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Abstract

Recent years have witnessed significant progress in understanding how memories are encoded, 

from the molecular to the cellular and the circuit/systems levels. With a good compromise between 

brain complexity and behavioral sophistication, the fruit fly Drosophila melanogaster is one of the 

preeminent animal models of learning and memory. Here we review how memories are encoded in 

Drosophila, with a focus on short-term memory and an eye toward future directions. Forward 

genetic screens have revealed a large number of genes and transcripts necessary for learning and 

memory, some acting cell-autonomously. Further, the relative numerical simplicity of the fly brain 

has enabled the reverse engineering of learning circuits with remarkable precision, in some cases 

ascribing behavioral phenotypes to single neurons. Functional imaging and physiological studies 

have localized and parsed the plasticity that occurs during learning at some of the major loci. 

Connectomics projects are significantly expanding anatomical knowledge of the nervous system, 

filling out the roadmap for ongoing functional/physiological and behavioral studies, which are 

being accelerated by simultaneous tool development. These developments have provided 

unprecedented insight into the fundamental neural principles of learning, and lay the groundwork 

for deep understanding in the near future.

If the human brain were so simple, That we could understand it, We would be so 

simple, That we couldn’t.

Emerson M. Pugh

Introduction

The human brain is among the most complex organs in the body. Understanding its 

functionality is, as Emerson Pugh’s famous historical quip highlights, a longstanding 

challenge for biological inquiry (Pugh, 1977). Within the field of neuroscience, deciphering 

how memories are formed and maintained is a major area of focus. Memories of our past 

experiences interact with present sensory perceptions to influence our behaviors, but what is 

the neural substrate of these interactions? What molecular pathways drive the modifications 

of neural activity supporting the formation of memories, and how are these manifested at the 

circuit and systems levels? Our ability to distill these broad questions into meaningful, 

experimentally-tractable derivatives will be the one of the greatest determinants of the 
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success of neuroscience research. Given the immense challenge of reverse engineering the 

human brain, with its 86 billion neurons and estimated ~100 trillion synapses, neuroscience 

research heavily leverages model organisms with numerically-reduced nervous systems. 

Offering a good compromise between relative brain simplicity and behavioral sophistication, 

the fruit fly Drosophila melanogaster has been a highly informative model organism for the 

study of behaviors ranging from circadian rhythms to learning and memory (Hardin et al., 

1992; Heisenberg et al., 1985; McBride et al., 1999; Nitabach and Taghert, 2008; Zars, 

2010; Zars et al., 2000a).

Behavior and genetics

Here we review the mechanisms of learning and memory in Drosophila, with a focus on the 

encoding of short-term memories, and an eye toward potential future directions for the field. 

Learning has been studied with a variety of assays in flies, the most common being olfactory 

classical conditioning (Tully and Quinn, 1985). In this assay, flies are presented with an 

odor, the conditioned stimulus (CS+), which is paired with a second stimulus, the 

unconditioned stimulus (US). The US can be aversive, such as electric shock, or appetitive, 

such as sucrose (Busto et al., 2010). A second unpaired odor (the CS−) is also presented, 

either before or (usually) after pairing the CS+ and US. After conditioning, memory is tested 

in a T-maze, providing arms containing each of the odors, and allowing the flies to distribute 

between them. A performance index is calculated as the proportion of flies that choose the 

CS+ over the CS−.

Forward genetic screens have identified many genes necessary for olfactory learning and 

memory. Previous reviews have covered these in detail, e.g., (Davis, 2005; Dudai, 1988; 

Tomchik and Davis, 2013; Waddell and Quinn, 2001), so we will focus here on the major 

themes, with an emphasis on the learning (acquisition) phase. While multiple signaling 

cascades are involved in learning, both unbiased genetic screens and hypothesis-driven 

studies based on data from other systems have converged on genes involved in cAMP 

signaling cascades. In particular, the groundbreaking research of Troy Zars provided some of 

the earliest support for the role of one cAMP signaling molecule, Rutabaga, describing its 

tissue-specific function in learning and memory (Zars et al., 2000a; Zars et al., 2000b). 

Some of the more well-studied examples of cAMP signaling molecules include Rutabaga, 

Dunce, and DC0. Rutabaga (rut) encodes a type I Ca2+/calmodulin-dependent adenylyl 

cyclase, Dunce (dnc) encodes a cAMP-specific phosphodiesterase, and dc0 the catalytic 

subunit of the cAMP-dependent protein kinase A (PKA). These proteins regulate cAMP 

signaling antagonistically: Rut synthesizes cAMP, while Dnc metabolizes it, regulating 

downstream DC0 signaling antagonistically (Davis et al., 1995; Levin et al., 1992; Skoulakis 

et al., 1993). Alterations to the activity of other members of the cAMP signaling pathway, 

including Gαs (Connolly et al., 1996) as well as the regulatory (RI) subunits of PKA, are 

also required for learning (Goodwin et al., 1997). Mutations in dopa decarboxylase were 

shown to impair learning, which provided the first insight into the neurotransmitter systems 

(dopamine and/or serotonin) that potentially activate cAMP signaling (Tempel et al., 1984).

Dopaminergic circuits play particularly important roles in the US processing, and we will 

describe their roles in detail below. Nonetheless, it should be noted that other 
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neuromodulators, signaling proteins, and cells/circuits that express and release them, are 

involved in learning and memory. Along with dopamine, the biogenic amines octopamine 

and serotonin contribute to the neuromodulation underlying memory formation. Octopamine 

plays a prominent role in appetitive learning (Burke et al., 2012; Han et al., 1996; Huetteroth 

et al., 2015; Kim et al., 2013; Schwaerzel et al., 2003). It is also involved (to a lesser extent) 

in aversive learning, as tβh mutants that cannot produce octopamine show aversive memory 

deficits (Iliadi et al., 2017). In addition, serotonin has been implicated in learning, and in 

some cases exerts effects indirectly via actions on dopaminergic neurons (Johnson et al., 

2011; Scheunemann et al., 2018). Both serotonin and octopamine contribute in parallel to 

the formation of a specific form of consolidated memory (Wu et al., 2013). Octopaminergic 

and serotonergic mechanisms have received less attention than dopaminergic mechanisms 

overall, and represent additional layers of putative regulation of learning and memory. In 

addition to these neuromodulatory pathways, various signal transduction cascades are 

involved in memory formation as well. The scaffolding protein Leonardo is highly expressed 

in relevant brain regions and necessary for olfactory learning (Broadie et al., 1997; 

Skoulakis and Davis, 1996). In addition to PKA, other protein kinases, such as S6KII, 

CaMKII, PKC, and PKG, also modulate memory (Brembs and Plendl, 2008; Griffith et al., 

1993; Kane et al., 1997; Kaun et al., 2007; Mery et al., 2007 Neuser et al., 2008; Putz et al., 

2004). GABAergic circuits are involved in sparsening the sensory representation in the 

olfactory pathway, enhancing memory encoding (Honegger et al., 2011; Lin et al., 2014; Liu 

et al., 2009; Liu and Davis, 2009) as well as playing a role in memory consolidation (Haynes 

et al., 2015). Muscarinic acetylcholine receptors are necessary on MB neurons for aversive 

memory formation (Bielopolski et al., 2019; Silva et al., 2015), and shape odor coding in the 

antennal lobe (Rozenfeld et al., 2019). A major open question is how (specifically) all of 

these neuromodulators, receptors, and intracellular signaling cascades alter cellular 

physiology to generate the plasticity in the olfactory pathway neurons that underlies 

learning.

Fundamental anatomy of the olfactory pathway

The mushroom body (MB) is a critical anatomical structure involved in olfactory memory 

formation, as well as some types of visual and courtship memory (McBride et al., 1999; 

Vogt et al., 2014). The MB is situated in the olfactory pathway, as the tertiary structure, 

hierarchically similar to the mammalian amygdala or piriform cortex (Su et al., 2009). 

Olfactory stimuli are initially detected by olfactory receptor neurons (ORNs) in the 

periphery, which transmit information to projection neurons (PNs), and subsequently the 

MB and another structure, the lateral horn (Davis, 2005; Fiala, 2007). The intrinsic MB 

neurons, also called Kenyon Cells (KCs), relay information to mushroom body output 

neurons (MBONs) (Aso et al., 2014a; Tanaka et al., 2008) via cholinergic synapses 

(Barnstedt et al., 2016). The MB is innervated by modulatory neurons, such as dopaminergic 

neurons (DANs), which are critical for learning and memory (Tanaka et al., 2008). This 

description includes the basic circuit elements (ORN→PN→KC→MBON; w/ modulatory 

DANs) (Fig. 1A,B), and will be further elaborated below. Note that while the general flow of 

information is most easily conceptualized as unidirectional, some of these connections 

exhibit both pre- and post-synaptic zones indicative of bidirectional communication 
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(Christiansen et al., 2011; Pauls et al., 2010; Rolls et al., 2007) (Fig. 1C). This bidirectional 

communication adds a layer of complexity with behavioral and computational implications 

that are largely unknown currently.

The MBs receive olfactory input from the antennal lobe via the PNs (Su et al., 2009). They 

are composed of approximately 2500 pseudounipolar KCs (Fig. 1B). Their somata are 

located in the posterior dorsal region of the brain. The KC dendrites form a calyx structure 

in each hemisphere, and their axons fasciculate together, projecting to the anterior face of 

the brain. Once they reach the anterior face, they divide into vertical (α, α′) and horizontal 

(β, β′ and γ) lobes, forming a distinctive lobular anatomical structure (Fig. 1B; Table 1) 

(Crittenden et al., 1998; Guven-Ozkan and Davis, 2014). The MBs function as a critical site 

of plasticity during learning, integrating information about olfactory stimuli with US signals 

conveyed by modulatory interneurons (Burke et al., 2012; Claridge-Chang et al., 2009; 

Gervasi et al., 2010; Schroll et al., 2006; Tomchik and Davis, 2009; Ueno et al., 2017). Flies 

with abnormal MB morphology show memory defects, as do flies in which the MBs are 

chemically ablated (de Belle and Heisenberg, 1994). The MBs are specialized for higher-

order processes. Insects without mushroom bodies are generally healthy, and can move and 

perceive multiple sensory modalities (Wolf et al., 1998). Other forms of memory, such as 

place conditioning, are unaffected by loss of mushroom bodies (Zars et al., 2000b). Many 

proteins required for olfactory learning and memory exhibit preferential expression in the 

MBs (e.g., Dnc, Rut, DC0) (Nighorn et al., 1991; Skoulakis et al., 1993).

Molecular biology and circuits underlying learning

The MBs are believed to encode olfactory memories by associating olfactory cues (odors) 

with US information, altering the flow of olfactory information following learning. KCs 

initially encode odors in a sparse representation (Turner et al., 2008). At the circuit level, 

they are innervated by multiple sets of extrinsic neurons (Tanaka et al., 2008), including 

DANs (Fig. 1), which are particularly important for US processing during learning (Qin et 

al., 2012; Schroll et al., 2006; Schwaerzel et al., 2003). The DANs respond strongly to 

sensory stimuli, particularly stimuli with positive and negative valence, such as electric 

shock and sucrose (Liu et al., 2012; Louis et al., 2018; Mao and Davis, 2009). During 

conditioning, a subset of KCs responds to odors with depolarization and receives a strong 

dopaminergic signal during US presentation. This synergistically elevates cAMP and PKA 

in KCs in a Rut-dependent manner (Gervasi et al., 2010; Tomchik and Davis, 2009). These 

observations experimentally reinforced a key prediction of the coincidence detection model, 

in which the Ca2+-sensitive adenylyl cyclase Rut, expressed in the MB, functions to 

integrate activity state of the KCs with signaling from GPCRs to elevate cAMP (Heisenberg, 

2003; Livingstone et al., 1984; Zars et al., 2000a; Zars et al., 2000b). Upstream of cAMP 

signaling, the D1-like dopamine receptor DopR is necessary for learning (Kim et al., 2007), 

and the circuit roles of dopamine will be discussed in detail below. Downstream effectors 

generate plasticity in a cAMP/PKA-dependent manner, presumably through modulation of 

local excitability, compartmentalized signaling, and/or modulation of synaptic vesicle 

cycling and release. cAMP/PKA activation can alter the properties of KCs over short time 

scales via mechanisms such as K+ channel phosphorylation (Drain et al., 1994). It also 

potentially modifies synaptic output through effectors such as synapsin, which modulates 
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vesicular pool dynamics (Knapek et al., 2010; Michels et al., 2011; Michels et al., 2005; 

Niewalda et al., 2015). cAMP exerts cellular effects in a PKA-independent manner through 

cyclic-nucleotide-gated channels, with potential effects on MB physiology and memory 

(Pavot et al., 2015). Finally, over longer time scales, cAMP/PKA signaling alters gene 

transcription via CREB (Chen et al., 2012; Miyashita et al., 2018; Widmer et al., 2018; Yin 

et al., 1995; Zhang et al., 2015). It should be noted that while mutants for cAMP signaling 

molecules are deficient in olfactory memory, there is residual memory. For instance, rut 
mutants exhibit memory scores approximately half of that of controls, demonstrating that 

there are rut-independent memory pathways (Tan et al., 2010; Tully and Quinn, 1985; Zars 

et al., 2000a).

While the MB is a critical locus for learning-induced plasticity, such plasticity is not 

restricted to the MB. Experiments using in vivo calcium imaging – examining odor-evoked 

responses before and after conditioning while looking for changes resulting from learning – 

have revealed plasticity across multiple loci in the olfactory pathway. These regions include 

antennal lobe local neurons (Scheunemann et al., 2012), PNs (Yu et al., 2004), KCs (Akalal 

et al., 2010; Louis et al., 2018; Wang et al., 2008; Yu et al., 2006; Yu et al., 2004; Zhang and 

Roman, 2013), dorsal paired medial (DPM) neurons (Cervantes-Sandoval and Davis, 2012; 

Yu et al., 2005), GABAergic anterior paired lateral (APL) neurons (Liu and Davis, 2009), 

dorsal anterior lateral (DAL) neurons (Chen et al., 2012), and MB output neurons (MBONs) 

(Berry et al., 2018; Owald et al., 2015; Sejourne et al., 2011) (Fig. 1). These loci exhibit 

changes at various time points following conditioning. Despite the somewhat distributed 

spatiotemporal pattern of plasticity, it is clear that the KCs represent a central node in the 

circuit where cAMP-dependent plasticity is necessary for memory formation. Cell-targeted 

genetic rescue experiments of cAMP signaling molecules almost invariably require MB 

expression for behavioral rescue, and expression in KCs is sufficient for rescue in many 

cases (Kim et al., 2007; Michels et al., 2011; Scheunemann et al., 2012; Zars et al., 2000a). 

Indeed, the MB appears to be where the CS and US are integrated, where the olfactory 

information is imparted with a valence (positive or negative association) following classical 

conditioning. At the circuit level, this process critically depends on the DANs that innervate 

the MB.

Dopaminergic neurons: key players in US processing

Several major anatomical classes of DANs innervate the MB, and they play distinct roles in 

memory formation (Fig. 1; Table 1). PPL1 neurons innervate the MB vertical lobes, and are 

necessary for aversive olfactory learning (Galili et al., 2014). The neurons respond strongly 

to the electric shock that is typically used as the US in aversive conditioning studies 

(Cervantes-Sandoval et al., 2017; Mao and Davis, 2009; Riemensperger et al., 2005). 

Finally, pairing an odor with stimulation of PPL1 neurons is sufficient to induce the 

formation of aversive memory (Aso et al., 2010; Aso et al., 2012; Claridge-Chang et al., 

2009; Schroll et al., 2006). This demonstrates that PPL1 neurons are intimately involved in 

processing of the aversive US during learning, and may convey a portion of the US signal to 

the MB. In comparison, PAM DANs innervate the MB horizontal lobes, and are critical for 

US processing during appetitive olfactory classical conditioning (Fig. 1B). A subset of these 

neurons respond strongly to the sucrose stimulus that is provided as the US in appetitive 
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classical conditioning (Yamagata et al., 2016; Yamagata et al., 2015). They function in an 

analogous manner to PPL1 neurons, except in appetitive conditioning rather than aversive 

conditioning: their activity is necessary and sufficient as an appetitive US (Liu et al., 2012). 

Thus, the PPL1 and PAM neurons perform similar functions in US processing, though with 

opposite valence (negative vs. positive, respectively). These classes of neurons can be further 

subdivided functionally. For instance, the γ1-pedc subset of PPL1 neurons innervates the 

heel region of the mushroom body (the γ1 compartment) and is necessary for aversive 

learning in olfactory classical conditioning (Aso et al., 2012). Another subset innervates the 

MB vertical lobes dorsal to that region, and is particularly important for taste learning 

(Masek et al., 2015). Some neurons within these subsets perform roles that are antagonistic 

to the overall, net effect of the subset as a whole. For example, while the PAM DANs have a 

net appetitive role, the PAM-β2β′2a neurons modulate aversive memory (Aso et al., 2012). 

Bidirectional modulation of the activity of at least some DANs can produce opposing effects 

on behavior. For instance, PAM DANs innervating the γ3 compartment of the MB function 

bidirectionally, with activation driving aversive memory and blockade driving appetitive 

memory (Yamagata et al., 2016).

In addition to the role that DANs play in valence/US processing, one subset plays a unique 

role in memory, driving plasticity in the MB and modulating memory strength without 

encoding valence. PPL2ab DANs innervate the dendritic MB region in the calyx (among 

other brain regions) (Kuo et al., 2015; Mao and Davis, 2009) (Fig. 1B). Pairing stimulation 

of the PPL2ab neurons with odor presentation enhances odor-evoked activity in MB γ 
neurons; this effect is associated with increased aversive memory performance (Boto et al., 

2019). These results imply that dopamine acting on MB neurons can either drive a valence 

signal (US) or act as a gain control mechanism, modulating the strength of the memory. The 

behavioral outcome appears to depend on which dopaminergic pathway is activated and 

which spatial MB compartment the neurons innervate. This compartmental topography and 

division of labor represents a fundamental organizing principle on which the MB operates 

(Fig. 1 A,B).

Circuit biology: how is olfactory information rerouted by learning?

A longstanding model postulates that the MB modulates conditioned behaviors by altering 

the flow of olfactory information through downstream circuits that mediate approach and 

avoidance behavior (Heisenberg, 2003). This may occur in part via dopaminergic 

modulation of distinct spatial compartments of the MB (Fig. 1 A,B). The lobes of the MB 

are divided into compartmental zones that each receive dopaminergic input from distinct 

DANs, and send outputs to distinct downstream MBONs (Aso et al., 2014a; Aso et al., 

2014b; Mao and Davis, 2009; Tanaka et al., 2008) (Fig. 1A). In naïve situations, DAN 

activity modulates Ca2+ responses in a compartmentalized fashion in the MB γ lobe. Odor-

evoked Ca2+ responses show non-uniform distribution along the axon (Cohn et al., 2015). 

Under normal circumstances, larger responses were observed in the γ2/γ3 (proximal) 

compartments than the γ4/γ5 (distal) compartments. Upon activation of DAN neurons 

innervating the γ lobe, the profile of odor-evoked responses inverted, increasing the 

responses in distal compartments relative to the proximal ones, resembling the effect of 

sucrose ingestion. DANs also produce plasticity in odor-evoked Ca2+ responses in the MB 
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following olfactory classical conditioning (Louis et al., 2018). In this context, conditioning 

produced spatially-broad facilitation of odor-evoked Ca2+ responses that were specific to 

appetitive conditioning (no net changes were observed with aversive conditioning). This 

potentiation was recapitulated when comparing odor-evoked Ca2+ responses before and after 

appetitive conditioning, and it was dependent on Rutabaga. Stimulation of “appetitive” PAM 

DANs paired with odor presentation also induces elevation of cAMP levels (Boto et al., 

2014; Handler et al., 2019) and a facilitation in the odor-evoked Ca2+ responses across the 

MB lobes (Boto et al., 2014). This suggests that appetitive conditioning exerts strong 

influence over odor-evoked Ca2+ in the MB. How this Ca2+ signal correlates with synaptic 

plasticity is an open question, as there are multiple sources of intracellular Ca2+; for 

instance, the endoplasmic reticulum in KCs exhibits Ca2+ flux under learning-relevant 

conditions (Handler et al., 2019).

Several examples of learning-induced plasticity in KCs have been documented. Changes in 

synaptic output from KCs have been observed with synaptophluorin following conditioning. 

Aversive conditioning decreases synaptic CS− responses, and this effect is dependent on the 

activity of the heterotrimeric G protein subunit Gαo (Zhang and Roman, 2013). Synaptic 

content of the MB and DANs has been associated with increased memory strength in a 

developmental context (Phan et al., 2019). In vitro experiments using synaptophluorin have 

observed integration of signals in the MB from the antennal nerves and ascending fibers of 

the ventral nerve cord, which putatively carry somatosensory US information, and plasticity 

when these pathways are stimulated in tandem (Ueno et al., 2013). Dopamine application 

can replace stimulation of the ventral nerve fibers, and the plasticity is dependent on Rut 

expression in the MB (Ueno et al., 2017).

The studies reviewed above suggest that the MB encodes odors, is innervated by DANs and 

other modulatory neurons that carry positive and negative valence signals, and conveys 

processed olfactory information to downstream neurons that can bias behavioral decisions. 

This provides a substrate through which learning-induced plasticity could alter the flow of 

information to generate conditioned responses following learning. At the synapse between 

the KCs and MBONs, heterosynaptic depression has been observed postsynaptically 

following pairing of odor with stimulation of DANs (Hige et al., 2015). This drives 

alterations in the responses of MBONs, both via direct effects at local synapses and via 

downstream network effects (e.g., feedforward inhibition) (Berry et al., 2018; Felsenberg et 

al., 2018; Hige et al., 2015; Owald et al., 2015; Perisse et al., 2016; Sejourne et al., 2011). 

Notwithstanding the lack of compartmentalized plasticity at the level of Ca2+ in some 

paradigms, other evidence suggests that presynaptic, compartmentalized plasticity in KCs 

could contribute to coherent learning-induced plasticity across the MBONs. Stimulation of 

DANs produces compartmentalized cAMP transients in KCs (Boto et al., 2014). Since many 

of the MBONs have an innate valence, and bias an animal toward or away from an odor, 

compartmentalized neuromodulatory effects in KCs could contribute to differential 

activation of some MBONs relative to others following learning (Aso et al., 2014a; Cohn et 

al., 2015; Handler et al., 2019). MBON display also biased innervation towards specific KC 

depending on their role in avoidance or attraction, as it has been reported that non-

overlapping populations of KC can be functionally subdivided depending on the valence 

they encode. (Perisse et al., 2013; Yamazaki et al., 2018).
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Circuit complexity: interconnections in the olfactory nervous system

As more anatomical detail is mapped in the Drosophila olfactory pathway, it is becoming 

clear that there is substantial reciprocal connectivity, recurrent feedback, and lateral 

connectivity among the neuronal elements. These circuit motifs are relevant for emerging 

circuit models of learning and memory, though the behavioral implications are incompletely 

understood. At the input to the MB, antennal lobe PNs form bidirectional connections with 

the KC dendrites in the calyx (Christiansen et al., 2011; Pech et al., 2015). Between KCs and 

DANs, the simplest circuit model of connectivity would be unidirectional, with the DANs 

presynaptic to the KCs. DANs release dopamine that acts on MB neurons to elevate cAMP 

via D1-like receptors, demonstrating functional connectivity in this direction (Boto et al., 

2014). However, recent studies have also documented reciprocal connectivity between these 

cell types (Fig. 1 B,C). Multiple examples have been documented, including PAM-

γ4<γ1γ2, PPL1 α2α′2 DANs, PAM-γ5 (via an MBON loop), and larval protocerebral 

anterior PAM neurons (Aso et al., 2014a; Cervantes-Sandoval et al., 2017; Handler et al., 

2019; Lyutova et al., 2019; Zhao et al., 2018). In all of these instances, KC activity drives 

activation of the DANs, which ultimately influences learning and memory by modulating the 

release of dopamine onto the KCs. Reciprocal connectivity of KCs and DANs may function, 

along with inputs from somatosensory circuits that convey US information from the body, to 

drive plasticity via nicotinic acetylcholine receptor-dependent mechanisms (Ueno et al., 

2017). Recurrent connections between KCs and MBONs have also been shown to play key 

roles in modulating learned behaviors. For instance, one cell type connects the peduncle of 

the MB γ neurons back to the MB calyx, providing recurrent feedback from the MB output 

to its input layer (Zheng et al., 2018). MBON recurrent connections have been shown to play 

a role in long-term memory (Ichinose et al., 2015; Pavlowsky et al., 2018). Thus, recurrent 

connectivity among layers in the olfactory pathway is a fundamental circuit motif that 

presumably plays a role in shaping the plasticity driving learned behaviors (Aso et al., 

2014a; Eichler et al., 2017; Takemura et al., 2017).

At the circuit level, the complex reciprocal interconnectivity between KCs & KCs, PNs & 

KCs, KC & DANs, KCs & MBONs, DANs & MBONs has led to increasingly complex 

neuronal circuitry models and questions (Fig. 1C). For instance, lateral connectivity between 

KCs, involving both gap junctions and chemical synapses, has also been recently discovered 

(Liu et al., 2016; Takemura et al., 2017). The functional significance of this intriguing circuit 

feature is a mystery. While electrical synapses between KC have been implicated in the 

retrieval of a specific form of consolidated memory (Shyu et al., 2019), connectomics 

studies have recently reported rosette-like synapses, interpreted as KC>KC reciprocal 

contacts. Most of these KC>KC connections have one additional postsynaptic partner, most 

frequently an MBON. KC>KC synapses could enable the excitation of one KC to spread to 

adjacent KCs (Takemura et al., 2017). In contrast, reciprocal synapses between KCs and 

DANs have received more attention, and the function of these connections may be to 

amplify the signals from the KCs, generating synaptic plasticity under biologically-relevant 

conditions (Zhao et al., 2018). Finally, in addition to innervating KCs, the DANs also 

synapse with the MBONs one synapse downstream (Eichler et al., 2017; Takemura et al., 
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2017). The behavioral roles of most of these types of connections are not yet well 

understood.

After the MBs integrate and process information, it is fed to MBONs. Each type of MBON 

receives dendritic input from at least one of the MB compartments. In turn, most MBONs 

project to different neuropil regions in the protocerebrum, though three MBONs provide 

recurrent feedback to the MBs (Aso et al., 2014a). In marked contrast to the sparse odor 

responsivity among KCs, MBONs respond broadly to odors, and the odor tuning varies 

between individual flies (Hige et al., 2015). Activation of different output neurons generates 

approach/avoidance behavior, leading to the idea that MBONs encode valence (value 

associated with a stimulus) rather than stimulus identity (Aso et al., 2014b). Additional 

complexity will likely be incorporated into our view of MB function as additional 

anatomical, behavioral, and physiological data are collected and integrated. For instance, 

MBONs exhibit significant anatomical complexity, with at least 3 recurrent connections 

between MBONs and KCs (Aso et al., 2014a), feedforward inhibition (Perisse et al., 2016), 

and intricate dendritic and axonal fields (Felsenberg et al., 2018). The γ1pedc>α/β MBON 

plays a key role in state-dependent bidirectional signaling associated with olfactory classical 

conditioning (Perisse et al., 2016; Tsao et al., 2018). The glutamatergic γ4>γ1γ2 is 

activated over time to produce a forgetting phenotype that is not acute but cumulative (Shuai 

et al., 2015). The β1>α MBON is another glutamatergic output neuron that currently has not 

been associated with learning and memory, but when activated produces an avoidance 

response (Aso et al., 2014a).

The MBs and MBONs regulate learned behaviors in complex, combinatorial ways. 

Information about prior experience (learning) and internal state converges in the MB and is 

transmitted to the MBONs. The MBONs are responsible for valence assignment in a 

combinatorial way. That is, the final value of a stimulus is believed to be computed as some 

weighted combination of activity across the “positive” and “negative” MBONs (Owald et al., 

2015). The activity of several MBONs is necessary for memory retrieval in the olfactory 

classical conditioning paradigm (Bouzaiane et al., 2015; Owald et al., 2015; Sejourne et al., 

2011). Relatedly, physiological changes in several MBONs have been reported as a result of 

memory formation (Berry et al., 2018; Bouzaiane et al., 2015; Hige et al., 2015; Owald et 

al., 2015; Sejourne et al., 2011).

Behavioral complexity: shared circuits regulate diverse behaviors

While the MB is critical for olfactory learning, it is also, more generally, a multimodal 

sensory integration center (Kirkhart and Scott, 2015; Ren et al., 2012; Vogt et al., 2014; Yagi 

et al., 2016). The circuits that drive approach and avoidance are involved in modulating other 

behaviors as well. For instance, male mating behavior relies upon the γ5β′2a output neuron 

circuit (Keleman et al., 2007; Manoli et al., 2005; Yu et al., 2010; Zhao et al., 2018). This 

circuit is necessary for inhibition of courtship to unreceptive females. γ KCs synapse onto 

γ5β′2a MBONs, which subsequently activate the PAM-γ5 DANs (Zhao et al., 2018). If this 

reciprocal feedback circuit is altered, male courtship conditioning is impaired. In addition, 

MBONs and DANs also modulate sleep, visual memory, and food-seeking behavior (Aso et 

al., 2014b; Joiner et al., 2006; Landayan et al., 2018; Pitman et al., 2006; Tsao et al., 2018). 
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Recurrent circuits are utilized for other learned behaviors that are not necessarily directly 

reliant upon olfaction. For instance, male aggression state is modulated by the γ1pedc>α/β 
MBON and PPL1-γ1pedc DAN (Kim et al., 2018). This demonstrates that these networks 

can be co-opted for the alteration of complex behavioral dynamics involving multisensory 

input.

Conclusions and future outlook

Looking forward, several major themes emerge as likely avenues of intensive research in 

pursuit of a complete understanding of the fly brain. First, we will need a more complete 

understanding of the genetics, and synaptic/cellular signaling underlying learning and 

memory. For instance, single cell transcriptomic studies are leading to the identification of a 

plethora of novel candidate genes underlying learning and memory (Crocker et al., 2016; 

Croset et al., 2018; Li et al., 2017; Shih et al., 2019). Second, further anatomical detail will 

be necessary to understand the connectivity of the nervous system as a whole. Large-scale 

projects are underway to map the connectome of Drosophila with varying scope and 

resolution (Eichler et al., 2017; Zheng et al., 2018). This will provide a ground plan 

necessary to interrogate the nervous system of this key model system with unprecedented 

specificity. The experience with organisms such as C. elegans and the stomatogastric 

ganglion of C. borealis has shown that a connectome is a highly valuable contribution to 

accelerate discovery from functional studies. While general principles of neuronal circuit 

function can be gleaned from detailed cell-by-cell analysis, it is hard to imagine completely 

understanding the nervous system without elucidating at least the majority of its “road map”. 

This points the way toward the third major direction for future research, the functional 

analysis of neuronal circuits in parallel with mapping projects. This will include the 

refinement of tools for observing (imaging) and manipulating neuronal circuits to parse their 

function. Finally, we expect that new conceptual and computational insights will be 

necessary in order to fully understand the function of the nervous system. Future directions 

in this realm are more difficult to anticipate, and the punctuated equilibrium of progress is 

more apparent. In all of these areas, given the conservation of genetics, cell biology, and 

fundamental neuronal circuit function, developing a thorough understanding of how learning 

and memory works in the Drosophila brain will provide key insight into the fundamental 

principles at play across taxa, including humans.
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Figure 1. 
Simplified diagram of the anatomical connectivity and information processing that underlies 

olfactory learning in Drosophila. A. Simplified diagram of the olfactory pathway through the 

mushroom body (MB) and mushroom body output neurons (MBONs), highlighting the 

major anatomical structures involved in learning. Connections to the lateral horn are not 

shown. Gray arrows indicate the inward information flow from peripheral olfactory sensory 

receptors. ORNs: olfactory receptor neurons, PNs: projection neurons, KCs: Kenyon Cells, 

DAN: dopaminergic neuron(s), MBON: mushroom body output neuron, PPL1/2: paired 
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posterior lateral (dopaminergic) neurons, PAM: protocerebral anterior medial 

(dopaminergic) neurons. B. Drawing of the mushroom body, showing the major anatomical 

subdivisions and classes of neurons relevant for learning. Anatomical compartments (γ1-γ5, 

α2, α3, α′3) are outlined with dashed lines. For clarity, only one γ KC and one α/β KC are 

drawn (out of ~2500 total); likewise, two MBONs are drawn (out of 34 total). C. Flowchart 

highlighting major connections in the olfactory pathway that are critical for olfactory 

learning and memory. DPM: dorsal paired medial neuron, DAL: dorsal anterior lateral, APL: 

anterior paired lateral neuron.
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Table 1.

Nomenclature for neurons discussed in this review. While MB subsets have consistent nomenclature, several 

systems have been used to label DANs and MBONs. We use the system of Aso et al. in this review.

Subset Nomenclature
1

Nomenclature
2

Nomenclature
3

Mushroom body (MB) neurons; = Kenyon Cells (KCs)

α/β

α′/β′

γ

Dopaminergic neurons (DANs)

PPL1 neurons
PPL1-γ1pedc MB-MP1

PPL1-α2α′2 MB-V2

PAM neurons

PAM-γ3 MB-M2

PAM-γ5 asp13

PAM-β2β′2a PAM-M3

Mushroom body output neurons (MBONs)

β1>α MB-MV2

γ1ped>α/β MB-MVP2

γ4>γ1γ2

γ5β′2a MB-M6 MB-M6

1
Nomenclature used in Aso et al. (2014)

2
Nomenclature used in Tanaka et al. (2008)

3
Nomenclature used in Zhao et al. (2018)
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