
1Scientific Reports |         (2020) 10:6178  | https://doi.org/10.1038/s41598-020-62509-7

www.nature.com/scientificreports

A multi-batch design to deliver 
robust estimates of efficacy and 
reduce animal use – a syngeneic 
tumour case study
Natasha A. Karp   1*, Zena Wilson2, Eve Stalker2,3, Lorraine Mooney2,4, Stanley E. Lazic1,5, 
Bairu Zhang1 & Elizabeth Hardaker6

Phenotypic plasticity, the ability of a living organism to respond to the environment, can lead 
to conclusions from experiments that are idiosyncratic to a particular environment. The level of 
environmental responsiveness can result in difficulties in reproducing studies from the same institute 
with the same standardised environment. Here we present a multi-batch approach to in-vivo studies 
to improve replicability of the results for a defined environment. These multi-batch experiments 
consist of small independent mini-experiments where the data are combined in an integrated data 
analysis to appropriately assess the treatment effect after accounting for the structure in the data. We 
demonstrate the method on two case studies with syngeneic tumour models which are challenging due 
to high variability both within and between studies. Through simulations and discussions, we explore 
several data analysis options and the optimum design that balances practical constraints of working 
with animals versus sensitivity and replicability. Through the increased confidence from the multi-batch 
design, we reduce the need to replicate the experiment, which can reduce the total number of animals 
used.

The replicability crisis is a methodological crisis in science where results of many scientific studies are difficult to 
replicate1. This crisis is undermining preclinical research and raises ethical implications over the continued use 
of animals if the outcomes are questionable2. The reasons are multi-faceted, from incentive structure of science to 
methodological issues in the analysis and design. Research involving living organisms has an additional challenge 
to replicability in that living organisms are highly responsive to the environment with phenotypic changes with 
both long- and short-term durations. This ability, described as phenotypic plasticity, is an evolutionary adaptation 
to ensure optimal fit to the environment and an essential component for survival.

The sensitivity of in-vivo experiments and concerns over the inability to replicate studies resulted in a call to 
increase standardisation and subsequent reporting3–5. It was felt that experiments with standardisation of proce-
dures, environmental conditions, genetic background and tested where possible within one day would minimise 
sources of variation. Therefore, these were proposed as the gold standard approach as this approach would reduce 
variability, thereby enhance sensitivity and supports reproducibility when the environment is defined precisely. 
However, in a pivotal study, scientists went to great lengths to standardise the environment and protocols in a 
characterisation of multiple mice strains within three laboratories with several behavioural screens. Despite this 
extensive standardisation, they observed disparate results and proposed that interactions between the genotype 
and local environment led to idiosyncratic phenotypes6. The initial reaction was a call to increase the effort to 
standardise7.

The level of responsiveness to the environment, had led to the realisation that it is impossible to standardise 
sufficiently. Examples of this responsiveness are highlighted by studies such as those by Sorge et al. who realised 
that the sex of the experimenter had a significant impact in the outcome of studies assessing pain8. Whilst Turner 
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et al. highlighted that environmental noise can have broad systematic effects on both the biology and behaviour 
of rodents9. Likewise, exposure to vibration, such as that from electronic equipment, can induce stress in animals 
and alter research results10. Furthermore, research with data from high throughput phenotyping mice projects 
has shown that even in highly standardised environments, phenotypes in control mice fluctuate unexpectedly 
between batches and this was observed in multiple institutes across all quantitative traits studied11. These obser-
vations have led to the view that in vivo studies in highly standardised environments may identify idiosyncratic 
effects and hence decrease reproducibility which has been described as the standardisation fallacy2,12–15.

If you embrace the concept that biological variation is the norm this means, there is no pure treatment effect 
to estimate. Instead of minimising variation, embracing variability has been proposed as a strategy to ensure con-
clusions from studies are more representative and thereby improve the generalisability and hence the replicability. 
This variation should not be introduced randomly but systematically in design. Richter and colleagues13 intro-
duced variation through a randomised block design where the blocks differed in a planned way to include vari-
ation (systematic heterogenization) and found that heterogeneization on age and housing conditions improved 
reproducibility of behavioural studies comparing inbred strains of mice. Bodden and colleagues demonstrated 
that time of day was a suitable heterogenization factor for behaviour studies16. The challenge is identifying the 
heterogenization factor for the phenotype of interest16. Kafkafi and colleagues17 proposed a statistical solution 
where they estimated from historic data the susceptibility of a trait to variation due to interaction with the envi-
ronment and used this to adjust the significance score. This approach however depends on accurately estimat-
ing the trait’s susceptibility, and for most traits is currently unavailable. Voelkl and colleagues15 explored the 
potential of multi-laboratory studies through simulations utilising real data looking across 13 interventions in 
animal models of stroke, myocardial infarction and breast cancer. They found that significant improvement in 
reproducibility could be achieved by running multi-laboratory studies. Through simulations, they showed that 
these studies did not require many participating laboratories nor an increase in sample size. Consequently, the 
authors recommended that a multi-laboratory approach should be the gold standard for late phase confirmatory 
pre-clinical trials.

However, these late phase confirmatory trials are under-pinned by many individual laboratory studies and 
we need to explore how we can improve the replicability of these. The variation in control data seen in highly 
standardised facilities indicates that the rodents are reacting to environmental variation beyond the established 
known criteria and hence we cannot fully report the environment enabling a true replication. This will be con-
tributing to the finding that 50% of scientists have failed to replicate their own results1. We explore the potential 
of a multi-batch experiment for a laboratory, where the treatment effect is estimated from multiple mini exper-
iments which are run independently. An estimate from multiple studies, will be independent of uncontrolled 
environmental changesand therefore for the reported meta data should have enhanced replicability. The majority 
of the literature exploring these reproducibility issues has focused on a genotype differences as the experimental 
effect of interest. Within this manuscript, we are looking at an effect arising from the exposure to a drug, whilst 
the context differs the underlying issue (the interaction with the environment) is independent of the experiment 
effect of interest.

With this more complex design, the data analysis needs to account for the structure in the data to meet 
the assumptions of the statistical methods being applied. It is unfortunately common18 for researcher to fail to 
account for structure in the data and use inappropriate statistical techniques; such as pooling where the data are 
combined across the batches and statistical tests which assume independent sampling from a common group are 
used (such as a Student’s t test). In these situations, a true effect could be missed, or an effect incorrectly identified 
as interesting as batch differences are not accounted for appropriately. The pooling of data could reflect a skill gap 
in that researchers avoid complex analyses because they do not have the technical knowledge19.

We identified three common approaches that could be used to analyse the data accounting for the structure: 
a meta-analysis, a fixed effect regression approach and a random effect regression approach. A meta-analysis is a 
well-established method for combining results from multiple scientific studies. As we expect the effect size to vary 
from study to study, a random effect meta-analysis is appropriate as it will estimate the average treatment effect20. 
A meta-analysis is normally the recommended strategy when only summary data is available. We have explored 
this strategy, even though the raw data is available, as it is relatively intuitive to understand and implement. In 
fact, the analysis can be executed with Excel21. In these analyses, the mean, standard deviation and number of 
readings for each group in each study are inputted and the estimate is a weighted mean accounting for the esti-
mated accuracy of each study.

Using a regression approach, we can either treat the factors explaining variation in the model as a fixed or a 
random effects. The choice depends on the objective and the design of the experiment and can be controversial. 
Typically, if the investigator is interested in the individual levels of a factor (e.g. male versus female) then the 
factor is fixed. Whereas, for a random factor the levels of a factor are a sample from a population (e.g. litter 1, 
litter 2, …., litter n) and the investigator isn’t interested in how individual levels differ but wants to account for 
variation introduced by them. The fixed effect regression model, treating both batch and treatment as fixed effects, 
is a common approach to analyse multi-batch data22,23. Kafkafi argued that this approach is flawed as it assesses 
significance by benchmarking the treatment effect only against the within group variation. Instead, they propose 
a random effect model where the treatment effect is tested against the variability of the batch by treatment inter-
action plus the within group variability. This approach sets a higher benchmark for significance as an additional 
source of variation is included. Dixon24 argues that the choice is whether you are estimating the treatment effect 
in a narrow or a broad inference space, where in the broad inference space the conclusion would be related to 
the entire possible population of environments; whilst in the narrow inference space it would be to the specific 
levels that were studied. We are looking to estimate a common treatment effect that is not dependent on subtle 
environmental variation and this could be argued to align to the broad inference space. However, as normally 
implemented random effect regression models are making more assumptions; such as assuming the random 
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effects are normal distributed. Furthermore, the estimated random effects will likely be unreliable because they 
are based on only a few batches24.

Here we present a case study of a multi-batch study and explore of how to design the experiment and analyse 
the data. The case study utilises mice with a syngeneic tumour model to study the effect of an immune-oncology 
(IO) therapy, which is a treatment that recruits the immune system to treat cancer. The increase in clinical success 
with IO therapies has led to an increase in the use of syngeneic tumour models as these provide an assessment 
of treatment effects in mice with fully competent immunity and allows investigation of the immune cells that 
respond to treatment. However, these models are challenging due to aggressive growth rates and deterioration 
of tumour condition. Preclinical response to IO therapy is variable and typically requires large group sizes and 
replication of studies. The variability between studies and within treatment groups makes the interpretation 
challenging.

We explored a new design which starts with a small group size (n = 6–8) but multiple batches (n = 3). To ena-
ble quantitative comparison across batches, the rate of growth25 was estimated from the tumour growth response 
data and analysis conducted to estimate the treatment effect. Through simulations and discussions, we explore 
several data analysis options and the optimum design that balances practical constraints of working with animals 
versus sensitivity. We explore the impact of the increased confidence from the multi-batch design and argue this 
reduces the need to replicate the experiment with larger group sizes thus reducing the total number of animals 
used.

Results
Comparison of the estimate of the various analytical approaches.  From theoretical considerations 
and confirmed by simulations (example shown in Supplementary Fig. 1), the distinction between the analytical 
methods lies not in the estimated difference but in the significance assigned to the differences. These differences 
will arise through disparities in the degrees of freedom assigned and the estimated variability of the difference.

Comparison of the false positive rate of the various analytical methods.  We explored the false 
positive rate (FPR, equal to the proportion of type 1 errors) as a function of increasing batch variation in sim-
ulations when there was no treatment effect between the control and treated group (Fig. 1). For the pooling 
approach, as the batch variation increased the FPR decreased; which arises from the failure to account for the 
structure leading to a larger estimate of variance and consequently a reduction in the number of calls made. 
For the other statistical methods, the FPR was independent of batch variation. The FPR control was excellent 
for the regression methods as they had a mean FPR with 95% confidence interval that included the expected 
5% FPR for the 0.05 confidence threshold. The meta-analysis approach had an elevated FPR returning an aver-
age 6.3% (95% CI: 5.7–6.9) but is close to the expectation. The random effect regression and the random effect 
meta-analysis approach are variants of the same statistical approach, the elevation in the FPR with the random 
effect meta-analysis likely arises from the use of a z-statistics which is more liberal than the t-statistics used by 
the mixed model.

Figure 1.  Simulations to explore the false positive rate of the various analytical methods considered. In these 
simulations, experimental data was constructed to consist of 3 independent batches with a control and treated 
arm with five animals per group per batch where there was no treatment effect. The growth rate characteristics 
were based on the characteristics of a MC38 experiment (mean: 0.105, standard deviation: 0.026). Batch 
variation was assumed to be normally distributed with a mean of 0 and variance varied between 5 and 50% 
of the baseline growth rate characteristics. This experimental data was processed by the various analytical 
techniques using a 5% significance threshold. For each scenario, to explore variation in the outcome, this 
process was repeated 2000 times and the FPR estimated. This simulation process was repeated three times for 
each scenario explored.
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Comparison of the false negative rate of the various analytical approaches.  From simulations, 
we explored the false negative rate (FNR, proportion of type II errors) of the various analytical techniques using 
the baseline line characteristics of a randomly selected MC38 experiment (Fig. 2). Calculating the FNR for var-
ious scenarios estimates the sensitivity of the studies as FNR is equivalent to 1- statistical power. The absolute 
sensitivity will depend on baseline characteristics but allows us to explore the differences between the various 
analytical approaches. As expected, as the growth rate inhibition increased, the FNR decreased as the statistical 
power increased. When looking at a treatment effect that is consistent between batches, the sensitivity was sim-
ilar between the different techniques, however there was a consistent pattern in that the sensitivity was higher 
with the fixed effect model and lowest with the pooled approach (Fig. 2a). For the three analytical methods, that 
account for batch, the sensitivity was independent of batch (Fig. 2b). Whereas, for the pooled approach, as batch 
variation increased the sensitivity decreased. This is arising as the failure to account for the structure in the data 
results in a high estimate of variance which will decrease the sensitivity. This demonstrates the value of accounting 
for the structure and supports the statistical advice to not pool the data. As the treatment effect becomes more 
variable between batches, we see a divergence in the analytical techniques and their sensitivity (Fig. 2c,d). Both 
the meta-analysis and the random effect model have a greater reduction in the sensitivity as the treatment effect 
varies. The more conservative behaviour of the random effect model was highlighted by Kafkafi23 and arises as 
it uses both the variance of the batch and the treatment interacting with batch to assess the significance of the 
treatment effect. If we just consider the FNR for a robust estimate of efficacy we would recommend the random 
effect regression model or random effect meta-analysis. However, with the elevated FPR for the random effect 
meta-analysis, where possible the random effect regression model should be used. An advantage of the random 
effect regression model versus the random effect meta-analysis is the potential to extend the model. For example, 
a study might need to include a covariate such as body weight to increase sensitivity or address a potential con-
founding issue.

Exploration of the optimum design.  The optimum design for a model is going to be a function of the 
effect size of interest, growth rate of the tumour and the variance of the data. Exploring ten sets of vehicle data 
for the model CT26WT finds that there were no significant differences in the mean growth rate between studies 
(p = 0.0822; likelihood ratio test comparing a fixed effect model with unequal variance with a null model with 
unequal variance) (Supplementary Fig. 2). There was a significant difference in the variance between studies 
(p = 0.0016; likelihood ratio test comparing a fixed effect model with unequal variance with a fixed model with 
equal variance) with some studies having a 3-fold higher variance than others. Similar results were seen with 
other models (Supplementary Fig. 2). Consequently, we cannot provide exact recommendation on the design to 
use. We can provide general observations and a discussion on the issues to consider when selecting the design. 
The code, used to generate these simulations, has been shared (see section Data availability) and this code could 
be used with your own measures to assess the optimum design.

Selecting the optimum design is not just a function of animal numbers and statistical power. There are signif-
icant practical issues to consider. To avoid mis-dosing errors, account for coprophagia (eating of faeces), and to 
group house animals to improve their welfare, animals for the same treatment are typically housed in one cage 
up to a maximum density depending on the cage dimensions and animal size. This does introduce the risk of 
cage effects to the analysis. This can be minimised by randomly assigning animals to treatment group. Internally, 
we assign animals to the treatment group by minimisation on body weight which is a valid alternative to ran-
domisation and ensures that the allocation variable will be balanced across the groups26. This means systematic 
differences in terms of litter and original home cage are minimised. The cages are then kept within the same area 
of the animal house to minimise potential differences. With female animals, a typical maximum cage density is 
between 5 and 6. This therefore provides a starting point for the group size for a treatment group within a batch.

From simulations, we explored the impact of varying the number of animals per batch and number of batches 
on the statistical power (Fig. 3) for the growth rate characteristics of 3 commonly used models. These simulations 
confirm that power increases both as a function of the number of batches and the number of animals within a 
batch for all analytical methods studied.

For a set design, the models had very different statistical power. This is both a function of differences in the 
variability of the models and the average growth rate seen which leads to a different target effect size of interest. 
MC38 was the most variable model, and this significantly increased the number of animals needed, whilst 4T1 
growth rate was found to be quite reproducible between animals. Regardless of power, at a minimum we would 
recommend 3 batches to be sure the average estimate encompasses three independent environments so the goal 
of achieving reliable estimates for these conditions are realised. We would also recommend a minimum of three 
animals per batch per group to allow good estimates within a batch.

As a comparison, we have conducted simulations to explore the number of animals needed if the studies were 
run in the traditional one batch approach (Supplementary Fig. 3, Table 1). As the variance seen in the growth rate 
of a model increased, the benefits of embracing the multi-batch design increased. Consider model MC38, a one 
batch approach would require 28 animals within a single experiment and once replicated would use 84 animals 
for a two-group comparison. In contrast, the multi-batch design, returns a robust estimate but only requires 36 
animals (57% saving).

Case studies.  To demonstrate the multi-batch approach, we ran two studies with a design of 6 animals per 
treatment group with 3 batches. Each batch was an independent preparation of cells and order of animals from 
the supplier. Figure 4 and Supplementary Table 1 explore the data for case study 1 on a CT26AZ background. 
The visualisation of the data, showing the variation within and across the batches is an important component to 
contextualise the data. The case study highlights the variability in the initial growth rate and variability in the 
treatment within a batch. However, there is a consistent statistically significant growth rate reduction across the 
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three batches. As this has been seen within our facility on three separate occasion, we have confidence that for our 
meta data the result is generally replicable with no need for additional replicability attempts. Similar results were 
seen with case study 2 on a CT26WT background (Fig. 5 and Supplementary Table 2). The results between the 3 
analytical techniques that could be used (Fixed, Random or Meta-Analysis) were similar.

Discussion
The replicability crisis is questioning the efficacy of preclinical research and raising ethical questions about the 
studies. Here we present a multi-batch design to increase replicability of preclinical in-vivo studies for a defined 
environment. The design is driven by the concept of embracing the replication of studies at the onset. By adopting 
this concept, we can use a lower n within each batch as the treatment effect is estimated over all the batches. This 
approach seeks to minimise the potential detection of idiosyncratic findings as subtle environment fluctuations 
impacts the observed phenotype. This approach would help minimise the experience where scientists them-
selves have reported failing to replicate their own findings1. Thereby, providing a robust platform to move science 
onwards.

One argument against this strategy is that it is assuming replication of experiments. Replication is considered 
the cornerstone of science with a role within individual experiments to understand natural variation but also 
but also in the replication of experiments27. In reality, for some areas of science, replication of experiments has 
become less common. Lack of replication of basic experiments has been highlighted as a major flag for research 
that cannot be reproduced28. With in vivo studies, one argument against replication of experiments is ethical over 
the use of animals. We argue that our proposal is an approach that achieves the goal of embracing replicability 
but reduces the total number of animals used as the experiment is powered for the concept of combining the data 
into a single analysis.

The case study, particularly the visualisation across batches, provides a compelling example of the confi-
dence obtained from exploring a treatment effect across three separate experiments where findings were seen 
with independent batches of animals, cell cultures etc. For the case study explored, looking at the design of 
immuno-oncology tumor studies, replicability within and between experiments is considered essential because 
of the high variability in the behaviour. Repeating the experiments with the classic approach of powering each 
experiment independently is costly; both in terms of finance and in terms of animal usage. Disadvantages of the 
multi-batch approach are that it takes longer to run a single experiment and the analysis and visualisation is more 
complex.

The goal behind the multi-batch approach is to assess the treatment effect after the introduction of the uncon-
trolled variation which will occur between the separate batches. Therefore, we need these batches to be run com-
pletely independently. In this case, separate cell preparations, new batch of animals from the supplier etc. To 
speed up the process, the experimenter could shorten this time window by running the batches independently 
but concurrently. With a low number of batches, there is then the risk that insufficient variation is introduced to 
be sure that the estimated effect is independent of subtle environmental variation. A variant would be am and pm 
testing space, this is then equivalent to the concept of heterogenization by design. Bodden et al. found that for 
behavioural studies estimating the effect from studies blocked by time of day was sufficient16. The difficulty with 

Figure 2.  Simulations to compare the false negative rate of the analytical methods considered. (a) Sensitivity to 
detect a consistent treatment effect as the growth rate inhibition increased. (b) Sensitivity to detect a consistent 
30% growth rate inhibition as the batch variation increased from 5 to 50%. (c) Sensitivity to detect a 30% 
growth rate inhibition as the variation in the treatment effect between batches increased. In these simulations, 
experimental data was constructed to consist of 3 independent batches with a control and treated arm with 
five animals per group per batch. The growth rate characteristics were based on the characteristics of a MC38 
experiment (mean: 0.105, standard deviation: 0.026). Unless otherwise stated, batch variation was assumed to 
be normally distributed with a mean of 0 and variance of 20% of the baseline growth rate characteristics. This 
experimental data was then processed by the various analytical techniques using a 5% significance threshold. 
For each scenario, to explore variation in the outcome, the process was repeated 2000 times and the FNR 
estimated. This simulation process was repeated three times for each scenario explored.
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a heterogenization approach to improve replicability is working out what are the critical environmental variables 
to block on that will be the sources of variation that the phenotype of interest is responsive too.

Within this manuscript, we have explored common data analysis approaches that could be utilised for a 
multi-batch design. Pooling, which fails to account for structure of the data, had a loss of sensitivity as the varia-
tion between batches increased and is not recommended. A random effect regression model and a random effect 
meta-analysis had very similar characteristics and would be the recommended methods. Both these approaches 
estimate the average treatment effect but benchmarked the significance by comparing it to the variability within 
an experiment and variability of the treatment effect. Consequently, if the treatment effect is very variable then the 
significance of the treatment effect is lower. Utilising these statistical approaches along with the design will return 
calls with higher confidence in their replicability.

Selecting the optimum design is not just a function of animal numbers, effect size of interest, or variability 
in the data. There are several practical issues to consider, such as how you house your animals, housing density 
and how many animals you can process within one batch. Power is increased both by adding animals within a 
batch and number of batches. Reproducibility will be increased by increasing the number of batches, as the study 
samples from the variability that can occur for that facility. Where possible, increasing the number of batches 
should be prioritised. We recommend an absolute minimum of three batches and three animals within a batch 
even for low variance models. The simulation code used to explore FNR for our experiments has been provided 

Figure 3.  Simulations to explore impact of number the number of animals or batches on the false negative 
rate. (a) Exploration impact of varying the number of animals per group per batch for a three-batch design for 
three different models on the FNR of the random effect regression model. (b) Exploration of impact of varying 
the number of batches on the FNR when three animals per batch per group with the random effect regression 
model. In these simulations, experimental data was constructed to consisted of independently sampled batches 
with a control and treated arm where the treatment effect was normally distributed with a mean effect of a 30% 
reduction in growth rate with a standard deviation 10% of the mean effect. The growth rate characteristics were 
the average growth rate for a line and a standard deviation value that encompasses 75% of the values seen. Batch 
variation was assumed to be normally distributed with a mean of 0 and variance of 20% of the baseline growth 
rate characteristics. The experimental data generated was processed by the various analytical techniques using a 
5% significance threshold. For each scenario, to explore variation in the outcome the process was repeated 2000 
times and the FNR estimated. This simulation process was repeated three times for each scenario explored.

Model

Multi-batch design One-batch approach

No. 
batches

No. animals per 
batch per group.

Total No. 
animals

Total No. 
animals/
Exp.

Total no. animals 
after replicated 
(x3)

4T1 3 3 18 6 18

CT26WT 3 3 18 14 42

MC38 3 6 36 28 84

Table 1.  Comparison of the number of animals needed for a robust conclusion for variety of models when 
using either replication of the one-batch approach or the multi-batch design for a study consisting of a control 
and a treated group. The number of animals needed were determined from the simulations to achieve an 80% 
power (20% FNR) at the 0.05 significance level for a 30% change in growth rate using the models’ average 
growth rate and a standard deviation value that encompasses 75% of the values seen for that model.
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and the functions could be used to explore other scenarios with different values of interest. In the future, there is 
the potential to future refinement using adaptive design theory where sequential testing could be used to decide if 
there is sufficient evidence of a potential effect of interest to continue the study and collect all batches.

Replicability issues are affecting all areas of science but is a critical issue for us to address when working with 
animals as we conduct the harm-benefit analysis when considering our ethical obligations. The 3Rs (Replacement, 
Reduction and Refinement) act as our guiding principles to frame our ethical use of animals in research. The his-
toric definition of Reduction, with a focus of absolute number of animals in individual experiments, can encour-
age poor practice that we now understand can leads to replicability issues. This explains the recent development of 
a contemporary definition of Reduction by the National Centre for the Replacement Refinement and Reduction 
of Animals in Research (NC3Rs) with a focus on experiments that are robust and replicable29. To continue con-
ducting our research using animals, we have to embrace designs that improve replicability.

Methods
All procedures were conducted in accordance with the United Kingdom Animal (Scientific Procedures) Act 1986 
and associated guidelines, approved by institutional ethical review committees (Alderley Park Animal Welfare 
and Ethical Review Board; Babraham Institute Animal Welfare and Ethical Review Board) and conducted under 
the authority of the Home Office Project Licences (70/8839, 70/8894 and P0EC1FFDF). All animal facilities have 
been approved by the United Kingdom Home Office Licensing Authority and meet all current regulations and 
standards of the United Kingdom.

Animals were housed with an inverse 12 hours day-night cycle in a controlled temperature (20–24 C) and 
humidity (45 ± 65%) room as directed in the Code of Practice for the Housing and Care of Animals Bred, 
Supplied or Used for Scientific Purposes. Animals were housed in individually vented cages from Techniplast and 
were fed Special Diet Services R&M No 1 and watered (water filtered in autoclaved bottles) ad libitum. Within 
the cage, the bedding material composed of sizzle nest and as environmental enrichment cardboard smart home, 
cardboard tunnel, Happi Mat and Aspen chew stick. Typically, we housed the animals with up to five animals per 
cage. The SPF facility has a barrier system and the animals are house on IVC conventional unit (TOTE180-E – 
Eco-Pure Chips 6).

Animal details.  Immunocompetent female C57BL5 mice were sourced from Charles River, UK and immu-
nocompetent female BALB/cOlaHsd mice were sourced from Envigo, UK. All animals were 5 to 6 weeks old at 
the time of cell implant. Naïve mice arrive from the external supplier in batches of 5 and are subsequently housed 
in this same group of 5 when allocated onto study.

Figure 4.  Multi-batch CT26AZ case study 1 growth data. (a) Growth profile for each animal coloured by 
treatment group (b) Estimated growth rate for each treatment across the three batches. A boxplot provides 
5 summary measures: minimum, first quartile value, mean, third quartile value and maximum. Outliers are 
shown as individual data points if they are beyond the first/third quartile ± 1.5 *Interquartile range.
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Experimental procedures and study design.  General design.  These studies follow a parallel group 
design with a vehicle group and multiple treatment arms. Within each study, an individual animal was considered 
the experimental unit and the primary variable of interest was the growth rate.

Cell lines CT-26.WT and 4 T1 were purchased from American Type Culture Collection (ATCC), whilst 
MC-38 were from National Cancer Institute (NIH). CT-26.WT (5 × 105 cells/mouse) or MC-38 (1 × 107 cells/
mouse) tumor cells were implanted subcutaneously (s.c.) using a cell implant volume of 0.1 mL in the left flank 
of female Balb/c and C57/BL6 mice, respectively. 4 T1 (1 × 104 cells/mouse) tumor cells were implanted ortho-
topically in mammary fat pad #8 (o.t.) using a cell implant volume of 0.05 mL in female Balb/c mice. Mice were 
randomised by cage identification at time of tumour cell implant. Welfare checks were made twice daily, and 
tumour condition monitored throughout the study. If condition of the animal, tumour, or the humane endpoints 
were reached the animals were humanely culled. To avoid mis-dosing errors and manage welfare from potential 
moderate transient welfare effects blinding was not implemented.

To enable the simulations and understand the growth rate behaviour, we retrospectively analysed vehicle 
group from historic datasets on CT26.WT, MC38 and 4T1 lines.

We piloted the multi-batch design by running two experiments with one control arm and 3 treatment arms. 
The multi-batch design consisted of 3 batches with 8 animals in control group and 6 animals per treatment group 
per batch. Compound A and B were formulated in the vehicle Phosphate-buffered saline at the appropriate con-
centration to dose at 10 mg/kg. Mice were dosed twice weekly i.p. (doses given at the same time in the morning 
on day of dosing) for the duration of the treatment period.

All animal data was recorded and included in the data analysis.

Tumour volume measurements.  The length and width of the tumours were measured at regular intervals 
(typically every 3rd day) with digital Vernier callipers. The volumes were estimated using Eq. 1.

volume width length( ) ( )
2 (1)

2
=

Rate of growth summary measure.  The rate of growth for each animal was estimated based on fitting 
each tumour’s growth curve to an exponential model as described in Eq. 2 25.

where a and b are parameters that correspond to the log initial volume and growth rate, respectively. The 
model assumes the error terms are normally distributed.

Figure 5.  Multi-batch CT26WT case study 2 growth data. (a) Growth profile for each animal coloured by 
treatment group (b) Estimated growth rate for each treatment across the three batches. A boxplot provides 
5 summary measures: minimum, first quartile value, mean, third quartile value and maximum. Outliers are 
shown as individual data points if they are beyond the first/third quartile ± 1.5 *Interquartile range.
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= + ∗ +log tumor volume a b time error( ) (2)10

Tumour volume data up until day 30 were fitted with the model and tumour volumes less than 50 mm3 were 
replaced with a minimum value of 50 mm3.

Construction of simulated data.  Simulated data was constructed to comprise three independent batches 
with a control and a treated arm. The underlying control population, following historic dataset IO1706, and was 
assumed to be normally distributed with a mean growth rate of 0.1242 and standard deviation of 0.03916. Batch 
variation was assumed to contribute to the variation as a random normally distributed variable with a mean of 0 
and variance which was defaulted to 20% of the baseline growth rate for most simulations. Exceptions are detailed 
in the analyses. Depending on the scenario being explored, a treatment effect could be added that was either con-
sistent across the three batches and set as a proportion of the baseline growth rate or alternatively the treatment 
effect was constructed to vary across batches. When the treatment effect varied, it was assumed to be sampled 
from a normal distribution and the variation in the treatment effect was set as a proportion of the treatment effect 
of interest.

Statistical analysis.  Fixed effect model.  A linear regression model with treatment, batch and an interaction 
between treatment and batch was fitted to the data (see Eq. 3).

μ α β γ ε= + + + +Y (3)ijk i j ij ijk

where i = 1, …, nT, j = 1, …, nB and k = 1, …, nij. In addition, αi indicates the main effect of the ith level of treat-
ment T; βj indicates the main effect of the jth level of batch B; γij is the effect of the interaction term; and the error 
term εijk ∼ N(0, σe

2). The treatment effect and associated error were estimated across the batches as a marginal 
mean using the lsmeans package. The significance of the treatment effect was assessed using ANOVA type III 
sums of squares. For the experimental data, a likelihood ratio test was used to select the variance model (equal 
variance or variance depending on the treatment) at a 0.05 significance threshold30.

Random effect model.  A mixed linear effect regression model with treatment as a main effect, batch as a random 
effect and batch by treatment as a random effect was fitted to the data (see Eq. 4).

μ α ε= + + + +Y b c (4)ijk i j ij ijk

where i = 1, …, nT, j = 1, …, nB and k = 1, …, nij. αi indicates the main effect of the ith level of treatment T; bj 
represents batch as a random effect where bj ∼ N(0, σb

2); c represents batch by treatment interaction as random 
effect where cij ∼ N(0, σc

2) and the error term εijk ∼ N(0, σe
2).

Random meta-analysis model.  A random effect meta-analysis model was fitted to the data using the 
metafor R package31 and was selected as it assumes the effect sizes will differ because they are sampled from a 
population. First, the mean differences effect size and sampling variance were estimated for each batch. Then, a 
mixed effect model is used to estimate the treatment effect (Eq. 5).

μ ε= + +T e (5)i i i

where Ti is the effect size, μ is the mean of the underlying effect size distribution, v2, is the sampling variance of 
the effect size, τ2 is the variance of the effect size distribution where ei ~ N(0, vi

2) and εI ~ N(0, τ2). The treatment 
effect and associated error was estimated using the R escalc package to return the estimated raw difference.

Pooled approach.  In the pooled approach, the batch information is ignored and a linear regression model 
with treatment was fitted to the data (see Eq. 6). For a two-group comparison, this is equivalent to a student’s 
t-Test.

μ α ε= + +Y (6)ij i ij

where i = 1, …, and nt and j = 1, …, nij. In addition, αi indicates the main effect of the ith level of treatment T; and 
the error term ϵij ∼ N(0, σe

2). The treatment effect and associated error was estimated as a marginal mean using 
the R lsmeans package.

Data availability
The data scripts used to generate the data and figures have been made available as a Zenodo repository under a 
creative commons attribution 4.0 license32.
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