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Abstract

A lipid vesicle, or simply called a liposome, represents a synthetic compartment for the 

examination of transmembrane transport and signaling phenomena. Yet, a liposome is always 

subjected to size and shape fluctuations due to local and global imbalance of internal and external 

osmotic pressures. Here, we show that an osmotically-stressed liposome placed within a hypotonic 

spherical bath undergoes cyclic dynamics described by a periodic sequence of swelling and 

relaxation phases. These two phases are interfaced by the appearance of a transient transmembrane 

pore through which chemical delivery occurs. An analytical model was formulated for the 

recurrent differential equations that convey the time-dependent swelling phase of a pulsatory 

liposome during individual cycles. We demonstrate that the time-dependent swelling phases of the 

last several cycles of a pulsatory liposome are strongly dependent on the size of the external bath. 

Furthermore, decreasing the size of the hypotonic medium reduces the number of cycles of a 

pulsatory liposome. Comparisons and contrasts of an infinite hypotonic bath with finite external 

baths of varying radius are discussed.
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INTRODUCTION

Cellular response to local and global fluctuations in the osmotic pressure of external 

environment is a fundamental property of living systems. There are numerous mechanisms 

by which cells operate for regulating the strain of the cellular membrane, including 

mechanosensitive and water channels. In a much more simplified context, a unilamellar 

liposome undergoes shape and size fluctuations upon rapid changes in the environmental 

osmotic pressure. It has already been documented that a liposome undergoes a cyclic activity 

when it is filled with an aqueous solution of an increased osmotic pressure and it is placed 

within a finite hypotonic environment.1–3 In each cycle, the osmotic influx of water swells 

the liposome up to a critical point at which the membrane attains the maximum strain that is 

characterized by a critical (or lytic) tension, σc (Fig. 1A). In this way, the radius of a 

spherical liposome expands from an initial value, R0, to a critical value, Rc. At this point, the 

nucleation of a transient transmembrane pore occurs,4–8 sometimes leading to an irreversible 

rupture of the liposomal membrane.9–12 This phase, also called the swelling phase,13 is 

followed by solute extrusion through the transient pore and a fast relaxation (or 

compression) phase until the liposome reaches its initial size. Then, a new cycle begins and 

the liposome activity becomes cyclic. This is the reason why we call this liposome a 

pulsatory liposome. Therefore, a pulsatory liposome operates like a two-stroke engine. The 

transmembrane gradient of osmotic solute assures the potential energy that generates the 

functional force of the engine.

The succession of swelling and relaxation phases is mediated by the appearance of a 

transmembrane pore formed in a stretched liposomal membrane (Fig. 1B). A significant 

number of theoretical,4, 7, 10–11, 14–24 computational,25–27 and experimental5, 11, 28–32 

studies have reported the presence of transient pores in liposomes and planar lipid 

membranes. Moreover, there is an increasing interest in the exploration of these metastable 

transmembrane pores, because of their pivotal role in the cyclic activity of an osmotically-

stressed liposome.1–3, 7, 33–37
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In this paper, we put an emphasis on the swelling phase of the cyclic activity of a liposome 

when it is inserted into a finite hypotonic environment. If the external bath is filled with 

water, then the external concentration of solute increases in a cyclic fashion.1–2, 37–39 The 

cyclic activity of the liposome depends on the transmembrane gradient of solute. The 

relaxation phase is short lived and it does not affect the swelling phase.2 Our expectation is 

that the size of the hypotonic environment has significant impact on the number of cycles, 

the swelling time of a pulsatory liposome, as well as the total amount of solute released into 

the external environment. On the other hand, we expect that other biophysical parameters of 

a pulsatory liposome, such as the relaxation time, are not significantly affected. Therefore, 

we wanted to explore the swelling phase of a pulsatory liposome of varying cycle order.

Here, we report that the size of the finite hypotonic bath has substantial impact on the total 

number of cycles and the amount of solute released during the active life of the liposome. A 

pulsatory liposome becomes inactive at a point in which the internal osmotic pressure is 

equal to the Laplace pressure (Fig. 1C). The outcomes of this study represent a theoretical 

platform for further developments with a practical impact. Specifically, the solute might be 

substituted by a chemical agent of pharmacological significance for a healthcare application. 

In this case, a pulsatory liposome can release drugs in a programmable fashion at a strategic 

location of a targeted tissue.40–41

METHODS

Background.

Let us consider a large liposome filled with a solute-containing aqueous solution and assume 

that it is located within a sufficiently large, water-filled spherical bath. In the first phase, the 

liposome expands from the initial state up to a critical state when a single transient 

transmembrane pore appears. Let us set the initial liposomal radius equal to R0. In this case, 

the liposomal membrane is unstretched, so that the mechanical surface tension, σ, is zero. In 

the critical state, the liposomal radius and surface tension are Rc and σc, respectively. In the 

second phase, the cycle is determined by the appearance of the transmembrane pore. The 

time trajectory of the transient pore has two phases: in the first part, the pore radius increases 

up to a maximum value, rm, and in the second part, the pore radius declines up to the pore 

closure, leading to the recovery of the liposomal membrane (Fig. 1A, Fig. 1B). During this 

process, some solute amount is extruded through the transient pore.

As soon as the membrane is recovered, the liposome returns to its initial state and a new 

cycle begins. In our model, we assumed that the critical membrane tension, σc, at which the 

relaxation phase starts, depends on the intrinsic properties of the liposomal membrane, so 

that this is assumed unaltered by increasing the cycle order.1, 10–11 Because of the solute 

release through the transient transmembrane pore, the internal solute concentration is 

changed at the end of each cycle. The liposomal expansion is mediated by the balance 

between the osmotic and Laplace pressures. This is the conceptual mechanism by which an 

osmotically-stressed liposome placed within a finite, hypotonic environment can undergo a 

cyclic activity as a result of the balance between the osmotic and Laplace pressures (Fig. 

1C). Overall, each cycle of a pulsatory liposome is characterized by a differential equation 

for the liposomal radius during the swelling (expansion) phase and a system of three 
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differential equations for the liposomal radius, transient pore radius, and solute internal 

concentration during the relaxation (compression) phase.

Analytical model for the swelling phase.

Let us consider that the initial state of the liposome is defined by the surface area, A0, and 

the volume, V0. At the same time, the initial state of the liposome is characterized by the 

initial internal concentration of the solute, C01. In a hypotonic environment, the liposomal 

volume increases because of the osmotic pressure difference between the interior and 

exterior of the lipid vesicle. The direct outcome of the volume growth is the stretching of the 

bilayer membrane and the appearance of the Laplace pressure. During liposomal swelling, 

two pressures occur in directions against each other: osmotic pressure, ΔPosm, and Laplace 

pressure, ΔPL, corresponding to the transmembrane gradient of solute concentration and 

surface tension, respectively (Fig. 1B).

The rate of change in the liposomal volume, V, is described by the following equation:

dV
dt = PwV μwβA ΔPosm − ΔPL (1)

Here, Pw and Vμw denote the water permeability across the liposomal membrane and the 

water molar volume, respectively. A is the total area of the liposome.

Here,

β = 1
NAkBT (2)

where NA, kB, and T are the Avogadro number, the Boltzmann constant, and the absolute 

temperature, respectively. The osmotic pressure, ΔPosm,42–43 and Laplace pressure, ΔPL,
29–30 are given by the following equations:

ΔPosm = NAkBTΔCm (3)

ΔPL = 2σ
R (4)

where

ΔCm = Cin − Cout (5)

is the transmembrane gradient of the solute concentration. R denotes the liposomal radius. 

Cin and Cout are the solute concentrations inside and outside the liposome, respectively. 

According to Hooke’s law of elasticity in a two-dimensional formulation, if a closed 

spherical membrane is stretched by a surface tension, σ, the radius of the swelled state, R(σ), 

is:
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R(σ) = R0 1 + σ
E (6)

where R0 and R are the liposomal radii in the initial (untensed) state and expanded (tensed) 

state, respectively. In eqn. (6), E is the elastic modulus for the stretching and compression of 

liposomal membrane in two dimensions. Therefore, if a liposome is stretched, then the 

mechanical tension is given by the following formula:

σ = E R2 − R0
2

R0
2 (7)

Let us assume a spherical geometry of the liposome. Using eqns. (2–7), we rewrite eqn. (1) 

in the following form:

dR
dt = PwV μw ΔCm − 2βE

R
R2

R0
2 − 1 (8)

Let us consider two cases. In the first case, the liposome is placed within an infinite water 

bath with a time-independent solute concentration (Cout = 0). In the second case, the 

liposome is placed within a finite (closed) hypotonic environment with a time-dependent 

solute concentration. In the latter case, Cout increases during pulsatory solute exchange with 

the hypotonic environment, whereas Cin decreases. Using the law of mass conservation 

during the swelling process of the first cycle (Supporting Information, eqns. (S1)–(S7)), eqn. 

(8) can be analytically solved for the first cycle, as follows:

8αβEPwV μw
R0

2 t = (α + 1)ln α − 1
2x2 − α − 1

+ (α − 1)ln α + 1
2x2 + α − 1 (9)

where

α = 1 + 2C01R0
βE (10)

and

x(t) = R(t)
R0

(11)

Here, C01 is the initial internal solute concentration.

Differential eqn. (9) has a solution that is a bijective function:

t = t(x),  with x ∈ 1, Re
R0

 and t ≥ 0 (12)
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where Rc is the critical radius of the liposome. Here, we define the critical swelling ratio, xc, 

by the following formula:

xc = Rc
R0

(13)

One might calculate the inverse function R = R(t). Yet, the differential equation of the 

swelling process of a pulsatory liposome in the n-th cycle is given by the following 

expression (Supporting Information, eqns. (S8)–(S16)):

dx
dt = PwV μwC01

R0
fn − 1

x3 − 2βE
R0C01

x − 1
x − 1 − fn − 1

F − x3 (14)

where

f = R0
3

Rc
3 (15)

The differential equations that describe the swelling phases of a pulsatory liposome, except 

the equation for the first cycle, can be solved using numerical methods.

Comparisons between the first cycle and subsequent cycles.

The major question in this study is how the “finite” nature of the spherical environment with 

a radius, Rb, impacts the parameters of the liposome. Specifically, we solve the differential 

equation for the swelling phase of each cycle. For the first cycle, Cout = 0 and the differential 

equation is provided by eqn. (9). The final form of eqn. (8) for the expansion phase of a 

pulsatory liposome during the n-th cycle (n ≥ 2, Cout > 0) is eqn. (14). The functional 

operation of a pulsatory liposome is contingent upon a specific imbalance between 

competing pressures: the osmotic pressure is greater than the Laplace pressure:

RTΔC > 2σ
R (16)

This is the running condition of a pulsatory liposome. During the cyclic activity of the 

liposome, its osmotic pressure declines continuously until this becomes equal to the Laplace 

pressure. At this point, the cyclic activity of a pulsatory liposome stops. The number of 

cycles achieved by a pulsatory liposome is calculated by the following formula:

N = INT lnF − lnZ
3lnxc

(17)

where

F = Rb
3

R0
3 (18)

and
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Z = 1 + 2Eβ
C01Rc

F − xc3 xc2 − 1 (19)

RESULTS

Our analytical model can be used to acquire quantitative information regarding the cyclic 

activity of an osmotically-stressed liposome. Let us consider that such a giant unilamellar 

vesicle (GUV) has the radius in the initial state, R0 = 19.7 μm, and the radius of the critical 

state, Rc = 20.6 μm.5 In addition, we consider a liposome that contains a solution of a 

nonpermeant solute. Let us consider that the initial internal solute concentration is C01= 0.5 

M. Using experimentally determined parameters,44 the membrane permeability coefficient 

for water, Pw, is equal to 3×10−5 m/s and the molecular volume of a water molecule is Vμw 

= 18.04×10−6 m3/mol. A representative value of the two-dimensional stretch modulus of the 

lipid bilayer is E = 0.2 N/m.29–30 Typical values for the surface tension, σ, of a phospholipid 

membrane in a stretched state are in the range of 0.1 – 1 mN/m.28, 33 Yet, GUVs undergo 

much greater values of their surface tension due to their large spherical surfaces. To examine 

the effect of a finite water bath on a pulsatory liposome, we considered three closed 

spherical boxes with a radius, Rb, where Rb values are 4R0, 8R0, and 12R0. We formulate 

the following parameters that characterize the cyclic activity of a liposome: the number of 

cycles, the amount of solute released at the end of cyclic liposomal activity, the duration of 

each cycle, and the total lifetime of cyclic activity.

Using eqn. (17), we found that the total numbers of cycles for finite hypotonic environments 

with radii 4R0, 8R0, and 12R0, are 30, 42, and 46, respectively. If a liposome is placed into 

an infinite hypotonic environment, namely for Cout = 0 and an indefinite duration, then the 

cyclic activity has 47 cycles. This is a value closely similar to the maximum cycle order of a 

spherical hypotonic bath of radius, Rb = 12R0. This outcome was obtained using eqn. (17) 

and employing the condition Rb → ∞. Theoretical predictions of this analytical model are 

in accord with prior experimental observations acquired by Karatekin and colleagues (2003).
29–30 They have experimentally detected a succession of 30–40 pores in a giant liposome 

tensed by intense optical illumination, each of them corresponding to a certain cycle order.

Fig. 2 shows the time dependence of the swelling ratio of a pulsatory liposome, R/R0, for the 

first part of the cyclic activity of the liposome, which includes 15 cycles. These calculations 

were performed for finite hypotonic spherical baths with radii Rb = 4R0 (Fig. 2A), Rb = 8R0 

(Fig. 2B), and Rb = 12R0 (Fig. 2C), as well as for an infinite hypotonic environment (Rb → 
∞ ; Fig. 2D). The swelling phase occurred at a swelling ratio, Rc/R0, in the range of 1 – 

1.045. These panels show that the time dependences of the swelling phases for cycles from 

the beginning cyclic activity are fairly linear and slightly dependent on the size of the 

external hypotonic environment. For example, for n = 3, the swelling times of a pulsatory 

liposome were 4.90 s, 5.07 s, and 5.09 s, for the radii of the external bath 4R0, 8R0, and 

12R0, respectively. If the liposome was inserted into an infinite hypotonic environment, then 

the swelling time was 5.10 s, a closely similar value to those acquired for finite hypotonic 

water baths. On the other hand, for n = 15, the swelling times were 22.46 s, 25.17 s, and 

25.47 s, for the radii of the external bath of 4R0, 8R0, and 12R0, respectively. Yet, the 
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swelling time was 25.60 s when the liposome was inserted within an infinite hypotonic 

environment.

Fig. 3 illustrates the time dependence of the swelling ratio of a pulsatory liposome for the 

last part of the cyclic activity, which encompasses 12–14 cycles. This data was acquired for 

the cases presented in Fig. 2, either for a finite spherical bath or an infinite environment 

under hypotonic conditions (Rb = 4R0, Fig. 3A; Rb = 8R0, Fig. 3B, Rb = 12R0, Fig. 3C; Rb 

→ ∞; Fig. 3D). In both cases, the finite hypotonic medium and opened water bath, the 

expanded liposomal radius is a linear function on swelling time, except for the last cycles. 

This observation is highlighted for the case of hypotonic environments of larger sizes, e.g. 

for n = 46 when Rb = 12R0 as well as for n = 46 and n = 47 when Rb → ∞. Moreover, in 

contrast to the findings pertaining to Fig. 2, the swelling phases of the last cycles were 

drastically slower in large external baths (e.g., for Rb = 12R0 and Rb → ∞) with respect to 

smaller finite environments (e.g., for Rb = 4R0 and Rb = 8R0). This phenomenon was 

amplified at the highest cycle orders. For instance, the durations of the swelling phases were 

16.95 min and 31.42 min for n = 42 and n = 46, respectively, when Rb was 12R0 (Fig. 3C). 

The slowest swelling phase, in the duration of 69.97 min, was obtained for n = 47 when a 

pulsatory liposome was placed within an infinite water bath (Fig. 3D).

Fig. 4A presents the durations of the swelling phase of the 30th cycle of pulsatory liposomes 

located in hypotonic water baths of varying radius. One can note a significant distinction 

between the swelling rate acquired for the external bath with the smallest radius and the 

others. If we define the swelling rate as the critical swelling ratio divided by the total 

swelling time, meaning (Rc/R0)/tswell, where tswell is the duration of the swelling phase for a 

certain cycle order, then its value was 4.52 × 10−4 s−1 for the 30th cycle of a finite bath with 

Rb = 4R0. In contrast, slower swelling rates of 2.56 × 10−4 s−1, 2.37 × 10−4 s−1, and 2.29 × 

10−4 s−1, were determined for external baths with the radii equal to 8R0, 12R0, and infinity, 

respectively.

Fig. 4B illustrates the time dependence of the swelling ratio, R/R0, of a pulsatory liposome 

during the last cycle. The durations of the swelling phase of the last cycles were equal to 

1.68 min, 11.84 min, and 31.42 min when a pulsatory liposome was inserted into in finite 

hypotonic media with radii 4R0, 8R0, and 12R0, respectively. Yet, the duration of the 

swelling phase of the last cycle was equal to 69.97 min when the liposome was placed 

within an infinite hypotonic environment. These are the durations required for a pulsatory 

liposome to attain the critical swelling ratio, Rc/R0, of 1.045 during the last cycle. This 

observation reveals that an increase in the size of the external hypotonic bath drastically 

declines the swelling rate of a pulsatory liposome in the terminal cycle.

We found that the durations of the first half of the swelling phase of the last cycles (e.g., 

those corresponding to R/R0 = 0.5×(Rc/R0+1) = 1.0228) were equal to 0.90 min, 5.88 min, 

and 13.42 min when a pulsatory liposome was inserted within in a finite hypotonic media of 

radii 4R0, 8R0, and 12R0, respectively. However, the duration of the first half of the swelling 

phase of the last cycle was equal to 21.77 min when the liposome was placed within an 

infinite hypotonic bath. Notably, in this case the duration of the second half of the swelling 

phase of the last cycle was equal to 48.19 min, a significantly longer value than that of the 
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first half of the swelling phase. This outcome results from a strong non-linear time 

dependence of the liposomal swelling ratio in the last cycle of infinite external bath (Fig. 4B, 

F → ∞, n = 47).

Fig. 5 shows the duration of the swelling phase as function of the cycle order for hypotonic 

baths of a smaller sizes (Fig. 5A) and for larger environments (Fig. 5B). It is clear that cycles 

of low order numbers (n < 15) are significantly shorter than those of high order numbers (n 
> 30). The duration of the swelling phase drastically increased to tens of minutes for cycles 

with order number greater than 40. On the contrary, the total swelling time for the maximum 

cycle order was only 100.95 s in the case of the smallest hypotonic bath.

If the pulsating liposome function as a device for the controlled release of a chemical agent, 

then the most important parameter is the amount of solute released into the external 

environment during its functional operation. Let us assume that the initial internal 

concentration of the solute is equal to 0.5 M, so the liposome contains Q01 = C01V0= 9.643 

× 1012 molecules. At the end of the cyclic activity, a pulsatory liposome releases the 

amounts of solute equal to Q30 = 9.4997 × 1012 molecules, Q42 = 9.6083 × 1012 molecules, 

and Q46 = 9.6227 × 1012 molecules, if this liposome is placed within closed hypotonic 

environments with radii Rb = 4R0, Rb = 8R0, and Rb = 12R0, respectively. For the case of an 

infinite hypotonic bath, the amount of delivered solute is equal to Q47 = 9.625 × 1012 

molecules, which is ~99.81% of the initial solute amount. We highlight that the amount of 

solute released during a single cycle of the same order is unchanged regardless of whether a 

pulsatory liposome is placed into a finite or an infinite hypotonic environment.

DISCUSSION

In the results section, we provided a detailed quantitative description of the swelling phase 

of a pulsatory liposome when this is placed within a hypotonic bath of varying size. The 

energy required for the liposomal swelling is provided by the osmotic transmembrane 

gradient. The swelling phase is an active process of each cycle and is described by a 

differential equation for the radius of the liposome (eqn. (8)). In contrast, the liposomal 

relaxation is a passive and fast process,38–39 resulting from the appearance of a transient 

pore of a pulsatory liposome at a point that reaches a critical radius, Rc, and a critical surface 

tension, σc. The appearance of the transient pore is a critical event for the cyclic activity of 

the liposome, because at this point the swelling phase stops and the relaxation phase starts. 

After this event, some internal solute is released into the external hypotonic bath.

The lifetime of the transient pore is ~1.725 s.45 This value was previously inferred using 

similar conditions to those employed in this study. The transient pore undergoes two phases, 

the expansion and shrinkage phases. The durations of these phases are 225 ms and 1500 ms, 

respectively. The lifetime of the pore is independent of the cycle order of the pulsatile 

liposome. Kinetics of the two phases of the transient pore depend on the properties of 

liposomal membranes. Because of the very short duration of the transient pore, we expect 

that this parameter does not significantly affect the overall dynamics of the liposomal cyclic 

activity.
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The pore energy, Ep, is given by the following formula:46

Ep = 2πrγ − σπr2 (20)

This shows the balance between the line tension and surface tension. Here, r denotes the 

pore radius. γ and σ are the line tension and surface tension coefficients, respectively. The 

only stable energetic minimum of Ep is reached at a radius r = 0. The transient pore 

undergoes membrane rupture at a pore radius greater than a critical radius, rc = γ /σ. 

However, this phenomenon is rare, because the activation free energy for this process is high 

(ΔE=πγ2/σ).47 For smaller tensions, a transient pore can rapidly shrink, evolving toward a 

closed pore state. On the contrary, for tensions greater than a critical value, a transient pore 

can rapidly expand until it reaches membrane rupture, leading to liposomal lysis. Therefore, 

it is not possible to detect stable transmembrane pores with long lifetimes. Yet, Zhelev and 

Needham (1993) have demonstrated for the very first time the appearance of long-lived 

quasistable transmembrane pores with a radius of 1 μm in GUVs.48 A giant liposome was 

aspirated into a micropipette and short-lived electrical stimuli were applied across the 

vesicle. In this way, the lifetime of relatively stable pores spanned a duration range from 

tenths of a second to several seconds. These studies enabled the determination of the pore 

size and pore line tension. In parallel with these studies, Wilhelm and coworkers (1993) have 

studied the kinetics of pore appearance followed by mechanical rupture using high-voltage, 

charge-pulse technique.49 A large number theoretical,4–5, 7, 10–11, 14–24, 28–30, 46 

computational,7, 16, 21, 23, 25–27, 50 and experimental5, 11, 28–32 studies have documented the 

existence of these transient pores across bilayer membranes.

Our analytical model involves a spherical symmetry. Yet, in a given experimental context, 

ample alterations in external mechanical stress can lead to membrane deformations51–53 and 

thickness fluctuations.7 We considered the case of a spherical liposome, because this 

geometry represents the equilibrium conformation with an enhanced shape stability of the 

membrane. This also means that the membrane tension, σ, has a uniform value across the 

entire liposomal surface. If transient undulations occur,50, 54 then the amplitude of these 

membrane motions would normally decrease during the liposomal swelling phase. 

Quantitative assessment of local and global membrane undulations, some of which might be 

thermally activated, is experimentally challenging. The spherical geometry represents the 

average experimental substate of the undulatory dynamics of liposomal membrane.2, 36–37 It 

is also a reason for which the outcomes of our analytical model quantitatively recapitulate 

experimental results (see below). However, if an amplified out-of-membrane pressure 

occurs, this would lead to stable membrane deformations. In this case, the membrane 

tension, σ, has no longer a uniform value across the entire liposomal membrane. In addition, 

the swelling phase of the liposome is no longer described by a single differential equation. 

The transient transmembrane pore appears on the liposomal membrane, where the critical 

surface tension, σc, is reached. Moreover, the liposome may feature a cyclic activity when 

stable membrane deformations take place.

Here, we highlighted the quantitative aspects of the swelling phases of the cycles of a 

pulsatory liposome under finite hypotonic conditions for one major reason. Because the 

duration of the relaxation phase is very short, the alteration in the internal concentration of 
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solute is negligible during this process. Indeed, recent experimental studies of the cyclic 

activity of GUVs provided evidence for very short-lived relaxation phase38–39 and 

unchanged initial radius of the vesicle, R0, of a pulsatory liposome for successive cycles.2, 33 

Yet, there is experimental evidence that indicates fluctuations in the critical radius, Rc, of a 

pulsatory liposome for successive cycles.2, 33 This finding suggests a more complex 

dependence of the lytic tension on the cycle order, which was not included on our analytical 

model (METHODS). Indeed, Evans and coworkers (2003)55 as well as Chabanon and 

coworkers (2017)2 have shown that the lytic tension for the pore formation is a function that 

depends on the load rate. Therefore, we expect that the amplitude of Rc and the time of pore 

appearance are affected by the cycle order. If the lytic tension depends on the cycle order, 

then the corresponding critical value of liposome radius, Rc, is introduced in eqns. (14) – 

(15). Dependence of the lytic tension on the load rate will certainly affect the swelling phase 

of the liposome. Therefore, this will affect the overall duration of large-order cycles. If the 

liposomes are exposed to a surfactant-containing environment, then the partitioning of 

surfactant molecules into the membrane likely changes the lytic tension at which short-lived 

pores occur.36

The periodic behavior of osmotically-stressed liposomes has been first predicted by Koslov 

and Markin (1984).9 Later, other groups have developed theoretical approaches for acquiring 

quantitative information of this fundamental process.1, 38 Our theoretical formulation 

includes low-amplitude size fluctuations of the swelling and relaxation phases between R0 

and Rc, which are characterized by a critical liposomal radius of ~4.5% out of that value of 

an unstretched lipid vesicle. This assumption is in good accord with the cyclic size 

fluctuations of GUVs, as previously reported.3, 5, 39 Our model quantitatively recapitulates 

the number of the swelling-relaxation cycles observed experimentally. For example, we 

acquired a total number of cycles, nmax, of 47 for our infinite hypotonic bath. This value is 

close to the numbers of swell/burst cycles noted with GUVs in hypotonic media.38 

Furthermore, our model calculations predict long-lived swelling phases of larger-order 

number cycles, which is in quantitative agreement with recently reported experimental 

determinations of osmotically-stressed lipid vesicles.2, 37

In summary, we formulated an analytical model that provides quantitative information on the 

cyclic activity of a lamellar liposome in a finite hypotonic environment. The swelling phase 

of the last several cycles of a pulsatory liposome is strongly dependent on the size of the 

external bath. A reduced number of cycles of a pulsatory liposome as well as a lower amount 

of chemical agent released into the external environment were found by decreasing the size 

of the external hypotonic medium. Furthermore, the duration of the swelling phase is 

strongly dependent on the cycle order, which is in good accord with recent experimental 

explorations of the pulsatory GUVs.2, 33 For example, the swelling phases of the last few 

cycles last several hundred of seconds, contrasting the cycles of low order numbers, which 

are in the second range. From a practical point of view, the consumed fuel of this two-stroke 

liposomal engine might be substituted by an active biotherapeutic agent. Finally, there is 

great potential for the use of lipid vesicles in clinical applications, specifically for controlled 

drug release of targeted chemicals at precise locations of diseased tissues. In this case, the 

osmotically-stressed liposomes would be located within a finite hypotonic environment.
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Figure 1: Diagrams that show details of the dynamics of a pulsatory liposome during a single 
cycle.
(A) Each cycle encompasses two phases: swelling phase (top) and relaxation phase 

(bottom). The initial radius of the liposome, R0, is reached when the surface tension is zero. 

In contrast, the critical radius of the liposome, Rc, is attained at a critical surface tension, σc. 

At this point, the liposomal membrane undergoes a lytic tension, leading to a transient 

transmembrane pore. The maximum radius of the transient pore is rm. (B) This model 

assumes the osmotic stress-induced formation of a single transient pore across the liposomal 

membrane. The dynamics of the transient pore is affected by the balance between the driving 

force for the pore opening, Fσ, which corresponds to the mechanical surface tension of the 

membrane, σ, and the driving force for pore closure, Fγ, which corresponds to edge tension 
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(or line tension), γ. The former force is created by the Laplace pressure, whereas the latter 

force is created by the strong hydrophobic interactions among the alkyl tails of the liposomal 

phospholipids. r is the pore radius. h is the thickness of a monolayer of the liposomal bilayer 

membrane. (C) Schematic that shows the balance of the osmotic and Laplace pressures 

during the succession of various cycles. ΔPosm and ΔPL are the osmotic and Laplace 

pressures, respectively. n is the cycle order. A pulsatory liposome becomes active when ΔPL 

< ΔPosm. The tilted line in black corresponds to a pulsatory liposome located within an 

infinite hypotonic bath (e.g., a larger number of cycles). The tilted line in orange 

corresponds to a pulsatory liposome located within a finite hypotonic bath (e.g., a smaller 

number of cycles).
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Figure 2: Time dependence of the liposomal radius during the swelling phase for cycles of 
varying cycle order, n, in the beginning of the cyclic activity.
Different panels indicate cases when the liposome was placed within a finite water bath of 

radius, Rb = 4R0 (A), Rb = 8R0 (B), and Rb = 12R0 (C), as well as when the liposome was 

placed within an infinite water bath, Rb → ∞ (D). In (A), (B), (C), and (D), the cycle orders 

of liposomal activity are 3, 6, 9, 12, and 15.
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Figure 3: Time dependence of the liposomal radius during the swelling phases that correspond to 
the last cycles of the pulsatory activity.
This time dependence is illustrated for three distinct cases of a finite hypotonic environment 

and an infinite hypotonic water bath, as follows: (A) Rb = 4R0, cycles 18, 21, 24, 27, and 30. 

(B) Rb = 8R0, cycles 30, 33, 36, 39, and 42; (C) Rb = 12R0, cycles 33, 36, 39, 42, and 46. 

(D) Infinite hypotonic medium, cycles 36, 39, 42, 46, and 47.
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Figure 4: Comparisons of the durations of the swelling phase of the 30th cycle and final cycle for 
distinct sizes of the hypotonic water bath.
(A) The duration of the swelling phase of the 30th cycle for the three sizes of finite 

hypotonic water baths (Rb/R0 =4; Rb/R0 =8; Rb/R0 =12) and for an infinite hypotonic 

environment. (B) The duration of the swelling phase of the last cycle for the three sizes of 

finite hypotonic water baths (Rb/R0 =4; Rb/R0 =8; Rb/R0 =12) and for an infinite hypotonic 

environment.
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Figure 5: The duration of swelling phase as a function of the cycle order for a pulsatory 
liposome.
(A) Comparison for hypotonic water baths with Rb=4R0 and Rb=8R0. (B) Comparison for 

hypotonic water baths with Rb=12R0 and Rb → ∞.
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