditions (Gouw et al., 2011). This 

discrepancy between SCA and other vascular diseases may reflect the peculiar nature of 

SCA neuropathology. While in SCA relative hypertension is associated with stroke (Pegelow 

et al., 1997), elevated systolic blood pressure (Pegelow et al., 1997) and classical 

atherosclerosis rarely occur (Mansi and Rosner, 2002).

Decreased venular conspicuity in SCA may stem from multiple mechanisms, complicating 

the interpretation of this finding. The visibility of venules depends on the effect of 

deoxygenated haemoglobin and decreased oxygen saturation and their repercussions on 

blood flow on the SWI/BOLD (Blood Oxygenation Level Dependence) signal. Thus, any 

condition that alters these parameters may influence venular conspicuity. Specifically, the 

impact of increased blood flow and decreased haemoglobin on SWI in SCA is unknown. A 

recent study found a global decrease in venous conspicuity by 3T in paediatric SCA patients 

as compared to controls, but no correlation was found between haemoglobin and visible 

venous volume, while cognitive function was not tested (Winchell et al., 2014). Similarly, in 

another study assessing the impact of visual stimulation on cerebral blood flow and BOLD 

signal in children by 1.5T functional MRI there was overall decreased BOLD in SCA 

children as compared to controls, but no correlation between haemoglobin and BOLD within 

the SCA group (Zou et al., 2011). One possible interpretation of these and our findings is 

that increased cerebral blood flow (CBF) and decreased concentration of deoxyhemoglobin 

in SCA might have been at the base of the diminished SWI contrast and venular conspicuity 

in SCA patients. Prior research, however, shows that although the oxygen affinity of 

haemoglobin S is decreased in its polymerised state and in hypoxic conditions, it is near 

normal in its tetrameric state and in patients in normoxia (Abdu et al., 2008; Fabry et al., 

2001), like the steady state SCA patients in our study. In children, lower peripheral oxygen 

saturation was positively correlated with cerebral desaturation (Quinn and Dowling, 2012). 

In adults, however, when the oxygen saturation of venous blood of HbSS patients was 

directly tested, it was found to be similar to that of HbAA controls, probably because 

increased blood flow in SCA leads to relatively lower oxygen extraction (Gladwin et al., 

1999). This phenomenon likely also occurs in the cerebral vasculature of SCA patients, 

where CBF is generally increased (Strouse et al., 2006). Finally, when the effects of changes 

in oxygen saturation on SWI where directly assessed in healthy controls, they were found to 

be modest (with apnea decreasing the mean venous blood voxel number by 1.6%, and 

hyperventilation increasing it by 2.6% (Chang et al., 2014)) or absent in the white matter 

(Rauscher et al., 2005). We did not directly assess oxygen saturation or pCO2 in our 

patients, however, since we observed a difference of total venular density of 10% between 

SCA patients and controls, with the difference in long and short venules being equal or close 

to 50%, respectively, the lower visibility of venules due to the effect of deoxyhemoglobin in 
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SCA may contribute to explain some but not all of the between-group differences. As to the 

effect of CBF on the SWI sequence in our group, we would expect it to be mitigated by our 

using flow compensation parameter, which minimises the potential flow effect on the 

visualisation of vessels. Thus, based on these considerations, the BOLD signal may not have 

been significantly affected by the SCA-specific haematological characteristics of our 

patients. Thus, as an alternative explanation, the possibility of direct venular destruction by a 

neuroinflammatory process leading to anatomical loss of venules needs to be considered. 

This latter hypothesis is particularly intriguing as post-capillary venules are the inciting site 

of vaso-occlusion and ischaemia in SCA (Kaul et al.,1989) and may be preferentially 

targeted by the SCA cerebral vasculopathy. It is, therefore, conceivable that the 

proinflammatory milieu of SCA, characterised by increased cellular adhesion (Hebbel et 

al.,1980), generation of reactive oxygen species (Chirico and Pialoux, 2012) and nitric oxide 

dysfunction (Reiter and Gladwin, 2003), results in direct cerebral venular injury, similar to 

what observed in transgenic mice (Wood et al., 2004).

Our observations indicate that episodic memory is a sensitive cognitive indicator of 

microvascular disease in SCA. Given the small sample size, however, these associations will 

need to be confirmed in larger studies that include testing the CBF and its effect on SWI 

signal. Histopathological correlation and autopsy studies, ideally in combination with post-

mortem MRI, will also be important to confirm our observations.

Our study has several limitations. We hypothesised that the disease-mitigating effect of 

chronic transfusion may blunt neuropathology in SCA by improving anaemia, a known CI 

risk factor (Vichinsky et al., 2010). Thus, we did not enrol patients receiving chronic 

transfusions. This strategy may have, however, excluded the sickest patients, who are 

chronically transfused for secondary prevention of severe complications. Another potential 

limitation is that most of our patients were receiving hydroxyurea, which although inferior to 

chronic transfusion for the secondary prevention of paediatric SCA strokes (Ware et al., 

2012), may have beneficial effects on cognitive function (Puffer et al., 2007). A larger study, 

fully reflective of the phenotypic heterogeneity of SCA may help account for all potential 

confounders. Finally, it is not possible to infer causation between radiological findings and 

CI from a cross-sectional study.

We hope that our findings will spur further longitudinal studies to determine whether MRI-

detectable venular density may be a useful, proximate biomarker able to identify SCA 

patients at risk of CI early, so that they can receive targeted preventive interventions.
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Fig. 1. 
Abnormal venular pattern in SCA is associated with worse cognitive function and anaemia. 

(A) A rectangular region of interest (ROI, width 1 cm, length 4 cm) was defined between the 

frontal and occipital cornu on each cerebral hemisphere. Small parenchymal veins (venules) 

were identified as linear structures of intensity darker than the surrounding voxels, and 

length ≥3 mm. Venules were counted within the ROIs by consensus reading of two trained 

and blinded investigators with intraclass correlation coefficients of 0.817 (0.409, 0.952) for 

the rating of the long venules. Short venules were defined as being 3–5 mm in length, long 

venules were defined as being 9–10 mm in length and intermediate venules were defined as 

being between 6 and 8 mm in length. The proportion of short or long venules to the total 

number of venules was also computed for each participant. The two upper scans are from 

two representative control subjects and the two lower scans are from patient ID 11 (left) and 

ID 05 (right). As shown in the inlet with the magnified ROIs, patients had venular loss as 

compared to control subjects. (B) The density (upper graph) and proportion (lower graph) of 

long venules was decreased in SCA patients (p=0.028 and p=0.127, respectively). There was 

a parallel increase in the proportion of short venules in SCA patients (lower graph). The 

groups were compared by two-sided Mann–Whitney U (SPSS 20.0), and the results are 
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shown as median (interquartile range). (C) The proportion of short venules was inversely 

correlated with the HLVT-R retention score (ρ=−0.634, p=0.024). Correlations with the total 

number of venules (ρ=0.486, p=0.154), and (D) the proportion of long venules (ρ=0.498, 

p=0.143) were similar albeit less strong. (D) The proportion of short venules was inversely 

correlated with the haemoglobin level (ρ=−0.671, p=0.027). Two-sided Spearman’s 

correlations were computed on SPSS 20.0.
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