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Introgressive hybridization can affect the evolution of populations
in several important ways. It may retard or reverse divergence of
species, enable the development of novel traits, enhance the potential
for future evolution by elevating levels of standing variation, create
new species, and alleviate inbreeding depression in small populations.
Most of what is known of contemporary hybridization in nature
comes from the study of pairs of species, either coexisting in the same
habitat or distributed parapatrically and separated by a hybrid zone.
More rarely, three species form an interbreeding complex (triad),
reported in vertebrates, insects, and plants. Often, one species acts as a
genetic link or conduit for the passage of genes (alleles) between two
others that rarely, if ever, hybridize. Demographic and genetic conse-
quences are unknown. Here we report results of a long-term study of
interbreeding Darwin’s finches on Daphne Major island, Galápagos.
Geospiza fortis acted as a conduit for the passage of genes between
two others that have never been observed to interbreed on Daphne:
Geospiza fuliginosa, a rare immigrant, and Geospiza scandens, a resi-
dent. Microsatellite gene flow from G. fortis into G. scandens increased
in frequency during 30 y of favorable ecological conditions, resulting in
genetic and morphological convergence. G. fortis, G. scandens, and the
derived dihybrids and trihybrids experienced approximately equal fit-
ness. Especially relevant to young adaptive radiations, where species
differ principally in ecology and behavior, these findings illustrate how
new combinations of genes created by hybridization among three spe-
cies can enhance the potential for evolutionary change.
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In the early stages of speciation, nascent species are prone to
hybridize and exchange genes through backcrossing and in-

trogression (1–3). The circumstances and consequences of hy-
bridization in animals have received much attention recently
because gene exchange can affect the evolution of populations in
several important ways: at the most extreme in facilitating the
evolution of unisexuality in both vertebrates (4, 5) and inverte-
brates (6, 7). Hybridization may retard, arrest, or reverse di-
vergence of species (8–11); enable the development of novel
morphological and physiological traits (12–15); enhance the po-
tential for future evolution by elevating levels of standing variation
(16–20) and by strengthening or relaxing covariances (17, 21);
alleviate inbreeding depression in small populations (22–24); and
create new species (2, 25–27). Extensive hybridization in the past is
known through inferences from phylogenetic reconstructions (3,
15, 28, 29). With regard to contemporary hybridization in nature,
most of what is known comes from the study of pairs of species,
either coexisting in the same habitat or distributed geographically
with little overlap and separated by a hybrid zone (30, 31). In this
article, we discuss an additional complexity, the occurrence of
hybridization among triplets of species (triads), and consider its
context and evolutionary significance.
Triad hybridization has been reported in fish (32–34), frogs

(35), lizards (36), birds (17, 37, 38), mammals (39–41), snails (42),
butterflies (43), mosquitoes (44), as well as several plant taxa (45,
46). One species acts as a genetic bridge (33, 47, 48) or conduit
(41, 49) for the passage of genes (alleles) between two others that,
in some cases, rarely if ever hybridize (33, 39, 41). Exchange of
genes is generally not studied directly with breeding pairs but is
inferred from the presence of individuals of mixed (trispecies)

ancestry (33, 39, 41) or from the fact that hybridization occurs, or
is enhanced, only in the presence of a third species (36, 50).
Triad hybridization, where one species acts as an intermediary

for gene exchange between two other noninterbreeding species,
raises questions of genome compatibility, selection, fitness, and
the evolution of reproductive isolation. Evolutionary effects of
bispecies hybridization may be either negated or amplified in
trispecies hybridization. On the one hand, donated alleles may be
gradually eliminated by selection and drift, resulting in no net
change in genome compositions. In this case, hybridization is
likely to be transitory and a prelude to the evolution of stronger
reproductive isolation and a decline in gene exchange (51). On
the other hand, introgressed alleles may be filtered in transit
(52), with some being incorporated into the genomes of the
bridging species and in the downstream recipient species, where
they affect morphology or physiology and facilitate evolutionary
divergence (53–55). Gene dynamics are potentially heteroge-
neous. Epistasis is expected to be complex because genes from
one species function against a genetic background derived in part
from two other species. Of interest is the question whether the
recipient species receive alleles equally or unequally (filtered) via
the intermediary conduit, and whether the conduit species itself
donates more or less than it receives. Alternative outcomes de-
pend on the frequency of interbreeding, the direction(s) of ex-
change, and fitness consequences. With rare exceptions (39, 43),
all of these are unknown. Long-term demographic studies are
needed to estimate the magnitude of these influences and to
document and interpret the significance of triad hybridization.
We report an example from a long-term demographic study of

Darwin’s finches on the small Galápagos island of Daphne Major
(0.34 km2), carried out from 1973 to 2012. On this island, the
medium ground finch (Geospiza fortis, ∼17 g) occasionally breeds
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with the cactus finch (Geospiza scandens, ∼21 g), a resident
species, and the small ground finch (Geospiza fuliginosa, ∼13 g),
a rare immigrant and sister species to G. fortis (28, 56). In doing
so, G. fortis acts as a conduit for the passage of genes between G.
fuliginosa and G. scandens, two species that have never been
observed to interbreed on Daphne (Fig. 1). Individuals were
initially assigned to species on the basis of morphology (SI Ap-
pendix, section 1), and hybrids were identified from pedigree
data (57). Mixed pairs, first observed in 1976 (57, 58), were
generally at frequencies of one to three percent of the breeding
populations (56). Offspring of known parents were uniquely
marked with leg bands in the years 1976 to 1998, and breeding
pairs were identified in every year up to 2012. Questions of pa-
ternity were resolved with microsatellite markers when a program
of DNA sampling was initiated in 1988 (59). The microsatellite
markers were used to identify hybrids throughout the whole study
period (Methods and SI Appendix, sections 2 and 3). Known hy-
brids were observed to breed from 1983 onward when an El Niño
event caused a major change to the environment (56, 60). Hybrids
were found to backcross according to the same rules that govern
intraspecific mate choice: finches choose mates on the basis of
imprinting on paternal song and parental morphology, and occa-
sionally hybridize when they learn the song of another species (61,
62). Frequencies of alleles at 16 unlinked polymorphic loci are
used here to assign 3,165 individuals probabilistically (≥0.9) to the
three species (63), and, if the 0.9 criterion is not met, they are
assigned to hybrids (admixtures). We refer to them as primary
admixtures when individuals are assigned to two species (dihy-
brids) and secondary admixtures when they are assigned to all
three species (trihybrids).
We present quantitative estimates of the frequencies of di- and

trihybrids and introgression of neutral microsatellite markers.
We show that, as expected, birds with genomic admixtures are
intermediate in morphology between the means of the parental species that gave rise to them, and with elevated variances. The

main finding is that di- and trihybrids survived surprisingly well,
approximately as well as G. fortis and G. scandens over the first
6 to 10 y of life. High survival, even of trihybrids, may be charac-
teristic of relatively young adaptive radiations in fluctuating
environments.

Results
Frequencies of Primary Admixtures. G. scandens × G. fortis (SF)
and G. fortis × G. scandens (FS) hybrids were produced in every
well-sampled year from 1978 onward (Table 1): the first letter
denotes the species with majority assignment probability. G.
fortis × G. fuliginosa (Ff) hybrids were produced from 1981 on-
ward, and in greater numbers. A small number of admixed in-
dividuals (n = 27) were assigned to G. scandens and G. fuliginosa
(Sf and fS) but not to G. fortis. Most (0.74) occurred after 1998
when the detailed breeding study ceased. They may have been
the undetected product of interbreeding of the two species,
which was never observed in 1976 to 1998 but may have occurred
through extrapair mating (61). Alternatively, and perhaps more
likely, they were the product of interbreeding of G. scandens and
Ff, or some more complicated pairing such as SF × fF.
Hybrid production increased in frequency, especially after

2000 (Fig. 2). All slopes of regressions of numbers on year are
positive. The Ff relationship is not significant, either with
(F1,16 = 1.61, P = 0.2228) or without the outlier in 2002 (F1,15 =
1.36, P = 0.2617), and nor is the relationship for Sf and fS
combined (F1,16 = 2.20, P = 0.1572). The FS relationship is
significant with the two outliers in 2007 and 2011 included
(F1,16 = 7.48, P = 0.0147) or excluded (F1,14 = 4.64, P = 0.0491),
and the SF relationship is also significant without the strong
outlier in 2007 (F1,15 = 15.00, P = 0.0015).
To quantify the trends, we calculated means after deleting the

conspicuous outliers. Since the remaining frequencies vary relatively

Fig. 1. Gene exchange among three species of Darwin’s finches. The green lines
indicate an indirect transfer from G. fuliginosa to G. scandens via G. fortis acting
as a conduit. G. fuliginosa is too rare to form an independent breeding pop-
ulation. The principal flow of genes is from G. fortis to G. scandens (blue line).

Table 1. Numbers of sampled G. fuliginosa, G. fortis, G.
scandens, and pairwise admixtures produced each year

Year fuliginosa fortis scandens Ff + fF FS SF Sf + fS

1975 — — 2 — — — —

1978 — 7 3 — 1 — 1
1979 — 1 1 — — 1 —

1981 — 9 3 2 — 1 1
1983 1 45 18 2 2 1 1
1984 1 24 2 3 — — —

1986 1 — — — — —

1987 6 283 57 21 7 2 3
1990 27 4 3 — — —

1991 5 648 127 41 11 4 2
1992 7 123 46 15 2 3 1
1993 7 126 102 5 5 5 —

1997 — 6 13 — — 1 —

1998 1 140 98 8 6 6 3
2000 — — 15 1 1 2 1
2001 1 53 4 5 1 — —

2002 3 68 66 17 4 6 1
2005 7 93 27 10 5 6 1
2007 1 31 13 5 8 11 3
2008 3 75 82 4 3 14 3
2009 2 53 41 8 5 2 1
2010 8 74 59 6 3 9 3
2011 8 14 26 4 4 6 3

Totals 61 1,901 809 160 68 80 28

Abbreviations: letters designating hybrids refer to the species G. fuligi-
nosa (f), G. fortis (F), and G. scandens (S). The first letter of admixtures
denotes the species with majority assignment probability.
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little and are normally distributed, we did not transform them.
Frequencies are much higher in Ff (0.073 ± 0.011 SE) and SF
(0.089 ± 0.023) than FS (0.037 ± 0.010) and Sf (0.028 ± 0.007; n =
18 for each group). Sf frequencies are notably lower than Ff (P =
0.0160) and SF (P = 0.0327) frequencies by Kramer HSD tests. The
inequalities imply that alleles were transferred twice as frequently
from G. fuliginosa to G. fortis (Ff) and from G. fortis to G. scandens
(SF) as in the reverse direction (FS).

Secondary Admixtures. Secondary admixtures occur through in-
terbreeding of G. scandens and Ff hybrids or backcrosses. Fre-
quencies were uniformly low (Table 2), generally much lower
than the frequencies of primary admixtures (Table 1). Allele
transfer from G. fuliginosa to G. scandens via members of the G.
fortis population (including hybrids) is indicated by the breeding
of trispecific hybrids. Three of these hybrids with a majority as-
signment to G. fortis or G. fuliginosa produced offspring by
breeding with G. scandens, and four others did so by breeding
with G. fortis. In the four cases where fathers of the trihybrids
were known (three G. fortis and one G. scandens), they all fol-
lowed the mating rule of pairing according to paternal song type.
As with the dihybrids, gene exchange involving trihybrids was
bidirectional between G. fortis and G. scandens.

Introgression. As a result of an exchange of alleles, G. scandens
became progressively more similar genetically to G. fortis across
five periods of breeding (Fig. 3). The pattern of genetic conver-
gence has been reported before (56), but without statistical anal-
ysis. Fourteen of the 16 slopes for individual loci are negative,
which is a significant departure from the null hypothesis expec-
tation of eight (two-tailed binomial test, P = 0.004). Moreover,
three of the slopes for individual loci are significant (Fig. 3).
We tested the null hypothesis that G. fortis and G. scandens

contributed equally to genetic convergence. We did this by
comparing the average Nei’s DA value, a measure of genetic
distance, between the earliest G. scandens and latest G. fortis
samples with the average DA value between the earliest G. fortis
and latestG. scandens samples. They should be equal according to
the null hypothesis. The power of the test for this type of com-
parison with small samples is low; nevertheless, the difference is

close to being significant: paired t15 = 1.95, P = 0.07 with arc sign-
transformed data. Late G. scandens are more similar to early G.
fortis (average DA = 0.185) than late G. fortis are to early G.
scandens (average DA = 0.241). Thus, G. scandens appear to have
converged genetically more than G. fortis, consistent with the in-
ference from the higher frequency of SF than FS, and consistent
with the morphological trends (51). Furthermore, G. scandens
gained 16 alleles present in the earliest G. fortis sample but not in
the earliest G. scandens sample, whereas G. fortis gained only
three alleles from G. scandens. However, the difference is partly
explained by the fact that G. fortis had more alleles (n = 190) to
donate than G. scandens (n = 159).
In contrast to these results, the genetic distance between G.

fortis and G. fuliginosa remained unchanged across the five pe-
riods (F = 1.40, P = 0.3224), consistent with constant frequencies of
Ff hybrids (as detailed earlier). We interpret the constancy as a
steady-state gene flow, with input of G. fuliginosa alleles into G.
fortis through repeated immigration and hybridization roughly bal-
anced by output as the backcrosses to G. fortis across generations

Fig. 2. Frequencies of hybrids produced in each year of breeding. Hybrids are expressed as frequencies of the offspring produced in each of the G. fortis groups (G.
fortis, Ff [A], FS [B]) and G. scandens groups (G. scandens, SF [C], Sf [D], fS). Regressions are significant for FS and SF frequencies (see Frequencies of Primary Admixtures).

Table 2. Numbers of trihybrids produced each year

Year FfS fFS FSf fSF SFf SfF

1987 3 1 4 1 1 —

1991 1 1 1 — — —

1992 1 — 1 1 — —

1993 2 — — 1 — —

1997 — — — — 1 —

1998 — — 1 — 1 —

2002 1 — — 1 — —

2005 2 — 1 — 3 1
2007 1 2 — — — 1
2008 1 — 1 — — 1
2009 1 — — — 1 1
2010 3 — 1 1 3 1

Totals 16 4 10 5 10 5

Abbreviations: letters designating hybrids refer to the species G. fuligi-
nosa (f), G. fortis (F), and G. scandens (S), and the descending order of
assignment probability to the three species.
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become increasingly indistinguishable from G. fortis itself. Input
exceeds output in G. fortis and G. scandens. The net result is a
predominant flow of genes from G. fuliginosa and G. fortis to G.
scandens, with some reverse flow to G. fortis, as depicted in Fig.
1. Unequal exchange of genes has also been reported for two
species of tree finches on Floreana island (Camarhynchus spp.),
predominantly from a rare to a common species (64).

Phenotypic Consequences of Hybridization.Morphological traits are
highly heritable in G. fortis and G. scandens (65, 66). Therefore
hybrids, both dihybrids and trihybrids, are predicted to have in-
termediate means and increased phenotypic variances in the
absence of selection (17). We used principal components anal-
ysis (PCA; SI Appendix, section 4) to test these predictions.
Mean measurements match expectations. The hybrid groups

are larger in size than smaller species (G. fuliginosa and G. fortis)
and smaller than the larger species (G. scandens; Table 3). Beak
shape means are similarly intermediate. For each of these traits,
14 comparisons were made between a group of hybrids and a
species that contributed to them. Most differences in body size
and beak shape are significant by Tukey’s HSD tests (Table 3).
The expectation of larger variances of the hybrid groups is

realized in all 42 comparisons, and 35 of them are significant by
one-tailed F tests (Table 4). Dihybrids differ from the species in
variances of beak traits more than do the trihybrids, although not
in variances of body size. Average ratios of variances for the
dihybrids are 2.00 (body size), 3.24 (beak size), and 3.86 (beak
shape), and, for the trihybrids, they are 2.65, 3.04, and 3.09 in the
same sequence. These are notably large values.

Transgressive Segregation. Some interbreeding populations of
other species produce hybrids that are beyond the range of the
combined phenotypic variation of the parental species, a phe-
nomenon known as transgressive segregation and attributed to a
variety of genetic and developmental causes (67–71). To detect
transgressives, we compared admixed individuals (hybrids) with
99% ellipses around the joint beak shape–body size means of
each of the three species, G. fortis, G. fuliginosa, and G. scandens
(Fig. 4). The boundaries are conservative because some indi-
viduals assigned to a species by the ≥0.9 probability criterion may
in fact be advanced-generation backcrosses, and, additionally,
the sample size of one of the species, G. fuliginosa, is small. We
found a single fS individual beyond the range of both parental
species (Fig. 4B). However, this example is anomalous and
should be discounted because admixture does not reflect an-
cestry: although they were not genotyped, both parent individ-
uals were G. fortis morphologically. A few other individuals lay
within the range of parental group phenotypes but just outside
the ellipses. Noteworthy are three trihybrids that are smaller or
larger than one of the parental species but with the same beak

Fig. 3. Genetic convergence. (A) G. scandens became progressively more sim-
ilar genetically to G. fortis across five periods (1975 to 1987, 1990 to 1993, 1997
to 1998, 2000 to 2002, 2005 to 2011) separated by years of little or no breeding.
The regression relationship of annual mean DA values on time for the combined
data are significant (F1,4 = 15.30, P = 0.0297, R2 adj = 0.78), and has a negative
slope of −0.024 ± 0.006 (A). (B–D) Significant regression relationships at three of
the individual loci: locus 2.26 (F = 27.92, P = 0.0132, b = −0.048 ± 0.009 SE, R2

adj = 0.87), locus 241 (F = 15.06, P = 0.0303, b = −0.057 ± 0.015, R2 adj = 0.78),
and locus 420 (F = 47.13, P = 0.0063, b = −0.092 ± 0.013, R2 adj = 0.92).

Table 3. Comparison of morphological means from PCA
between species and hybrids by Tukey HSD tests, contrasting
size and shape of species and hybrids

Species Hybrid

Body size Beak size Beak shape

P Largest P Largest P Pointed

fuliginosa Ff 0.0001 Hybrid 0.0001 Hybrid 0.0001 Species
fortis Ff 0.2723 — 0.0001 Species 0.0028 Hybrid
fuliginosa Sf 0.0001 Hybrid 0.0001 Hybrid 0.4205 —

fortis FS 0.9629 — 1.0000 — 0.0001 Hybrid
fortis SF 0.0001 Hybrid 0.9995 — 0.0001 Hybrid
scandens FS 0.0001 Species 0.0619 — 0.0001 Species
scandens SF 0.0001 Species 0.0681 — 0.0001 Species
scandens Sf 0.0002 Species 0.8883 — 0.0001 Species
fortis FfS+fFS 0.0040 Hybrid 1.0000 — 0.0001 Hybrid
fortis FSf+fSF 0.1922 — 0.9961 — 0.0003 Hybrid
fortis SfF+SfF 0.0165 Hybrid 0.9998 — 0.0001 Hybrid
scandens FfS+fFS 0.0001 Species 0.8100 — 0.0001 Species
scandens FSf+fSF 0.0001 Species 0.1342 — 0.0001 Species
scandens SfF+SfF 0.0001 Species 0.9138 — 0.0001 Species

Abbreviations: Symbols of the hybrids as in Tables 1 and 2. SE, SEM. PCA is
principal components analysis. Sf and fS are combined as Sf. Sample sizes as
used in Table 4.
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shape as the species to which they are most genetically affiliated.
Six large Ff dihybrids have unusually pointed beaks for birds of
their body size. Collectively, these few individuals should be
considered allometric transgressives as they are displaced from
the principal axes of parental group covariation.

Fitness. We measured fitness in terms of survival and, indepen-
dently, the probability of becoming a recruit to the breeding
population. Maximum longevities recorded on Daphne were 17 y
for both G. fortis and G. scandens (56). Hybrid longevities are
apparently shorter (Fig. 5), but this is likely to be an artifact of
their smaller sample sizes. The oldest hybrids are not included in
Fig. 5 because they hatched in years before genotyping began.
They are approximately the same: 13 y (one Ff, one Sf), 12 y (one
SF), and 11 y (one FS).

Overall, di- and trihybrids survived approximately as well as G.
fortis and G. scandens over the first 6 to 10 y of life in the period
1987 to 2010 (Fig. 5). Ff hybrid survival was almost identical to
G. fortis survival, FS survival was lower after year 2 by up to 10%,
and SF survival was higher than G. scandens survival until year 5.
Dihybrids with admixture of G. fuliginosa and G. scandens had
the highest survival. Relative survival of the trihybrids is het-
erogeneous. The two G. fortis trihybrid groups, FfS and FSf,
survived better thanG. fortis, whereas SFf survival was inferior to
that of G. scandens by about 10% at each age. Note each group
of dihybrid and trihybrids deviate from their respective species in
opposite directions and hence their effects tend to cancel each
other, resulting in no, or reduced, net advantage or disadvantage of
the combined hybrids relative to the species. This is illustrated with
G. fortis and hybrids in Fig. 5. G. scandens combined with hybrids
shows the same pattern (SI Appendix, section 5 and Fig. S2).
Recruitment success of the two cohorts with the most com-

plete data did not differ between species and hybrids (Table 5).
A possible exception is the low recruitment of FS in the 1991
cohort, but the numbers are small, without statistical evaluation,
and, furthermore, this hybrid group of the 1987 cohort experienced
the opposite, high success. Together, survival and recruitment of
hybrids provide no indication of a fitness disadvantage.

Hybrid Fitness in Relation to Morphology. Despite the high fitness
of hybrids, those deviating most strongly in morphology from
parental species may lie in a fitness valley between peaks occu-
pied by the species. We tested the hypothesis with survival
from year 1 posthatch to year 2 with the only samples sufficient
for analysis from the period 2005 to 2012. The hypothesis was
supported in the expected direction for the SF hybrids with PC
data (n = 48, 0.62 survival) on body size (F = 6.85, P = 0.0119)
and beak size (F = 10.13, P = 0.0026) but not beak shape (F =
0.02, P = 0.8936). The survival difference is not the consequence
of males, the larger sex, surviving better than females, as it also
occurs among males alone (n = 28, 0.75 survival) in body size
(F = 11.19, P = 0.0025) and beak size (F = 15.34, P = 0.0006) but

Table 4. Ratios of variances of hybrids to species

Hybrid Species df Body size Beak size Beak shape

Ff fuliginosa 112,17 2.76* 8.45**** 2.84*
Ff fortis 112,733 2.63**** 2.63**** 1.38***
fS fuliginosa 22,17 2.80* 5.81**** 12.81****
FS fortis 31,733 1.75* 1.06 2.63****
SF fortis 58,733 2.10**** 1.12 2.80****
FS scandens 31,200 1.06 1.83*** 2.26****
SF scandens 58,200 1.28 1.94**** 1.75****
Sf scandens 23,200 1.62* 3.04**** 3.44****
FfS + fFS fortis 16,733 1.74* 1.47 4.12****
FSf + fSF fortis 12,733 4.85**** 3.60**** 3.48****
SFf + SfF fortis 14,733 3.31**** 1.60 3.83****
FfS + fFS scandens 16,200 1.06 2.54**** 2.57****
FSf + fSF scandens 12,200 2.94**** 6.23**** 2.17*
SFf + SfF scandens 14,200 2.01* 2.78**** 2.38***

Symbols of the hybrids as in Tables 1 and 2. Variances are from principal
components analyses (PCA). df = degrees of freedom. One to four asterisks are
one-tailed probabilities from F tests in the sequence 0.05, 0.01, 0.005, 0.001.

Fig. 4. Beak shape and body size of hybrids (dots) in relation to 99% ellipses around the distributions of G. fuliginosa (green), G. fortis (blue), and G. scandens
(pink). (A) G. fuliginosa × G. fortis dihybrids. (B) G. fuliginosa × G. scandens dihybrids. (C) G. fortis × G. scandens dihybrids. (D) Trihybrids: beak pointedness
increases from origin to the top, and body size increases from left to right. The smallest trihybrid outlier is fFS, and the other two are FfS.
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not beak shape (F = 1.72, P = 0.2006). There are no morpho-
logical differences between surviving and nonsurviving FS hy-
brids (n = 26, all P > 0.30, 0.50 survival) or Ff hybrids (n = 35, all
P > 0.20, 0.54 survival).

Discussion
The main finding of the study is the role of G. fortis as a conduit
species, which is demonstrated by the occurrence of two types of
hybrids. The first group of hybrids are G. scandens × G. fuliginosa
admixtures (dihybrids), since these two species are not known to

interbreed on Daphne. G. scandens and G. fuliginosa differ strongly
in the traits used in mate choice—beak size and shape, body size,
and song (61, 62, 72)—whereas morphological difference between
them are smaller on San Cristóbal island, where they do interbreed
(personal observations, 1997 and 2018). The second group of hy-
brids are admixtures of three species (trihybrids).
We used neutral markers, microsatellites, to assign individuals

to species or hybrids, using an arbitrary but often used and bi-
ologically justified criterion (36, 39, 43, 46) to separate them (SI
Appendix, section 2). Assignments are subject to error (SI Ap-
pendix, section 2), and it is possible that the small number of loci
results in an inflated number of erroneous assignments to hybrid
classes. There are three reasons for believing this is not a source
of strong bias. First, in a simulation study, most hybrids (0.85)
were correctly identified (63). Second, each hybrid group has
morphological features expected from its assigned genetic com-
position: intermediate means between the parental groups that
are known or estimated to give rise to it, and increased variances.
This would not be expected if many of the hybrids were not in fact
hybrids. Third, there is no evidence of inflation in the samples
from 1984 to 1998 when the pedigree allowed identification of
first-generation backcrosses. Ten of 1,808 individuals with all four
grandparents and both parents known have genomes with mix-
tures ofG. fortis, G. scandens, andG. fuliginosa. Eight of the 1,808
individuals were assigned to trihybrids by microsatellites.
Existence of the two groups raises questions of genetics and

fitness. How can a two-way or three-way mixture of genomes of
different species function in individual organisms, what combi-
nations of genes are compatible and which ones are not, how
stable or transitory are their long-term dynamics, and what fac-
tors permit, promote, or hinder their existence? Answers to these
questions can help to explain how barriers to interbreeding be-
come strengthened in the process of speciation leading to com-
plete reproductive isolation (1, 2, 15, 73, 74). Similar questions
have been addressed in studies of interbreeding populations of
Neanderthals, Denisovans, and ancestors of modern humans (75,
76), and the answers may portend future discoveries with finches
and other organisms. Introgressive hybridization has been asso-
ciated with a transfer of adaptive genes, for example those af-
fecting skin color and immune function (75), deleterious genes
affecting male fertility (76), and presumably an abundance of
selectively neutral genes; in other words, a mixture, subject to
repeated selective filtering.
To address these genetic questions, a preferable approach

would be to use whole genomes. Nonetheless, microsatellites are

Fig. 5. Survival of di- and trihybrids in relation to G. fortis and G. scandens
from year 1 in the years 1987 to 2010. (A) Dihybrids Ff (green) and FS (red). (B)
Trihybrids FSf + FSf (black) and FfS + fFS (green). (C) Di- and trihybrids SF (blue),
Sf (green), and SFf + SfF (black). (D) G. fortis compared with dihybrids and tri-
hybrids with predominant assignment to G. fortis (Ff, FS, FfS, fFS, FSf, fSF).

Table 5. Recruitment of hybrids and species from the two
cohorts with most data

Hybrid/species Bred Did not breed Total Proportion bred

1987
G. fortis 136 130 266 0.51
Ff 10 7 17 0.59
FS 5 2 7 0.71
FfS 5 3 8 0.62

1991
G. fortis 204 428 632 0.32
Ff 16 24 40 0.40
FS 3 8 11 0.27
FfS 2 1 3 0.67
G. scandens 30 88 118 0.25
SF 2 2 4 0.50

Symbols of the hybrids as in Tables 1 and 2, except that FfS combines all
trihybrids with an assignment probability greater to G. fortis than to G.
scandens. Other hybrid categories were not present or represented by single
individuals.

Grant and Grant PNAS | April 7, 2020 | vol. 117 | no. 14 | 7893

EV
O
LU

TI
O
N

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2000388117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2000388117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2000388117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2000388117/-/DCSupplemental


sufficient to show that, in combination, dihybrids and trihybrids
were at no disadvantage in terms of survival or recruitment when
compared with the species that gave rise to them during a period
of favorable food conditions following the change in ecology
caused by the 1982 to 1983 El Niño event. High fitness is sur-
prising, and indicates that selection against novel gene combi-
nations in this group of finches must be weak at most. The only
disadvantage we could detect was low survival of the smallest SF
hybrids. This should slow the rate of convergence of G. scandens
on G. fortis; however, we doubt if this happens because it is
counteracted by relatively high survival of Sf hybrids (Fig. 5),
which are also smaller in body size than G. scandens (Table 3).
We can identify two factors that help to explain how the ge-

nome of one species is apparently tolerant to invasion (77) by
two others. The first is the phylogenetic youth of the group. G.
fortis and G. fuliginosa are sister species according to a whole-
genome phylogenetic analysis of autosomes (28). They shared a
common ancestor ∼240,000 y ago, and they shared a common
ancestor with G. scandens ∼260,000 y ago or earlier. These are
minimum estimates because allele sharing makes them appear to
be more similar and younger than would be revealed by their
true history. Their youth means that relatively few genes have
diverged in separate species; they mainly affect morphological
traits related to feeding and breeding ecology, and they cause no
incompatibility and have little or no transgressive effects upon
phenotypes. The second factor is the genetic similarity of G.
fuliginosa and G. scandens, as indicated by their microsatellites.
Although G. fortis and G. fuliginosa are the most similar pair of
species (Nei’s D = 0.28), G. scandens is more similar to G.
fuliginosa (D = 0.46) than it is toG. fortis (D = 0.76). G. scandens
is also more similar to G. fuliginosa in beak shape, although not
in body size (Fig. 3D).
Triad hybridization, with one species acting as bridge or con-

duit between two noninterbreeding species, is valuable for what
it reveals about the potential for the generation of novel phe-
notypes. Introgressive hybridization increases the potential by
increasing additive genetic variances, altering genetic covari-
ances, and constructing new combinations of interacting genes
(12, 15). As expected, we found increased morphological vari-
ances in both dihybrids and trihybrids. A previous study provided
evidence of relaxed genetic covariances in dihybrids (17), as has
also been found in fish (21, 70). Multivariate effects should be
greater through hybridization of three species than of two spe-
cies. We found no clear case of extreme phenotypes beyond the
range of variation of both of the contributing parental groups
(transgressive segregation); however, three trihybrids displayed
allometric transgression, lying outside the region of body size
variation but not outside the range of beak shape variation of the
parental groups. Some dihybrids displayed similar patterns. The
evolutionary potential of allometric transgression has been
demonstrated with the origin of a new lineage on Daphne Major.
The lineage was initiated by hybridization of an immigrant
Geospiza conirostris with a resident G. fortis, resulting in the
formation of a reproductively isolated population that displayed
allometric transgression, that is, a deviation from the two species
in the relationship between beak size and body size (27, 78).
Transgressive morphology is implicated in reproductive isolation
because mate choice is based in part on beak and body size (61,
62, 72) and the relationship between the two (79).
Triad hybridization is likely to be more common than is cur-

rently recognized by the few cases that have been documented.
For example, we would expect it in species-rich adaptive radia-
tions that have diversified relatively recently. Foremost among
them are the hundreds of cichlid fish species in the Great Lakes
of Africa, for which genome data are becoming rapidly available
(78–84), and the many species of Heliconius butterflies that
participate in mimicry rings (3, 26, 43, 85). Other possible groups
are numerous species complexes that are similar morphologically

and genetically and sometimes difficult to resolve taxonomically,
such as Cottoid fish in Lake Baikal (86), Anastrepha flies (87, 88),
ant-nest beetles (89), some groups of mosquitoes (44) and,
among plants, Andean lupins (90) and the Hawaiian Silversword
Alliance (91).
Since triad hybridization occurs in contemporary time, it must

have occurred in the past. Together with hybridization of one
species with two others separated in time or in space (a pair of
dyads) (92, 93), triad hybridization may be responsible for poly-
tomies in phylogenetic trees. Polytomies occur when branching
cannot be resolved into bifurcations because an ancestral species
and two descendant species are genetically so similar (94–97).
The power to measure divergence is likely to be reduced when
the samples are affected by triad hybridization.
Hybridization on Daphne is relevant to a global outlook on the

future. The frequency and success of hybridization on the island
increased from 1983 onward as a result of a change in vegetation
caused by abundant rain associated with an intense and pro-
longed El Niño event. This major perturbation is a natural an-
alog of an anticipated unnatural, human-caused change in the
global environment. Whether or not populations have sufficient
genetic variation for adaptive responses is the subject of ongoing
critical debate (98–101). One way that variation is enhanced is
through interspecific gene exchange (19, 102). Hybridization is
believed to be increasing in frequency as a result of anthro-
pogenically caused change to climate and to habitat that reduces
population sizes and brings together previously separated species
(102–106). Hybridizing species may therefore be disproportion-
ately successful in coping with a changing environment in the
future, as in the past (9, 18, 107). Fur seals on Macquarie Island
(39) provide a prime example of what might come. The original
population became extinct as a result of overexploitation in the
19th century. The island has been recolonized by two inter-
breeding species, Arctocephalus gazella and Arctocephalus tropica-
lis. A ménage à trois was created by a single male of a third
species, Arctocephalus forsteri, and it led to the production of
offspring with genes from all three species. It remains to be seen in
this case and more generally if multispecies hybridization has
significant consequences in terms of evolution and conservation in
a world of increasing habitat destruction and climate change.

Methods
Sampling Design. Field methods have been extensively described in previous
publications (56, 57, 63, 65). Birds were captured in mist nets every year from
1973 to 2012. All birds were measured as adults (63), defined as birds in
the year following the year of hatching, except in 1983 and 1987, when
some birds that hatched that year bred and so are included as adults. The
proportion of adults captured, measured, and banded uniquely was ∼90% in
1979 and ∼98% in 1981 (108). By 1992, all breeding adults had been banded.
A large number of nests were followed in the years 1976 to 1978, and, from
1979 to 1998, attempts were made to find all nests on the island and identify
their owners (banded or not banded). In later years, the year of hatching
was estimated by plumage of birds in the hand (56). Nestlings were banded
at day 8. Blood samples were taken from birds captured in mist nets or from
nestlings for microsatellite analyses. Sixteen unlinked polymorphic loci were
used for parentage and hybrid assignment with the program STRUCTURE, as
described previously (63). The Princeton University Animal Care Committee
approved the research procedures.

Statistical Analyses. Statistical analyses were performed in JMP (SAS Institute).
All tests were two-tailed unless indicated otherwise.

Data Availability. Supplementary Information.
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