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Abstract: The breakdown of cardiac self-organization leads to heart diseases and failure, the
number one cause of death worldwide. The left ventricular pressure–volume relation plays a key
role in the diagnosis and treatment of heart diseases. Lumped-parameter models combined with
pressure–volume loop analysis are very effective in simulating clinical scenarios with a view to
treatment optimization and outcome prediction. Unfortunately, often invoked in this analysis is the
traditional, time-varying elastance concept, in which the ratio of the ventricular pressure to its volume
is prescribed by a periodic function of time, instead of being calculated consistently according to the
change in feedback mechanisms (e.g., the lack or breakdown of self-organization) in heart diseases.
Therefore, the application of the time-varying elastance for the analysis of left ventricular assist device
(LVAD)–heart interactions has been questioned. We propose a paradigm shift from the time-varying
elastance concept to a synergistic model of cardiac function by integrating the mechanical, electric,
and chemical activity on microscale sarcomere and macroscale heart levels and investigating the effect
of an axial rotary pump on a failing heart. We show that our synergistic model works better than the
time-varying elastance model in reproducing LVAD–heart interactions with sufficient accuracy to
describe the left ventricular pressure–volume relation.

Keywords: cardiac function; modeling; self-organization; lumped-parameter model; left ventricular
pressure–volume relation; LVAD

1. Introduction

Self-organization is a novel phenomenon in complex systems, whereby a macroscopic order
emerges and is maintained in the midst of complexity [1]. One remarkable manifestation of
self-organization is homeostasis in biosystems, known to be absolutely critical to the sustainability of
living organisms. As one of most beautiful and important examples of self-organized biosystems [2],
the human heart is a mechanical pump acting as a main force driving blood throughout the body via
the circulatory system, supplying oxygen and nutrients to the tissues, and removing carbon dioxide
and other waste products. The action of this mechanical pump is tightly regulated and is self-organized
by feedback mechanisms among mechanical, electric, and chemical activities. Furthermore, cardiac
function is self-organized and synchronized across scales, from microscale sarcomere to macroscale
organ levels. Unfortunately, the breakdown of self-organization leads to heart diseases and failure, the
number one cause of death worldwide.

Mechanical circulatory support with rotary blood pumps, such as HeartMate II (an axial pump
manufactured by Thoratec Corporation, Pleasanton, CA, USA) [3] and HeartWare ventricular assist
device (HVAD: a centrifugal pump manufactured by Medtronic, Minneapolis, MN, USA) [4], is a
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recognized treatment for advanced heart failure patients, either as a bridge to transplant or recovery or
ultimately as a long-term solution for noneligible candidates (destination therapy). Although very
successful, the insertion of a left ventricular assist device (LVAD) remains associated with complications
such as pump thrombosis, stroke, bleeding, and right heart failure, which affect outcomes [5–10]. It is,
thus, crucial to increase our understanding of feedback mechanisms and heart–LVAD interactions.

The single most powerful measure to understand heart function and differentiate normal from
pathological heart, as well as to diagnose or treat different cardiac pathology, is the relation between
left ventricular pressure and volume—the so-called P–V loop. In particular, pressure–volume relation
applied to lumped-parameter representation of the cardiovascular system has important clinical
applications [6,11], owing to great flexibility in simulating the hemodynamics of different cardiovascular
conditions and therapeutic interventions at a low computational cost, facilitating a personalized
therapy [11]. However, the traditional approach heavily relies on the time-varying elastance model [11–
16], where the ratio of the pressure to the volume (minus the ventricular volume at zero pressure) is
prescribed as a periodic (double-Hill) function of time for a given heart rate, varying between given Emax

(the maximum value of E) and minimum Emin (the minimum value of E). Although the time-varying
elastance model has been useful in understanding the pressure–volume relation in different types of
mammals, it is empirically based on (almost) physiological data where the heart is regulated internally.
Thus, its validity in extreme, pathological conditions (such as in [17] in a study on mice) is questionable.
For instance, when heart rhythm is not regular but chaotic (as in the case of fibrillation), elastance
will also be chaotic rather than a simple periodic function. This issue is particularly important for
the treatment of a failing heart requiring the insertion of a LVAD. In particular, since the device is
connected in parallel between the aorta and the left ventricle to relieve its load, it is very likely to
disturb or at least alter the status of the heart. There has been indeed some evidence against the validity
of the time-varying elastance model with an assist device [18].

To face this challenge, in this paper, we propose a synergistic model which couples mechanical,
electric, and chemical activity on microscale sarcomere and macroscale heart levels and investigate the
effect of an axial rotary pump (e.g., Heart Mate II) on a failing heart. Our focus is to find an alternative
method that is readily available within the constraints of the clinical environment. Lumped-parameter
models are well suited for this purpose. We, thus, develop a comparable lumped-parameter model
that predicts a P–V loop and LVAD–heart interaction by evolving left ventricular pressure and volume
simultaneously at the minimum computational cost, instead of using the time-varying elastance concept.

Specifically, we propose the two types, which have the same mechanical or chemical and electric
activity set up but different circulation models. depending on the coupling between the left ventricle
and the systemic arterial circulation—the basic (extended) model without (with) coupling to the
systemic arterial circulation. Our models consist of 9 or 12 ordinary differential equations, and thus
require significantly less computational resources and time compared with more advanced models [19]
governed by partial differential equations. In particular, [19] simulated left ventricular fluid–solid
mechanics through the cardiac cycle under LVAD support. CircAdapt [20] is another example of
advanced models incorporating electric and sarcomere dynamics, but a systematic study with LAVD
seems lacking.

2. Materials and Methods

2.1. Mechanical/Chemical Model

On a microscale, we utilize the Bestel–Clement–Sorine (BCS) model of the dynamics of the
contractile element [21–23] to evolve the active stress τc, stiffness kc, strain εc, and its velocity vc =

dεc
dt .

In the BCS model, the active force derives from the chemical activity (e.g., ATP) modeled by u (measured
in s−1). The governing equations for vc, εc, τc, and kc are then as follows:

dvc

dt
= −χvc −ω

2
0εc − aτcd0(εc) + b

√ V
V0
− 1

, (1)
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dεc

dt
= vc, (2)

dτc

dt
= kcvc − (αl|vc|+ |u|)τc + σ0uΘ(u), (3)

dkc

dt
= −(αl|vc|+ |u|)kc + k0uΘ(u), (4)

d0(εc) = exp (−β0 (εc)
2). (5)

Here, Θ(u) is a Heaviside function that takes the value of 1 for u > 0 or 0 otherwise. The evolution
of vc in Equation (1) involves a damping force χvc, a harmonic force ω2

0εc, an active force aτcd0(εc),
and a passive force b(

√
V/V0−1), where χ, a, b,αl are positive constants. Here, ω0 is a microscale,

high-oscillation frequency. Equation (1) is based on a simplified model of a cylindrical heart with
a constant height [23], where the left ventricular volume V is related to the strain ε as a square
root ε ∝

√
V. In Equations (3) and (4), the term involving αl|vc|+ |u| represents the deactivation of

contractile force, while the term involving uΘ(u) represents its activation due to a chemical input u > 0.
Additionally, d0(εc) in Equations (1) and (5) represents the length–tension curve of the contractile
element, which we model using a Gaussian function for simplicity. The form of Equations (1)–(4) is
identical to the BCS model.

To further link microscale dynamics in Equations (1)–(5) to macroscale dynamics, we relate τc in
Equations (1) and (3) to the left ventricular pressure PV [23]:

PV = γ
V0

V
[d0(εc)τc + σP], (6)

σP =
k2

k1
[exp(k1

√
V/V0 − 1) − 1], (7)

where σP represents the passive stress, which is assumed to be exponential in Equation (7) for simplicity;
k1 and k2 are non-negative parameters for the passive tension. In Equation (6), γ is a constant parameter
proportional to the ratio of left ventricular wall thickness to its radius, and its physiological meaning is
provided in [21]. For our purpose of coupling microscale and macroscale dynamics, it suffices to treat
this constant as a parameter proportional to the above ratio and tune it.

2.2. Electric Activity Model

We now link the chemical activity u in Equations (3) and (4) to the electric activity. To this end, we
adapt the forced Van der Pol [2] and FitzHugh–Nagumo [24] models for our convenience (the precise
form is not particularly important, given the nonlinearity of the equations), as follows:

dp
dt

= 0.1(q− p + µ1τc), (8)

dq
dt

= 10q
(
1− q2

)
− 10(2π)2p + µ2VΘ(V −V0) + 10 cos(2πt), (9)

u = αuq, (10)

where p and q are dimensionless slow and fast variables for the electric activity, respectively; 10 cos(2πt)
in Equation (9) represents the force with 1 Hz frequency, which we fix to model a normal heart with
heart rate 1 Hz as a control case. Equation (10) represents the chemical activity u proportional to electric
activity (q) with a proportional constant αu > 0. Here, µ1 and µ2 in Equations (8) and (9) represent
the mechano-electric feedback (MEF) [25–29]. The non-zero value of µ1 or µ2 introduces the coupling
between (p, q) and τc or V. Specifically, µ1 mimics the effect of mechanical stress due to shortening
during a contraction on the action potential and is motivated by [25]; µ2 models the effect of stretch
(e.g., through a stretch-activated ion channel) [28]. Biologically, the values of µ1 and µ2 could be
changed due to the over or under expression of an ion channel. The units of µ1 and µ2 are kpa−1 and
(s·mL)−1, respectively. Since the role of MEF in a beating heart is implicit, we are uncertain about the
absolute value or sign of µ1 and µ2 for a control case. However, we find that µ1 = 0.0024 kpa−1 gives a
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reasonable relaxation time (about 0.4~0.5 s for 1Hz heart rate). We, thus, choose µ1 = 0.0024 kpa−1 and
µ2 = 0 for a control case. In the remainder of the paper, we omit the units of µ1 and µ2 for simplicity.

2.3. Basic Circulation Model and Control Case

For the circulation model, at the simplest level, we ignore the dynamics of the systemic arterial
circulation and propose the following basic model, which evolves the left ventricular volume V, aortic
pressure m, and pump flow n through an axial rotary pump

dV
dt

=
1

RM
(PR − PV)Θ(PR − PV) −

1
RA

(PV −m)Θ(PV −m) − δpn, (11)

dm
dt

= −
1

CSRc
(m−m0) +

1
CARA

(PV −m)Θ(PV −m) + δp
n

CA
, (12)

dn
dt

=
δp
L∗

[PV −m−R∗n + βω2
]
. (13)

In Equation (12), m is not coupled to the aortic flow but instead has a parameter m0, which models
a constant arterial pressure. In Equation (11), PR is the atrial pressure, and for our basic model, we
take this as a constant value instead of treating it dynamically. Increasing PR and m0 has the effect of
increasing preload and afterload, respectively. Equations (11) and (13) are exactly the same as those
in [14,15]. Here, δp is a parameter to denote the presence of a pump, where δp = 1 (δp = 0) represents
the presence (absence) of a pump. Rc, RM, RA, and R∗ are resistances, CS and CA are compliances, and
L∗ is inertance. Equation (13) shows that the pump flow n through an axial pump is driven by βω2,
where β is the pump parameter and ω is the pump speed (not angular frequency), following the same
notations as in [5,14,15]. Variables and parameters in Equations (1)–(12) are summarized in Tables 1
and 2, respectively, together with their physiological meaning and their values.

Table 1. Summary of variables and meanings.

Variable Physiological Meaning (Unit)

vc Velocity of the contractile element (s−1)

εc Strain of the contractile element

τc Active tension of the contractile element (mmHg)

kc Stiffness of the contractile element (mmHg)

σP Passive stress (mmHg)

u Chemical activity (s−1)

p Slow electric variable

q Fast electric variable

PV Left ventricular pressure (mmHg)

V Left ventricular volume (mL)

PR Atrial pressure (mmHg)

PS Arterial pressure (mmHg)

m Aortic pressure (mmHg)

m0 Arterial pressure parameter for the basic model (mmHg)

Fa Aortic (total) flow (mL/s)

n Pump flow (mL/s, mL/min)

δp Pump parameter (1 for pump, 0 for no pump)

Note that the parameter values for the contractile components (σo, kc, k1, k2) are based on [21–23], while those
for resistance, compliance, inertance, pump, and are taken from [14,15]. The advantage of this basic model is that
solutions are not too sensitive to initial conditions due to the nonlinearity of Equations (1)–(10) for mechanical and
electric activity and the fixed value of PR and m0 in the circulation model in Equations (11) and (12), allowing us to
find (almost) unique solutions after initial transients disappear.
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Table 2. Typical model parameters. The pathological case is in square brackets.

Parameter Value Physiological Meaning

RA 0.001 mmHg s/mL Aortic valve resistance

RM 0.005 mmHg s/mL Mitral valve resistance

RS 0.5 mmHg s/mL Systemic vascular resistance

RC 0.0398 mmHg s/mL Characteristic resistance

R∗ 0.3061− 3.5 (PV − 1 mmHg) Θ(1 mmHg− PV) Total pump resistance

CR 4.4 ml/mmHg Left atrial compliance

CS 1.33 ml/mmHg Systemic compliance

CA 0.08 ml/mmHg Aortic compliance

LS 0.0005 mmHg·s2/mL Inertance of blood in aorta

L∗ 0.0472 mmHg·s2/mL Total pump inertance

σ0 240 kpa Maximum sarcomere active tension

k0 120 kpa Maximum sarcomere active elastance

k1 0.002 kpa Model parameter for a passive tension

k2 14 kpa [40 kpa] Model parameter for a passive tension

χ, αl 100 s−1, 10 m−1 Damping parameters in sarcomere

ω0 100 s−1 Sarcomere microscale oscillation frequency

a, b 100 m·s−2 kpa−1, 6000 m·s−2 Active and passive force parameters

β0 20 mL−2 Length-tension parameter

γ 0.6 [0.45] PV parameter

V0 144/1.5 mL [144 mL] Volume parameter

µ1, µ2 0.0024 kpa−1, 0 (s·mL)−1 MEF parameters

2.4. Extended Circulation Model and Control Case

We extend our basic model by incorporating the dynamics of the systemic arterial circulation,
specifically by treating the arterial and atrial pressures dynamically. We, thus, include the following
evolution of Equations (16) and (17) for atrial pressure PR and arterial pressure PS based on the
Windkessel model in [14,15], while generalizing Equation (12) to Equations (14) and (15) by including
the aortic flow Fa:

dm
dt

= −
1

CA
Fa +

1
CARA

(PV −m)Θ(PV −m) + δp
n

CA
, (14)

dFa

dt
=

m− PS
LS

−
RCFa

LS
, (15)

dPR

dt
=
−PR + PS

CRRS
−

1
CRRM

(PR − PV)Θ(PR − PV), (16)

dPS
dt

=
PR − PS

CSRS
+

Fa

CS
, (17)

where RS is the systemic vascular resistance. Thus, for our extended model, we solve Equations
(14)–(17), (1)–(11) and (13) using parameter values in Table 2. Equations (14)–(17) are identical to those
in [14,15], with PR = x2, PS = x3, m = x4, Fa = x5 (V = x1, n = x6), with the key difference that we
calculate V and PV through the coupling to the microscale dynamics instead of using a prescribed
time-varying elastance formula. Figure 1 shows the electric circuits for the basic model in Figure 1a and
for the extended model in Figure 1b, where the detailed explanation is provided in the figure caption.
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Figure 1. (a) The electric circuits for the basic model (a) and for the extended model (b). For the pump
part, only total (effective) inductance L∗ and resistance R∗ are shown.

Here, DM and DA represent diodes; (a) RE = RC
CS
CA
> RC and constant values of PR and PS = m0

are represented by batteries. To recover the basic model from the extended model, we let RC → RE

and PS → m0 in Equation (15) and obtain the steady solution Fa =
m−PS

RE
= m−m0

RcCS
CA. Substituting this

in 1
CA

Fa in Equation (14) then gives m−m0
RcCS

in Equation (12).

3. Results and Discussions

3.1. Control Case in Basic Model

As an example of a control case, we choose PR = 9 mmHg, m0 = 70 mmHg, b = 6000, γ = 0.6,
k2 = 14 kpa, αu = 5, V0 = 144/1.5 mL, µ1 = 0.0024, and µ2 = 0. The initial left ventricular volume
is taken as V(t = 0) = 0.5 V0. For this basic model, solutions do not sensitively depend on other
initial values, and settle into (almost) unique solutions quickly (after a few seconds). Figure 2 shows
the time evolution of V/V0 and εc in Figure 2a, τc and kc in Figure 2b, q, p in Figure 2c, and PV and
m in Figure 2d, where they all quickly move to a steady state from after only one or two transient
oscillations. The initial transient is not shown in the P–V loop in Figure 2e. In Figure 2f, we show
the elastance E(t) = PV

V(t)−V∗
by using the volume at zero pressure V∗ ~ 7 mL, which is determined

from the end systolic pressure–volume relation (ESPVR) and shown by a solid red line in Figure 3a for
steady-state P–V loops obtained for different m0 values.

Figure 3a reveals that the larger the afterload m0, the larger the end systolic volume (ESV) and the
smaller the stroke volume (SV = EDV − ESV), where EDV is the end diastolic volume. In Figure 2f,
the maximum and minimum values of E(t) are about 2.1 and 0.07 mmHg/mL, respectively, similar
to those that are used for the time-varying elastance model for a normal heart [14,15]. Furthermore,
the overall shape and time duration between contraction and relaxation are also qualitatively similar
to those from the time-varying elastance model. This is shown in Figure 3b by magnifying Figure 2f.
For larger values of m0, the ESPVR is observed to be concave to the volume axis, consistent with the
experimental results [17,30].
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70 mmHg; (b) E(t) in Figure 2f for the basic model. Note that a data cursor image shows Emin on
the y-axis.

3.2. Control Case in Extended Model

For the extended model, we use the same parameter values as in Figures 2 and 3 (e.g., k2 = 14 kpa,
γ = 0.6, V0 = 144/1.5 mL, etc.) and in Table 2. Since the circulation models for PR, m, PS, and Fa

are linear, solutions have a rather sensitive dependence on initial values in addition to parameter
values. For Figure 4f, we use initial values PR(0) = 10 mmHg, PS(0) = 70 mmHg, m(0) = 70 mmHg,
Fa = 90 mL/s, and V(t = 0) = 0.9 V0. In Figure 4f, E(t) is calculated by determining the zero pressure
volume V∗~7 mL (see Figure 5). Notably, the overall behaviour in Figure 4 is quite similar to that in
Figure 2. In particular, the solutions go to a steady state form after only one or two transient oscillations
in Figure 4a–d,f; The initial transient is not shown in the P–V loop in Figure 4e.
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Figure 5 is equivalent to Figure 3 and shows different P–V loops in a steady state obtained for
different initial conditions V(0) = [0.4, 0.5, 0.6, 0.7, 0.8, 0.9] mL, as well as a detailed view of E(t) by
magnifying Figure 4f. Interestingly, in Figure 5a, as V(0) increases, both EDV and ESV increase, similar
to the effect of different preloads through interactions between preload and afterload, where an increase
in SV leads to an increase in cardiac output, arterial pressure, and thus, afterload. For V(0) > V0, we
observe that ESPVR is concave to the volume axis, as in the basic model. Furthermore, Figure 5b is
quite similar to Figure 3b, with similar maximum (around 2.1 mmHg/mL) and minimum (around
0.06 mmHg/mL) values. These results underscore that the basic model is a good approximation of the
extended model for a control case.
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Figure 4. Control case for the extended model: (a) V/V0 (red) and εc (blue) against time; (b) τc (red)
and kc (blue) against time; (c) q (blue) and p (red) against time; (d) PV (blue) and m (red) against time;
(e) PV against V; (f) elastance against time.
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Figure 5. (a) Steady-state P–V loops for different afterloads: V(0) = [0.4, 0.5, 0.6, 0.7, 0.8, 0.9]V0

increasing to the right; (b) E(t) in Figure 4f for the extended model. Note that a data cursor image
shows Emin on the y-axis.

3.3. Dilated Cardiomyopathy

Dilated cardiomyopathy is one of the main causes of heart failure, where the heart becomes
enlarged and cannot pump blood effectively. This can result from left ventricular remodeling, such as
a gradual increase in left ventricular EDV and ESV, wall thinning, and other causes. To model this
pathological change in heart geometry, we increase the parameter values of k2 and V0 to k2 = 40 kpa,
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V0 = 144 mL while reducing γ to γ = 0.45 (these parameter values are in square brackets in Table 2)
and fix all other parameter values.

3.3.1. Effect of a Pump on Dilated Cardiomyopathy in Basic Model

For all other parameters, we use the same values as those used in Figures 2 and 3. Figure 6
shows the time evolution of q (in blue) and p (in red) in the first column, a steady state P–V loop in
the second column, and the evolution of pump flow n in the last column. The first row is for the case
without a pump, where the zero pump flow simply means that there is no pump in this case. To see the
effect of a pump, we choose δp = 1 in Equations (11)–(13) and vary the values of rotary pump speed
(frequency) ω in Equation (13) as ω = [0, 0.5, 1, 2] × 8000 rpm, presenting results in the second to fifth
rows in Figure 6. As ω increases, the P–V loop initially shifts to a larger V before shifting to a smaller
V. The pump flow is negative (associated with an increase in V) for ω = 0 and then becomes positive
(with the decrease in V) as ω increases. This means that the pump speed needs to exceed the minimum
value to work effectively (a pump would shut down at the speed below this minimum value).

In clinical practice, 8000–10,000 rpm is the speed used for an axial rotary blood pump (HeartMate
II) [10]. A speed < 8000 rpm is used when weaning off the LVAD and a certain protocol is followed,
gradually decreasing the speed to 6000 rpm to allow ejection of the native heart and analyse its
performance. In Figure 6, with the increase of ω, the left ventricular pressure PV eventually decreases,
while aortic pressure m increases. This implies that in a failing heart, a pump will help increase the
arterial pressure. In the bottom row, we see the decoupling between PV and m for ω = 2× 8000 rpm.
These results are similar to those from the time-varying elastance model [14,15].
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Figure 6. From top to bottom: δp = 0, ω = 0, 0.5× 8000, 8000, 2× 8000 rpm, with δp = 1 for the basic
model. In each row, the left panel represents PV (blue) and m (red) against time; the middle panel
represents PV against V; the right panel represents the pump flow n against time.

3.3.2. Effect of a Pump on Dilated Cardiomyopathy in Extended Model

For all other parameters, we use the same values as those used in Figures 4 and 5. Figure 7 is
equivalent to Figure 6. The top row is the case without a pump (δp = 0) for a pathological heart; the second
to the bottom row in Figure 6 shows a pump (δp = 1) with a pump speed ω = [0, 0.5, 1, 2] × 8000 rpm.
As in Figure 6, as ω increases, a P–V loop initially shifts to a larger V before shifting to a smaller V;
the pump flow becomes negative (related to the increase in V) before becoming positive (associated
with the decrease in V). With the increase of ω, PV (m) eventually decreases (increases). In the bottom
row for ω = 2× 8000 rpm, PV and m decouple without any overlap between the two and PV contains
negative pressure. Overall, by comparing Figures 6 and 7, we observe the disparity in the behaviour of
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n, in particular for ω = 2× 8000 rpm. For a closer comparison with previous works [14,15], we make
the pump speed a linearly increasing function of time as ω = 400 t rpm and ω = 8000 + 200 t rpm,
and show the corresponding results together with the pump speed in the top and bottom panels of
Figure 8, respectively. Overall, the behaviour of PV, m, and n suddenly changes around ω ~ 12 krpm,
with the formation of a large envelope of oscillations. This nonmonotonic behaviour corresponds to
the onset of the suction in [14,15]. For larger ω, PV becomes negative.
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Figure 7. From the top to the bottom: δp = 0, ω = 0, 0.5× 8000, 8000, 2× 8000 rpm, with δp = 1 for
the extended model. In each row, the left panel represents PV (blue) and m (red) against time; the
middle panel represents PV against V; the right panel represents the pump flow n against time.

For a closer comparison with previous works [14,15], we make the pump speed a linearly
increasing function of time as ω = 400 t rpm and ω = 8000 + 200 t rpm, and show the corresponding
results together with the pump speed in the top and bottom panels of Figure 8, respectively. Overall,
the behaviour of PV, m, and n suddenly changes around ω ~ 12 krpm, with the formation of a large
envelope of oscillations. This nonmonotonic behaviour corresponds to the onset of the suction in [14,15].
For larger ω, PV becomes negative.
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Figure 8. The top shows ω = 400 t rpm and the bottom shows ω = 8000 + 200 t rpm for the
extended model.

Further, to compare our results with in vivo animal data during rotary pump assistance
(Figure 79.13 in [14], Figures 10 and 11 in [15]), we show results by using ω = 8000 + 100t

3 in
Figure 9. In particular, the left bottom panel shows that the pump flow exhibits a large envelope of
oscillations, while its mean value slowly increases over time; the onset of suction occurs at the pump
speed ω ≈ 12 krpm. This is very similar to the behaviour of the pump flow from in vivo data shown in
Figure 79.13 in [14].

Here, a substantial oscillation envelope is seen, with the mean value increasing with time before
the onset of suction, which occurs at a similar pump speed of ω = 12.5 krpm. In comparison, the
evolution of the pump flow from the time-varying elastance model shown in Figure 79.12 in [14]
behaves differently; there is a significant reduction in the oscillation envelope without much increase
in its mean value before the onset of suction, and the onset of suction takes place at a much greater
pump speed of ω ≈ 15.5 krpm.
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Figure 9. Here, ω = 8000 + 100t/3 rpm for the extended model.

Therefore, our results are in much better agreement with in vivo data than the prediction from the
time-varying elastance model in [14,15]. The agreement with in vivo data is also better in the extended
model than the basic model, as aortic flow (its interaction with a pump) is not treated dynamically in
the basic model (see Figure 10). These results highlight the importance of self-consistent treatment of
the LVAD–heart interactions in simulating clinical scenarios, with a view to treatment optimization
and outcome prediction.
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Finally, we note that the direct comparison of our results with those from more advanced
(distributed) models with the LVAD support [19] is difficult. if not impossible, because of the use of
different variables or parameters and the lack of a systematic study on these advanced models (due to
high computational cost).
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Figure 10. Here, ω = 8000 + 200 t rpm for the basic model (compared with Figures 8 and 9 for the
extended model).

3.4. Summary

The pressure–volume relation plays a key role in cardiovascular modeling, and the traditional
approach heavily relies on the time-varying elastance concept [5,11–15], in which the pressure to
volume ratio is prescribed as a (double) periodic function of time. In particular, lumped-parameter
models combined with pressure–volume loop analysis and time-varying elastance are very effective in
simulating clinical scenarios, with a view to treatment optimization and outcome prediction [6,11].
However, the time-varying elastance concept has limited validity, as it cannot address cardiac
self-organization and its breakdown, especially for a mechanically supported left ventricle, where its
application for the analysis of LVAD–heart interactions has been questioned. Therefore, our aim was to
develop a method that is at least as good as lumped-parameter modeling, but which enables us to
investigate cardiac self-organization and the interaction between the cardiac system and LVAD.

To this end, we developed a synergistic model that couples mechanical, electric, and chemical
activity on microscale sarcomere and macroscale heart levels, and which predicted the pressure–volume
relation of the left ventricle consistently. In a control case without LVAD, we showed that both basic
and extended models reproduced the left ventricular pressure–volume relation, which is similar to
what is obtained from the time-varying elastance model (e.g., comparing Figures 2–5 with Figure 79.8b
in [14]).

We then considered a failing left ventricle by choosing parameter values to model dilated
cardiomyopathy and investigated the interaction between a failing left ventricle and the circulation in
the presence of a rotary pump by including the coupling between the aortic pressure and the pump
flow in an axial rotary pump. For a sufficiently large pump speed, the stroke volume of the left
ventricle increases, while its pressure and aortic pressure are decoupled with the increase (decrease)
in the pressure of the aorta (left ventricle), similar to the finding from the time-varying elastance
model. Furthermore, our extended model worked better than the time-varying elastance model in
reproducing in vivo animal data with a rotary pump (see Figure 9), in particular in the overall shape
(large envelope) of oscillations of the pump flow and the pump speed for the onset of suction, with a
better agreement compared with the time-varying elastance model in [14,15].
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4. Conclusions

We conclude that our synergistic model is a valid and better alternative to the time-varying
elastance model considering that it addresses all the key aspects involved in terms of the overall P–V
loop shape and the interaction between LVAD and circulation. In particular, it consistently incorporates
the coupling between the mechanical and electric activity and can be used to explore MEF, which
would otherwise have been impossible in real experiments or with the time-varying elastance model.
The importance of self-consistent treatment of the LVAD–heart interactions was highlighted. Finally,
we note that our model can also be extended to study the interaction between the left ventricle and
atria [20], as well as the effect of LVAD on the right ventricle failure [31] at the simplest level, but yet is
close to real life scenarios incorporating the interaction between the circulation, LVAD, and microscale
dynamics. Future work will also explore the incorporation of central and peripheral extracorporeal
membrane oxygenation (ECMO).

Limitation of our study: Given the simplicity of our lumped parameter model based on a set of
ordinary differential equations, our model cannot inform us how our variables are distributed in space
(e.g., waves), any consequences of their inhomogeneity, or the effect of boundaries. Furthermore, given
the limited number of parameters, our model reproduces only a qualitatively similar shape of a P–V
loop of an individual, but not its exact shape.
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