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Abstract

Corticobasal degeneration (CBD) is a neurodegenerative tauopathy that is characterised by motor 

and cognitive disturbances (1–3). A higher frequency of the H1 haplotype of MAPT, the tau gene, 

is present in cases of CBD than in controls (4,5) and genome-wide association studies have 

identified additional risk factors (6). By histology, astrocytic plaques are diagnostic of CBD (7,8), 

as are detergent-insoluble tau fragments of 37 kDa by SDS-PAGE (9). Like progressive 

supranuclear palsy (PSP), globular glial tauopathy (GGT) and argyrophilic grain disease (AGD) 

(10), CBD is characterised by abundant filamentous tau inclusions that are made of isoforms with 

four microtubule-binding repeats (4R) (11–15). This distinguishes 4R tauopathies from Pick’s 

disease, filaments of which are made of three-repeat (3R) tau isoforms, and from Alzheimer’s 

disease and chronic traumatic encephalopathy (CTE), where both 3R and 4R tau isoforms are 

found in the filaments (16). Here we report the structures of tau filaments extracted from the brains 

of three individuals with CBD using electron cryo-microscopy (cryo-EM). They were identical 

between cases, but distinct from those of Alzheimer’s disease, Pick’s disease and CTE (17–19). 

The core of CBD filaments comprises residues K274-E380 of tau, spanning the last residue of R1, 

the whole of R2, R3 and R4, as well as 12 amino acids after R4. It adopts a novel four-layered 
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fold, which encloses a large non-proteinaceous density. The latter is surrounded by the side chains 

of lysine residues 290 and 294 from R2 and 370 from the sequence after R4. CBD is the first 4R 

tauopathy with filaments of known structure.

We extracted tau filaments from the brains of three individuals with a neuropathologically 

confirmed diagnosis of CBD. Abundant neuronal inclusions and astrocytic plaques were 

stained by antibodies specific for 4R tau (Figure 1a–c) and for hyperphosphorylated tau 

(Figure 1e), as well as by Gallyas-Braak silver (Figure 1f). Antibodies against 3R tau failed 

to give specific staining (Figure 1d) Astrocytic tau inclusions were more numerous in basal 

ganglia than in cerebral cortex. By immunoblotting of sarkosyl-insoluble fractions, two 

major tau bands of 64 and 68 kDa were stained by an antibody specific for 4R tau, as were 

two minor bands of 37 kDa (Figure 1g). Immunogold negative-stain EM used filaments 

extracted from frontal cortex and putamen of CBD cases 1–3, as well as from globus 

pallidus and thalamus of CBD case 3. Antibodies specific for the N-terminus, R1, R2, R3 

and R4 and the C-terminus of tau indicated that the cores of CBD filaments share epitopes of 

R2, R3 and R4 (Extended Data Figures 1 and 2). This is consistent with the estimated 

lengths of trypsin-resistant cores of CBD filaments (20). Narrow and wide tau filaments 

were present (Figure 1h), in agreement with previous findings (21). Narrow filaments have a 

helical twist with a crossover distance of approximately 1,000 Å, a minimal width of 80 Å 

and a maximal width of 130 Å. Wide filaments have a crossover distance of approximately 

1,400 Å and a maximal width of 260 Å, with a similar minimal width as that of narrow tau 

filaments. We named these filaments Type I (narrow) and Type II (wide) CBD filaments, 

respectively. Co-pathologies are often found in CBD (22,23). Small amounts of assembled 

TDP-43 were present in frontal cortex of CBD cases 1 and 2; CBD case 3 was negative 

(Extended Data Figure 3). It has been reported that C9orf72 intermediate repeat expansions 

are associated with a subset of cases of CBD (24). Such expansions were not present in CBD 

cases 1–3. CBD case 1 had 2 repeats on each allele, CBD case 2 had also 2 repeats on each 

allele and CBD case 3 had 2 repeats on one allele and 11 repeats on the other. Staining for 

Aβ in frontal cortex was stage A for CBD case 1 and stage 0 for CBD cases 2 and 3. 

Abundant α-synuclein inclusions were not present in CBD cases 1–3, nor were inclusions 

positive for FUS or positive for dipeptide repeats.

We used cryo-EM and helical reconstruction in RELION (25) to determine the structures of 

both types of tau filaments of CBD (Figure 2a, Extended Data Figure 4, Extended Data 

Table 1). The ratios of Type II to Type I filaments ranged from 3:1 to 1:1, depending on 

cases (Extended Data Table 1). In the three cases, Type I filaments are composed of a single 

protofilament and adopt a novel four-layered fold. Like CTE filaments, each protofilament 

of CBD contains an additional density that is surrounded by density of the tau protein chain. 

Unlike CTE (19), the additional density is found in a positively charged environment. Type 

II filaments consist of pairs of identical protofilaments of Type I, related by C2 symmetry, 

with less well-resolved maps at the ends of the cores than in their central parts. For case 1, 

we obtained maps of Type I and Type II tau filaments at overall resolutions of 3.2 Å and 3.0 

Å, respectively (Extended Data Figure 5a–d). Local resolution in the central part of Type II 

filaments extended to 2.8 Å. The maps showed side chain densities and β-strands that were 
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well separated along the helical axis, allowing us to generate stereochemically refined 

atomic models (Figure 2b, Extended Data Figure 5e–h).

Type I and Type II tau filaments contain a common protofilament, whose core structure 

(CBD fold) is composed of residues K274-E380, i.e. the last residue of R1, all of R2-R4, 

and 12 amino acids after R4. In the core, there are eleven β-strands (β1-β11): three from R2 

(β1-β3), three from R3 (β4-β6), four from R4 (β7-β10) and one from the sequence after R4 

(β11). They are connected by turns and arcs and form a four-layered structure (Figure 2b, 

Extended Data Figure 6). The central four layers are formed by β7, β4, β3 and β10. Strands 

β3 and β4 are connected by a sharp turn, whereas β7 and β10 are connected through β8 and 

β9, which wrap around the turn. On the other side, β2, β5 and β6 form a three-layered 

structure. β2 packs against one end of β5 and β6 packs against the other end. The first and 

the last strands, β1 and β11, pack against each other and close a hydrophilic cavity formed 

by residues from β2, β3, β10, β11 and the connections between β1 and β2, as well as 

between β2 and β3 (Figure 2b, Extended Data Figure 6). All interfaces in the CBD fold have 

mixed compositions of polar and hydrophobic groups (Extended Data Figure 6a).

Each tau repeat contains a PGGG motif (16). In the CBD fold, the PGGG motif of R2 

(residues 301 to 304) forms a tight turn between β3 and β4, which is essential for the 

formation of the four-layered cross-β packing. The PGGG motif of R3 (residues 332 to 335) 

adopts an extended conformation between β6 and β7, compensating for the shorter lengths 

of these strands compared to the opposing β4 and β5 connected by P312. The PGGG motif 

of R4 (residues 364–367) adopts a similar extended conformation, forming part of the 

hydrophilic cavity.

In CBD Type II tau filaments, the two protofilaments are related by C2 symmetry (Figure 

2b, Extended Data Figure 6). The interface between protofilaments is formed by anti-parallel 

stacking of 343KLDFKDR349. Besides van der Waals interactions between the anti-parallel 

side chains of K347 from each protofilament, the side chain of K347 is positioned to form 

hydrogen bonds with the carboxyl group of D348 and the backbone carbonyl of K347 on the 

opposite protofilament (Figure 2b, Extended data Figure 7).

The hydrophilic cavity contains an additional density that is different from tau (Figure 2b, 

Extended Data Figure 6). The positively charged side chains of K290, K294 and K370 point 

to this extra density, which is not connected to the density for tau, suggesting that it is not 

covalently linked to tau, and therefore does not represent a post-translational modification. 

The extra density is as strong as that of tau, which assuming that the corresponding 

molecules have a similar scattering potential compared to protein, suggests near-

stoichiometric occupancy (Figure 2a). In cross-section, the density has approximate 

dimensions of 9 Å by 4 Å, while it has only few features along the helical axis. Attempts to 

resolve additional features by performing refinements with a larger helical rise failed. We 

hypothesise that the extra density is made of non-proteinaceous, polyanionic molecules with 

a charge of −3 per rung. The buried nature of the negatively charged molecules, their high 

occupancy and presence in most filaments at end-stage disease indicate that they are 

continuously incorporated during filament formation. It is therefore possible that these 
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molecules stabilise the CBD fold during initial filament assembly and/or subsequent seeded 

aggregation.

CBD is characterised by abundant neuronal and glial inclusions of 4R tau. It remains to be 

determined if Type I and Type II filaments are differentially distributed between neuronal 

and glial inclusions. The present findings indicate that a single protofilament is characteristic 

of these inclusions. Tau inclusions may form first in astrocytes of striatum and prefrontal 

cortex (26). Astrocytic plaques, in which assembled 4R tau is present in astrocytic end-feet 

(6), have been reported to have a perivascular localisation (27), suggesting that in CBD 

cofactors for tau assembly may enter the brain from the periphery, similar to what we have 

hypothesised for CTE (19).

Six tau isoforms are expressed in adult human brain, three isoforms with 3R and three 

isoforms with 4R (28). Based on the tau isoform composition of their filaments, three types 

of tauopathies can be distinguished: 3R, 4R and 3R+4R. We previously reported the 

structures of tau filaments from Alzheimer’s disease, Pick’s disease and CTE (Figure 3) 

(17–19). Pick’s disease is a 3R tauopathy, whereas both Alzheimer’s disease and CTE are 

3R+4R tauopathies. Tau filaments from Alzheimer’s disease and CTE are different, 

indicating that tau isoform composition is not the sole determinant of conformation. CBD is 

the first example of a 4R tauopathy of known filament structure. Differences in 

protofilament structure are observed between diseases, but not between subjects with a given 

disease, consistent with the existence of distinct conformers of assembled tau in different 

tauopathies (Figure 3).

The cores of tau filaments from human brain of known structure all contain R3, R4 and 10–

12 amino acids after R4 (17–19). Filaments comprising 3R+4R tau in Alzheimer’s disease 

and CTE do not have R1 or R2 in their cores, and those comprising 3R tau in Pick’s disease 

have part of R1, whereas filaments comprising 4R tau in CBD contain the whole of R2. This 

makes the CBD fold the largest known tau fold, with 107 ordered residues. Therefore, 

filament disassembly may come at a relatively high energetic cost, which may in turn have 

implications for seeded aggregation and disease progression. Tau assemblies from CBD 

brains have been shown to seed specific aggregation (29–31). It is likely that filaments from 

other 4R tauopathies, such as PSP, GGT and AGD, have also at least part of R2 in their 

cores, but these structures remain to be determined.

It was previously not known why only 4R tau isoforms are present in the filaments of CBD. 

Our structure reveals that S305, the last residue of R2, which starts β4, is located at a 

position, where the side chain of K274, the last residue of R1, cannot fit (Figure 2b). 

Moreover, if R1 were incorporated instead of R2, K294 would be replaced by T263, which 

would weaken the interaction with the extra density (Figure 2b,d). In support, the sarkosyl-

insoluble fraction from CBD cases 1–3, which was used for cryo-EM, seeded aggregation of 

soluble tau in SH-SY5Y cells expressing full-length 4R, but not 3R, human tau (Extended 

Data Figure 8). Similarly, CBD-tau recruited only soluble 4R tau into insoluble aggregates 

in primary neurons, whereas Alzheimer’s disease-tau recruited both 3R and 4R tau (31). In 

contrast, tau filaments extracted from the brain of a patient with Pick’s disease seeded 

Zhang et al. Page 4

Nature. Author manuscript; available in PMC 2020 August 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



aggregation of 3R, but not 4R, human tau (18). Templated misfolding of this type may 

explain why only 4R tau is incorporated into CBD filaments.

Despite differences between folds, with the structures of tau filaments from four human 

tauopathies now known, common patterns are beginning to emerge (Figure 3). Packing 

between β1 and β11 in the CBD fold resembles that between β1 and β8 in the Alzheimer 

and CTE folds (18,20). In CBD, 274KVQIINK280 packs against 374HKLTFRE380, whereas 

in Alzheimer’s disease and CTE 305KVQIVYK311 packs against 374HKLTFRE380. 

Hexapeptides VQIINK and VQIVYK are necessary for cofactor-induced assembly of 

recombinant tau (32,33), seeded aggregation in cultured cells (34) and assembly of mutant 

human tau in transgenic mice (35). Residues 374HKLTFRE380 are missing from the widely 

used tau constructs K18 and K19, which end at E372 (36). The hairpin-like structure of β4-

β7 in the CBD fold resembles that of β3-β6 in the Pick fold, with the exception of C322, 

which points inwards to form the sharp turn in the CBD fold, and which points outwards in 

the Pick fold. Interestingly, in all four tau filament folds from human brain, β-strands are 

formed by approximately the same residues (Figure 3); this is also true for tau filaments 

assembled in vitro using heparin (37). It suggests a model for the diversity of tau folds, 

where β-strands form fixed building blocks and the loops and turns between strands provide 

diversity. Tau repeats contain many glycine and proline residues, all of which are located in 

loops and turns.

This work may shed light on why tau folds differ between diseases, which may in turn reveal 

mechanisms that lead to ordered assembly. Post-translational modifications may be 

important. Thus, deamidation of N279 in R2 of tau takes place in Alzheimer’s disease, but 

not in CBD or PSP (38). This residue, which is located in β1 of CBD, is outside the 

structured core of AD and CTE filaments. Association of non-proteinaceous cofactors with 

tau filaments from human brain was unexpected, even though it is well established that such 

factors can induce assembly of soluble, unmodified tau protein in vitro (16). In the same 

way that hydrophobic molecules inside the β-helix may shape the CTE fold (19), 

polyanionic molecules inside the positively charged cavity may help to form the CBD fold. 

We previously speculated that the extra densities near K317 and K321 of tau on the 

periphery of the Alzheimer fold (17), which are also observed in the CTE fold (19), may be 

formed by 7EFE9 of tau. They are believed to be essential for the formation of the straight 

tau filaments of Alzheimer’s disease. Their similarity to the extra density in the CBD fold 

raises the possibility that non-proteinaceous molecules may also play a role in providing 

specificity for tau assembly into Alzheimer and CTE folds.

Determination of the CBD fold opens 4R tauopathies to structural analysis. It supports the 

hypothesis that distinct conformers of filamentous tau define different tauopathies. We 

previously showed that tau filaments from Alzheimer’s disease, Pick’s disease and CTE 

adopt different folds (17–19). Future investigations into what drives the specificity of tau 

conformers in tauopathies may lead to novel diagnostic and therapeutic opportunities.
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METHODS

No statistical methods were used to predetermine sample size. The experiments were not 

randomized and investigators were not blinded to allocation during experiments and 

outcome assessment.

Clinical history and neuropathology.

Case 1 was a female from Japan who died aged 74 following a six year history of 

progressive memory loss and motor impairment. Case 2 was a female from Japan who died 

aged 79 following a nine year history of progressive memory impairment and spatial 

disorientation. Case 3 was a male from the U.S. who died aged 52 following a seven year 

history of personality changes and cognitive dysfunction. Neuropathologically, the brains of 

all three cases exhibited signs of CBD, with abundant 4R tau- and silver-positive neuronal 

inclusions, neuropil threads and astrocytic plaques (Figure 1a–e). Tufted astrocytes 

characteristic of progressive supranuclear palsy (PSP) were not observed. By 

immunoblotting of the sarkosyl-insoluble fraction, bands of 64 and 68 kDa were detected by 

antibodies RD4 and AT8, but not by RD3. Bands of 37 kDa were also seen, consistent with 

CBD (Figure 1g). No known disease-causing mutations were present in MAPT. All three 

cases were homozygous for A at position 152; A152T tau has been reported to be a risk 

factor for some tauopathies (39,40). Whole-exome and whole-genome sequencing did not 

detect mutations known to cause Alzheimer’s disease, Parkinson’s disease, frontotemporal 

dementia or amyotrophic lateral sclerosis. All three cases were homozygous for the H1 
haplotype of MAPT. Two haplotypes, H1 and H2, are present in the Caucasian population, 

with the H1 haplotype being over-represented in individuals with CBD and PSP (4,5). The 

Japanese population has only H1 (41,42). The APOE genotypes of CBD cases 1–3 were: 

case 1 (ε3/ε4), case 2 (ε3/ε3), case 3 (ε3/ε3).

Whole-exome sequencing.

Target enrichment made use of the SureSelectTX human all-exon library (V6, 58 Mb, 

Agilent) and high-throughput sequencing was carried out using a HiSeq4,000 (2×75-bp 

paired-end configuration, Illumina). Bioinformatics analyses were performed as described 

(43).

Whole-genome sequencing.

Sequencing libraries were prepared using 100 ng high-quality genomic DNA from 

cerebellum using Illumina Nextera DNA Flex Library Prep Kit, and assessed using a Qubit 

and Agilent Bioanalyzer. High-throughput DNA sequencing was carried out on multiple 

libraries pooled in equal molarity using a NovaSeq6,000 (150-bp paired-end configuration, 

Illumina) and aligned to the human reference genome GRCh38 using BWA and Bwakit 

(v.0.7.15). ExpansionHunter was applied to estimate expansion numbers of short tandem 

repeats (v.2.5.5) and germline variants were identified with strelka2 (v.2.9.9), with default 

parameters for whole-genome sequence data. The variants were annotated for their effects 

with ANNOVAR (44).
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C9orf72 hexanucleotide repeat expansion.

Repeat-primed polymerase chain reaction was used to determine the number of GGGGCC 

hexanucleotide repeats in the first intron of C9orf72 (Asuragen AmplideX PCR/CE C9orf72 
kit). Internal standards were analysed along with samples to evaluate assay performance. 

Repeat numbers of up to 25 repeats were determined with an accuracy of ±1 repeat, and 

repeat numbers greater than 25 were determined with an accuracy of ±3 repeats.

Extraction of tau filaments.

For cryo-EM, sarkosyl-insoluble material was extracted from fresh-frozen frontal cortex of 

CBD cases 1–3, essentially as described (20). Briefly, tissues were homogenised in 20 

volumes (v/w) extraction buffer consisting of 10 mM Tris-HCl, pH 7.5, 0.8 M NaCl, 10% 

sucrose and 1 mM EGTA. Homogenates were brought to 2% sarkosyl and incubated for 30 

min. at 37°C. Following a 10 min. centrifugation at 20,000 g, the supernatants were spun at 

100,000 g for 20 min. The pellets were resuspended in 700 μl/g extraction buffer and 

centrifuged at 9,500 g for 10 min. For CBD cases 1 and 2, the supernatants were diluted 3-

fold in 50 mM Tris-HCl, pH 7.5, containing 0.15 M NaCl, 10% sucrose and 0.2% sarkosyl 

and spun at 166,000 g for 30 min. For CBD case 3, the supernatant was spun at 100,000 g 

for 60 min and the pellet resuspended in 700 μl/g extraction buffer and centrifuged at 9,800 

g. The supernatant was then spun at 100,000 g for 60 min. Sarkosyl-insoluble pellets of 

CBD cases 1–3 were resuspended in 25 μl/g of 20 mM Tris-HCl, pH 7.4, 100 mM NaCl and 

used for cryo-EM. For immuno-EM the samples were diluted 5–10-fold. Sarkosyl-insoluble 

pellets of approximately 2 g frontal cortex were used for cryo-EM.

Immunolabelling, histology and silver staining.

Western blotting and immunogold negative-stain EM were carried out as described (45). 

Using the same procedures as described above, filaments were extracted from putamen of 

CBD cases 1–3, as well as from globus pallidus and thalamus of CBD case 3. For Western 

blotting, the samples were resolved on 4–20% Tris-glycine gels (Novex) and the primary 

antibodies were diluted in PBS plus 0.2% Tween-20, 1% bovine serum albumin. Primary 

antibodies were: RD3 and RD4 (46) (Millipore), used at 1:4,000; AT8 (47) (specific for 

pS202/pT205 tau) (Thermo Fisher), used at 1:1,000 and anti-phospho-TDP-43 (pS409/

pS410) (48,49) (Cosmo Bio), used at 1:1,000. For immuno-EM, primary antibodies were 

used at 1:50. They were: BR133 (28) (raised against tau residues 1–16), BR136 (18) (raised 

against tau residues 244–257), Anti-4R (38,50) (raised against tau residues 275–291), 

BR135 (28) (raised against tau residues 323–335), TauC4 (20) (raised against tau residues 

354–369) and BR134 (28) (raised against tau residues 428–441). Histology and 

immunohistochemistry were carried out as described (51). Brain sections were 8 micron-

thick and were counterstained with haematoxylin. Primary antibodies were: RD3 (1:1,000); 

RD4 (1:1,000); AT8 (1:300); anti-pS396 tau (1:1,000, Calbiochem); anti-TauC, specific for 

tau at residues 422–438 (1:1,000, Cosmo Bio); anti-phospho-TDP-43 (1:1,000); anti-FUS 

(1:200, Sigma); anti-poly-GA (1:1,000, Cosmo Bio); anti-α-tubulin (1:1,000, Sigma) and 

anti-influenza hemagglutinin (HA) (1:1,000, Sigma). Sections were silver-impregnated using 

the method of Gallyas-Braak to visualise inclusions (52,53).
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Seeded tau aggregation.

Seeded aggregation was carried out as described (54), except that sarkosyl-insoluble tau 

from the frontal cortex of CBD cases 1–3 was used as seed. Briefly, 10 ng sarkosyl-insoluble 

tau seed and Multifectam (Promega) were added to SH-SY5Y cells transiently expressing 

HA-tagged 1N3R or 1N4R human tau. Mock transfections were done in the absence of tau 

seeds. After three days of culture, sarkosyl-insoluble and sarkosyl-soluble fractions were 

prepared and used for immunoblotting. Insoluble tau was detected with anti-HA and anti-

pS396-tau antibodies. Total tau was detected with anti-TauC. Tau concentrations in the seeds 

from frontal cortex of CBD cases 1–3 were determined using the Tau ELISA kit Wako 

(FUJIFILM). The intensity of HA-positive bands in the sarkosyl-insoluble fractions was 

quantified using Image J software.

Electron cryo-microscopy.

Extracted tau filaments from frontal cortex were centrifuged at 3,000 g for 30 s, before being 

applied to glow-discharged holey carbon grids (Quantifoil Au R1.2/1.3, 300 mesh) and 

plunge-frozen in liquid ethane using a Thermo Fischer Vitrobot Mark IV. Images were 

acquired on a Gatan K2-Summit detector in counting mode using a Thermo Fischer Titan 

Krios microscope at 300 kV. A GIF-quantum energy filter (Gatan) was used with a slit width 

of 20 eV to remove inelastically scattered electrons. Further details are given in Extended 

Data Table 1. Filaments widths and crossover distances were measured manually in the 

cryo-EM micrographs. Statistical analyses on these measurements were performed using a 

one-way ANOVA test, followed by Tukey’s multiple comparisons test (Prism, GraphPad 

Software, Inc.).

Helical reconstruction.

Movie frames were gain-corrected, aligned, dose-weighted and then summed into a single 

micrograph using MOTIONCOR2 (54). The micrographs were used to estimate the contrast 

transfer function (CTF) using Gctf (55). All subsequent image-processing steps were 

performed using helical reconstruction methods in RELION 3.0 (25,56,57). Both types of 

filaments were selected manually in the micrographs, and the resulting data sets were 

processed independently. For Type I (narrow) filaments, 135,646 segments were extracted 

with an inter-box distance of 14.1 Å and a box size of 920 pixels. Initial reference-free 2D 

classification was performed with images that were downscaled to 230 pixels to speed up 

calculations. Segments contributing to suboptimal 2D class averages were discarded. 

Assuming a helical rise of 4.75 Å, a helical twist of −0.9° was estimated from the crossover 

distance of filaments in the micrographs. Using these parameters, an initial 3D reference was 

reconstructed from the 2D class averages de novo. We then re-extracted the selected 

segments without downscaling them, and with a smaller box of 330 pixels. Using these 

segments and the de novo initial model low-pass filtered to 15 Å, we carried out 3D auto-

refinement. We then used the refined reconstruction, low-pass filtered to 15 Å, as reference 

for a 3D classification without further image alignment. The segments contributing to the 

best 3D class were used for subsequent 3D auto-refinement of 24,073 selected segments. 

Refinement of the helical parameters converged onto a helical twist of −0.845° and a helical 

rise of 4.786 Å. After Bayesian polishing and CTF refinement, the reconstruction was 
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sharpened with a B-factor of −26.23 Å2 (Extended Data Table 1) using the standard post-

processing procedure in RELION. The overall resolution of the final map was estimated as 

3.2 Å from Fourier shell correlations at 0.143 between the two independently refined half-

maps, using phase-randomisation to correct for convolution effects of a generous, soft-edged 

solvent mask that extended to 30% of the height of the box (58). Local resolution estimates 

were obtained using the same phase-randomisation procedure, but with a soft spherical mask 

that was moved over the entire map. For Type II (wide) filaments, 129,812 segments were 

extracted with an inter-box distance of 14.1 Å and a box size of 460 pixels, which were 

downscaled to 230 pixels for reference-free 2D classification and particle selection. An 

initial 3D reference was again reconstructed from the 2D class averages de novo by 

assuming a helical rise of 4.75 Å and a helical twist of −0.65°, based on the estimated 

crossover distance of filaments. The resulting reconstruction suggested the presence of two-

fold symmetry in the structure. To confirm whether this symmetry also had a translational 

component, we performed two 3D auto-refinements, one with C2 symmetry and one with 

C1 symmetry, but imposing a pseudo-21 screw axis. By comparing the results of the 

refinements, we found that the map obtained following the application of C2 symmetry was 

of higher resolution. The C2 map also showed separation of β-strands along the helical axis, 

which was absent in the map refined with the screw symmetry. We applied C2 symmetry in 

all subsequent refinements. Using 3D classification without image alignment, the segments 

contributing to the best 3D class were selected and used for 3D auto-refinement with 

optimisation of helical twist and rise. A final 3D auto-refinement of 20,752 selected 

segments in boxes of 330 pixels without downscaling converged onto a helical twist of 

−0.61° and the helical rise at 4.786 Å. Following Bayesian polishing (59) and CTF 

refinement, the overall resolution of the final map was estimated as 3.0 Å. For Type I and 

Type II tau filaments in CBD case 2 and CBD case 3, the dataset processing steps were 

similar to Type I and Type II tau filaments in CBD case 1, with the initial 3D references 

reconstructed de novo independently for each dataset.

Model building and refinement.

The models of the cores of Type I and Type II filaments were built de novo in combination 

of both 3.2 Å and 3.0 Å resolution reconstructions from CBD case 1 using COOT (60). We 

started model building from the 301PGGG304 motif, with the aromatic side chains of H299 

and Y310 not far away, and worked our way towards the N- and C-terminal regions by 

manually adding amino acids and by targeted real-space refinement in the high-resolution 

core part of Type II filaments. Tracing of the chain was confirmed by the fitting of the 
332PGGG335 motif, which neighbours the side chains of H329 and H330. Since the density 

of side chains of N368-E380 was weak in the 3.0 Å reconstruction of Type II filaments, we 

assigned the side chains in this region following the 3.2 Å reconstruction of Type I 

filaments. The structure of one protofilament from Type II filaments was rigid-body fitted 

into the reconstruction of Type I filaments to build the model of Type I filaments. Because of 

the lack of interaction between two protofilaments, the conformations of the side chains of 

K343 and K347 in Type I filaments were assigned differently from their counterparts in 

Type II filaments, according to the reconstruction. Each model was then translated to give a 

stack of three consecutive monomers to preserve nearest-neighbour interactions for the 

middle chain in subsequent refinements. Because most residues adopted a β-strand 
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conformation, hydrogen-bond restraints were imposed to preserve a parallel, in-register 

hydrogen bonding pattern in earlier stages of Fourier-space refinements. Local symmetry 

restraints were imposed to keep all β-strand rungs identical. Side chain clashes were 

detected using MOLPROBITY (61) and corrected by iterative cycles of real-space 

refinement in COOT and Fourier-space refinement in REFMAC (62) and PHENIX (63). For 

each refined structure, separate model refinements were performed against a single half-

map, and the resulting model was compared to the other half-map to confirm the absence of 

overfitting (Extended Data Figure 5a,b). The final models were stable in refinements without 

additional restraints. Statistics for the final models are shown in Extended Data Table 1.

Ethical review processes and informed consent.

The studies carried out at Tokyo Metropolitan Institute of Medical Science and at Indiana 

University were approved through the ethical review process at each Institution. Informed 

consent was obtained from the patients’ next of kin.

Reporting summary.

Further information on research design is available in the Nature Research Reporting 

Summary linked to this paper.

Data availability.

Cryo-EM maps for CBD case 1 has been deposited in the Electron Microscopy Data Bank 

(EMDB) under accession numbers EMD-10512 for CBD Type I and EMD-10514 for CBD 

Type II. The refined atomic models for CBD Type I and Type II tau filaments have been 

deposited in the Protein Data Bank (PDB) under accession numbers 6TJO and 6TJX, 

respectively. Whole-exome and whole-genome sequencing data and repeat-primed 

polymerase chain reaction C9orf72 hexanucleotide repeat expansion data have been 

deposited in the National Institute on Ageing Alzheimer’s Disease Data Storage Site 

(NIAGADS), under accession number NG00098. Any other relevant data are available from 

the corresponding authors upon reasonable request.

Extended Data
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Extended Data Figure 1. Immunolabelling of tau filaments extracted from frontal cortex of CBD 
cases 1–3.
Representative immunogold negative-stain electron microscopy images of Type I and Type 

II tau filaments extracted from frontal cortex of CBD cases 1–3. Filaments were labelled 

with antibodies BR133, BR136 and BR134. Antibodies Anti-4R, BR135 and TauC4 did not 

label filaments, which indicates that their epitopes lie within the ordered filament cores. 

Scale bar, 50 nm.
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Extended Data Figure 2. Immunolabelling of tau filaments extracted from additional brain 
regions of CBD cases 1–3.
Representative immunogold negative-stain electron microscopy images of Type I and Type 

II tau filaments extracted from putamen of CBD cases 1–3, as well as from globus pallidus 

and thalamus of CBD case 3. Similar to filaments extracted from frontal cortex (Extended 

Data Figure 1), tau filaments were labelled with antibodies BR133, BR136 and BR134, 

whereas antibodies Anti-4R, BR135 and TauC4 did not label filaments. Scale bar, 50 nm.
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Extended Data Figure 3. Assembled TDP-43 in frontal cortex of CBD cases 1–3.
a, Immunoblots using anti-phospho-TDP-43 antibody. Sarkosyl-insoluble material was 

prepared as described and all the samples were applied on the same gel. The 43 kDa band 

(*) corresponds to full-length TDP-43 and the 18–26 kDa bands (**) to C-terminal 

fragments. This experiment was repeated twice with similar results.
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Extended Data Figure 4. Cryo-EM images and characteristics of tau filaments from frontal 
cortex of CBD cases 1–3.
a, Representative cryo-EM images. Total numbers of acquired micrographs are shown in 

Extended Data Table 1. Scale bar, 20nm. b, Tau filament characteristics. Minimum width, 

maximum width, and crossover distance were measured by hand in the cryo-EM images. 

Box plots show the mean, standard deviation, and individual values from n=25 independent 

measurements for each filament type and each CBD case. Statistical analyses on these 

measurements were performed using a one-way ANOVA test, followed by Tukey’s multiple 

comparisons test; n.s., not significant.
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Extended Data Figure 5. Cryo-EM map and model comparisons.
a, b, Fourier shell correlation (FSC) curves between two independently refined half-maps 

(black, solid), of the final model versus the full map (red, solid), of a model refined in the 

first half-map versus the first half-map (green, solid), and of the same model versus the 

second half-map (blue, dashed) for CBD Type I (a) and Type II (b) filaments. c, d, Local 

resolution estimates for the CBD Type I (c) and Type II (d) filament reconstructions. e, f, 
Side views of the 3D reconstructions of CBD Type I (c) and Type II (d) filaments. g, h, 

Sharpened, high-resolution cryo-EM maps of CBD Type I (g) and Type II (h) tau filaments 

with their corresponding atomic models overlaid.
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Extended Data Figure 6. CBD tau filament fold.
a, Schematic of the CBD fold. b, Rendered view of the secondary structure elements in the 

CBD fold, depicted as three successive rungs. c, As in b, but in a view perpendicular to the 

helical axis, revealing the changes in height within a single molecule. d, Comparison of the 

protofilament structures of CBD Type I (blue) and Type II (pink).
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Extended Data Figure 7. Protofilament interface in CBD Type II tau filaments.
Packing between residues 343KLDFKDR349 of the two protofilaments. Inter-protofilament 

hydrogen bonds are shown in yellow. Intra-protofilament hydrogen bonds are shown in 

green.
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Extended Data Figure 8. Seeded tau aggregation induced by CBD filaments in SH-SY5Y cells.
a, Immunoblotting of sarkosyl-insoluble (Ppt) and sarkosyl-soluble (Sup.) fractions 

extracted from mock-transfected SH-SY5Y cells and from cells transfected with tau seeds 

from frontal cortex of CBD cases 1–3. SH-SY5Y cells transiently expressed either 

hemagglutinin (HA)-tagged 1N4R or HA-tagged 1N3R human tau. Insoluble tau was 

detected with anti-HA and anti-pS396 tau antibodies. Total tau was detected with anti-TauC. 

Blotting with an anti-α-tubulin antibody served as loading control. b, Quantitation of anti-

HA-positive bands. The results are expressed as the means ± S.E.M. (n=3).
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Extended Data Table 1.

Cryo-EM data collection, refinement and validation statistics.

Case 1 Case2 Case3

TypeI TypeII TypeI TypeII TypeI TypeII

Data collection and processing

Magnification x130,000 x130,000 x130,000

Voltage (kV) 300 300 300

Electron exposure (e−/Å2) 53.84 55–100.0 52.5

Defocus range (μm) −1.7 to −2.8 −1.7 to −2.8 −1.7 to −2.8

Pixel size (Å) 1.15 1.15 1.15

Symmetry imposed C1 C2 C1 C2 C1 C2

Initial particle images (no.) 135,646 129,812 188,074 137,069 198,035 : 632,918

Final particle images (no.) 24,073 20,752 24,266 11,259 26,545 355,187

Map resolution (Å)

FSC=0.143 3.2 3.0 5.0 3.5 3.8 3.0

Helical twist (°) −0.845 −0.61 −0.845 −0.61 −0.845 −0.61

Helical rise (Å) 4.786 4.786 4.786 4.786 4.786 4.786

Map resolution range (Å) 3.0–4.0 2.8–4.5 3.5–7.0 3.0–5.0 3.5–4.5 2.8–4.5

Refinement

Initial model used (PDB code) - - - - - -

Model resolution (Å)

 FSC=0.5 3.33 3.24

Map sharpening B factor (Å2) −26.63 −25.75

Model composition

 Non-hydrogen atoms 2439 4878 - - - -

 Protein residues 321 642 - - - -

 Ligands - - - - - -

B factors (Å2)

 Protein 116.682 94.694

 Ligand - - - - - -

R.m.s. deviations

 Bond lengths (Å) 0.013 0.011 - - - -

 Bond angles (°) 1.154 1.072 - - - -

Validation

 MolProbity score 1.61 1.53 - - - -

 Clashscore 2.2 4.11 - - - -

 Poor rotamers (%) 0.0 0.0 - - - -

Ramachandran plot

 Favored (%) 87.3 95.24 - - - -

 Allowed (%) 12.7 4.76 - - - -

 Disallowed (%) 0.0 0.0 - - - -

EMDB 10512 10514
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Case 1 Case2 Case3

TypeI TypeII TypeI TypeII TypeI TypeII

PDB 6TJO 6TJX

EMPIAR 10340 10340 10340

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Filamentous tau pathology of CBD.
(a-f), Staining of neuronal inclusions, neuropil threads and astrocytic plaques in the frontal 

cortex of CBD cases 1–3 by antibody RD4 (specific for 4R tau, brown) (a-c), and in the 

frontal cortex of case 3 by antibody AT8 (pS202, pT205 tau, brown) (e) and Gallyas-Braak 

silver (black) (f). Staining of frontal cortex from CBD cases 1–3 was negative when 

antibody RD3 (specific for 3R tau) was used (d). Nuclei were counterstained in blue. Scale 

bars, 50 μm. (g), Immunoblots using antibodies RD4, RD3 and AT8 of sarkosyl-insoluble 

tau extracted from the frontal cortex of CBD cases 1–3. (h), Negative-stain electron 

micrographs of Type I (narrow) and Type II (wide) tau filaments extracted from the frontal 

cortex of CBD case 1. Scale bar, 50 nm.
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Figure 2. Cryo-EM maps of CBD Type I and Type II tau filaments and atomic model of Type II 
filaments.
(a), Cryo-EM maps of Type I tau filaments (upper panels) and Type II tau filaments (lower 

panels) from the frontal cortex of cases 1–3. Details of cryo-EM data acquisition and the 

atomic model are shown in Extended Data Table 1.

(b), Atomic model of the CBD Type II tau filament (upper panel). The extra density is 

shown in light blue, with K290, K294 and K370 indicated. Schematic depicting the 

microtubule-binding repeats (R1-R4) of tau and the sequence after R4 that is present in the 

core of CBD filaments (all shown in different colours) (lower panel). The positions of β-

strands (β1-β11) are indicated.
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Figure 3. Structures of tau filament cores from human brain.
(a), Protofilament from corticobasal degeneration (CBD fold), a 4R tauopathy; protofilament 

from Pick’s disease (Pick fold), a 3R tauopathy; protofilaments from Alzheimer’s disease 

(Alzheimer fold) and chronic traumatic encephalopathy (CTE fold), both 3R + 4R 

tauopathies. Red arrows point to the internal, non-proteinaceous densities in CBD and CTE 

folds. (b), Schematic depicting the microtubule binding repeats (R1-R4) of tau and the 

sequence after R4, with the β-strands found in the cores of tau filaments in the different 

diseases marked by thick arrows.
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