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Large-scale brain networks are often described using resting-state
functional magnetic resonance imaging (fMRI). However, the blood
oxygenation level-dependent (BOLD) signal provides an indirect
measure of neuronal firing and reflects slow-evolving hemodynamic
activity that fails to capture the faster timescale of normal physio-
logical function. Here we used fMRI-guided transcranial magnetic
stimulation (TMS) and simultaneous electroencephalography (EEG)
to characterize individual brain dynamics within discrete brain
networks at high temporal resolution. TMS was used to induce
controlled perturbations to individually defined nodes of the default
mode network (DMN) and the dorsal attention network (DAN).
Source-level EEG propagation patterns were network-specific and
highly reproducible across sessions 1 month apart. Additionally,
individual differences in high-order cognitive abilities were signif-
icantly correlated with the specificity of TMS propagation patterns
across DAN and DMN, but not with resting-state EEG dynamics.
Findings illustrate the potential of TMS-EEG perturbation-based
biomarkers to characterize network-level individual brain dynamics
at high temporal resolution, and potentially provide further insight
on their behavioral significance.
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The characterization of the functional role of spontaneous brain
activity in cognition and behavior has led to a fundamental

paradigm shift in the study of human brain function. Numerous
functional MRI (fMRI) studies have revealed that spatially distant
brain regions exhibit temporally coherent fluctuations in their
spontaneous blood oxygenation level-dependent (BOLD) signal,
and form a distinct set of functional networks in the resting brain
(resting-state networks [RSNs]). These RSNs closely overlap with
networks activated during task performance, providing a back-
bone for information transfer even in the absence of external
stimuli. RSNs (1–4) are believed to reflect the underlying func-
tional architecture of both healthy and abnormal brain activity
(5–7). Thus, a growing body of clinical and translational neurosci-
ence research has focused on fMRI-based connectivity dynamics
within and across distributed brain networks as a promising ap-
proach for the diagnosis—as well as the identification of treatment
targets—of various neurological and psychiatric disorders (8).
However, after two decades of research, our understanding of

the functional relevance of large-scale distributed brain networks
is still limited. The BOLD signal provides an indirect measure of
neuronal activity, reflecting slow-evolving hemodynamic responses
that typically fail to capture the rich temporal dynamics of ongoing
oscillations across RSNs at the timescale of normal physiological
function (9, 10). Furthermore, fMRI measures of resting-state
connectivity identify bivariate correlations in brain activity, but
the causal significance of identified network relationships remains
unclear (11, 12).

The combination of transcranial magnetic stimulation (TMS)
with simultaneous electroencephalography (TMS-EEG) may
help address these limitations. TMS provides a unique method
to perturb individual nodes of RSNs and examine both local
and distributed network-level responses, characterizing so-
called perturbation-based connectome. Unlike task-evoked
brain activations, which likely involve various intermediate cor-
tical/subcortical processes and are highly dependent on subjects’
attendance to/cognitive strategy for a given task, TMS can directly
perturb specific cortical regions with good spatial resolution while
requiring minimal involvement from a subject/patient. Simulta-
neous EEG recordings enable assessment of TMS-evoked effects
and their propagation across functionally connected cortical re-
gions (13, 14). Accumulating evidence supports the validity of
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such TMS-evoked potentials (TEPs) in characterizing the
healthy and pathological brain (15–17). Furthermore, TMS-EEG
might uncover subtle alterations in brain electrophysiology that
are not apparent with more conventional resting-state EEG analyses.
For example, TMS-EEG has been able to identify abnormalities in
cerebral reactivity even when conventional scalp EEG features fail
to reveal disease specific alterations, distinguishing patients who
are minimally conscious from those in persistent vegetative state
(18). However, evidence is lacking about the possibility of using
such TMS-EEG measures to index network-level brain dynamics.
A growing body of literature suggests the importance of looking at
alterations of brain networks as well as network-to-network in-
teractions as potential biomarkers of both pathological states and
cognitive function (6, 18). For instance, alteration of the same
RSNs (i.e., default mode network [DMN] and anterior salience
network [ASN]) has been documented in both Alzheimer’s disease
and frontotemporal dementia patients using fMRI; however,
while the former group of patients shows increased DMN−AS
functional connectivity, the latter display the opposite pattern,
even though both conditions shared a significant neuropatholog-
ical substrate (19). Whether TMS-EEG can index such finely
grained network-level dynamics remains an open question, as well
as the possibility for such technique to significantly increase the
resolution of canonical fMRI/EEG-based biomarkers.

Here we use fMRI-guided TMS-EEG (see Fig. 1 A and B for
details of network targeting) to selectively perturb two neigh-
boring parietal lobe nodes of the DMN or the dorsal atten-
tion network (DAN) (Fig. 1B), which are thought to underlie
internally and externally directed attention processes, re-
spectively. In fMRI, the temporal relationship between these
networks is characterized by a negative correlation pattern that is
dynamically modulated between the “resting” and “task-related”
brain states (20). Specifically, the “task-negative” DMN remains
relatively silent when attention is paid to an external stimulus or
a task, but exhibits increased activity during unconstrained rest-
ing state. In contrast, the “task-positive” DAN shows an oppo-
site activation pattern, with increased activity during attention-
demanding tasks but decreased activity at rest (1). Furthermore,
disruptions or abnormalities in the functional connectivity pattern
between these two networks have been associated with individual
variability in several cognitive functions, motor behaviors, and
symptomatology of various neurological and psychiatric disor-
ders (21–25). However, because of the correlational nature of
fMRI-based approaches, it remains unclear whether the ob-
served reciprocal spatial−temporal dynamics of these two networks
is a causal phenomenon. By employing a noninvasive and in-
dividualized network perturbation approach along with simulta-
neous whole-brain neuroimaging using EEG, the reciprocal
dynamics between these two functionally opposing networks can

Fig. 1. Details of individual MRI-guided TMS target selection. (A) Group-averaged functional cortical atlases (n = 1,000) consisting of seven networks (85)
were first projected onto individualized cortical surface based on confidence map weights for each network (individual variability in projected confidence
maps for three representative subjects is shown). (B) Individualized target coordinates were then determined based on voxels (Left) with the highest con-
fidence in the angular gyrus and superior parietal gyrus for stimulation of the DMN and DAN, respectively (Middle). TMS was performed targeting the DMN
(red) and DAN (green), based on confidence maps of RSNs warped onto individual MRI space (Right). (C) The E-field maps were normalized by the maximum E
field for each stimulation and for each subject, and then mapped to the fsaverage common template and averaged across subjects for the purpose of vi-
sualization. (D) EEG data were also collected simultaneously to TMS. (E) Representative TEPs of all EEG channels after preprocessing, with the topography of
sample TEP peak corresponding to brain activity 195 ms after TMS. (F) For source reconstruction of TEPs, digitized EEG channel locations along with ana-
tomical landmarks were registered onto individual MRI space (Left). Forward and inverse modeling of EEG sources were then computed using symmetric
boundary element method for forward modeling and minimum norm estimate MNE method for inverse modeling. Resulting EEG source activations were
projected onto individual surface space. Confidence maps of DAN (green) and DMN (red) were then projected onto individual surface space (Middle), and
used as ROIs to extract baseline normalized (pre-TMS) TMS-EEG source activations (Right).
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be characterized with high temporal resolution. This also provides
an opportunity to study the behavioral significance of such fast-
evolving network dynamics.
We hypothesized that TMS of DMN or DANwould reveal distinct

spatial−temporal dynamics as measured by source-reconstructed
high-density EEG data, and that source-level EEG responses
would reflect the spontaneous negative connectivity characterizing
DMN and DAN dynamics measured via fMRI (see Fig. 1 D–F for
details of source-reconstructed EEG). Moreover, we aimed to
document the reproducibility of such network-specific TMS-evoked
EEG responses, at both the electrode and source levels, by con-
ducting test−retest visits over a 1-mo period. Finally, given the
specific positive association between DMN/DAN negative con-
nectivity and cognition (in particular, fluid intelligence and abstract
reasoning) (26), we hypothesized that network-specific TMS-
evoked cortical responses would be related to individual variabil-
ity in cognitive profile, and that the magnitude of DMN/DAN
“dissociation” after TMS would be positively correlated with a
higher performance on cognitive measures of intelligence.

Results
TMS-Induced Cortical Activations Reveal Network-Specific Spatial−Temporal
Dynamics. The spatial distribution of normalized source activation
patterns following DAN and DMN stimulation for a representative
subject is provided in Figs. 2 and 3 (see EEG Source Reconstruction for
details of EEG source analyses). Following TMS to the parietal node
of the DAN, EEG source reconstructions predominantly pro-
jected around the superior parietal gyri of both right and left
hemispheres, highly overlapping with the parietal topography of
DAN (Fig. 2). On the other hand, TMS to the DMN resulted in
EEG source reconstructions projected over the frontal midline
and parietal regions (precuneus) of the DMN (Fig. 3). Increased
activity in the stimulated networks was not just localized to the site

of stimulation but propagated specifically into functionally con-
nected distal regions of the same network, revealing that TMS
induces network-specific activations as a function of the probed
cortical nodes (see Movies S1 and S2 for network activations of
DMN and DAN, respectively).
We first performed time−frequency decomposition of average

current densities to describe general oscillatory characteristics of
each network following stimulation of DAN and DMN. Time−
frequency responses and propagation of network activations and
group-level statistics are provided in Fig. 4 (see EEG Source
Metrics for details). We show that early activations (30 ms to 150 ms)
following TMS have broadband oscillation characteristics ranging
from theta (4 Hz) to low gamma (∼30 Hz) bands, but significant
modulation of evoked responses appears to be primarily in the beta-
band (13 Hz to 30 Hz) as a function of the stimulation site (Fig. 4A).
Specifically, while beta-band responses are present in both networks
across stimulation conditions, significant beta-oscillations are only
observed within the stimulated network, suggesting that TMS in-
duces prominent network activations at the “natural frequency” of
the stimulated network (27). As for temporal propagation of in-
duced network activations, we observed a clear interaction pattern
following TMS such that the stimulation of superior parietal gyrus
induced higher cortical activation in the DAN map compared to
DMN map, while angular gyrus stimulation resulted in higher
cortical activations of DMN compared to DAN (P = 0.01). Ad-
ditionally, to investigate whether individual network topology
would significantly affect the observed propagation patterns, we
also performed the same analyses using network maps derived
from individual seed-based fMRI connectivity analyses, ob-
serving a similar significant interaction pattern (P = 0.025)
characterized by higher activation for the stimulated network
compared to the nonstimulated network across conditions (SI
Appendix, Fig. S4).
To further examine temporal evolution of network differences

and interaction pattern across stimulation conditions, we then
computed cluster-based permutation (n = 1,000) paired t test
statistics (28) on source activation values, as well as on individual
time series representing the difference in activation between
DMN and DAN at each time point (see Fig. 5 for details). We

Fig. 2. Source activation patterns following TMS of DAN. Network maps
(DAN, green-shaded areas; DMN, red-shaded areas) and spatiotemporal
dynamics of reconstructed EEG sources for a selected time point before,
during, and at multiple TEP peaks following TMS are shown (Upper). The
corresponding TEP peaks (colored vertical dotted lines) of source activations
are shown (Lower). Note that source reconstruction projects locally on the
superior parietal gyrus of right hemisphere for earlier TEP peaks (see source
activations for 30 ms and 81 ms following TMS), while source reconstruction
of a later TEP (280 ms following TMS) maps on the superior parietal gyrus of
left hemisphere, suggesting that TMS-induced cortical activations pre-
dominantly propagate within the stimulated network.

Fig. 3. Source activation patterns following TMS of DMN. EEG source re-
construction projects over the DMN map, with early TEP peaks localizing
around right angular gyrus and ventral medial prefrontal cortex (see source
activations for 28 ms), and later TEP peaks localizing around left medial
frontal cortex and precuneus (see source activations for 205 ms and 274 ms).
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found significantly higher activity in DAN around 80 and 200 ms
following DAN stimulation. Although DMN time series were
higher than DAN time series following DMN stimulation (with
significant differences around 100 ms), no time point survived
cluster-based permutation correction (Fig. 5 A, Right). As for the
DMN−DAN interaction pattern, we computed differences be-
tween network-level source activity for all subjects (n = 21)
across stimulation conditions, more specifically, by taking DAN
as a reference network and subtracting DAN time series from
DMN time series for each subject, thus obtaining average network-
difference time series. We found significant cluster-based corrected
differences around 80- to 120-ms, 160- to 180-ms, 205- to 250-ms,
and 270- to 290-ms windows (Fig. 5B). Finally, we computed
vertex-wise group average differences to further examine the
spatial topography of time windows when significant network
differences were observed (Fig. 5C). In the first significant time
window around 100 ms, greater activation in the right parietal
nodes of the DAN is visible in comparison to activity evoked by
DMN stimulation, as well as significantly lower activation of the
right inferior temporal node of the DMN. At ∼180 ms, DAN
stimulation produces lower activation of both right inferior tem-
poral node and right frontal nodes of the DMN. During the time
interval centered around 230 ms, DAN stimulation results in lower
activation of the right parietal DMN node. At 280 ms, increased
activation in the right parietal DAN node and decreased activa-
tion in the right temporal DMN node are observed, altogether
demonstrating a spatiotemporal dissociation between DMN and
DAN nodes as a function of the stimulation site.

Network-Targeted TMS Induces Reproducible Cortical Responses.We
ran two identical TMS sessions 1 mo apart to test the reproduc-
ibility of TMS-induced network activations. We were able to rep-
licate network-specific spatiotemporal dynamics at the source
level; source reconstruction results for session 2 revealed a preserved
significant interaction pattern (P = 0.02) with increased evoked

activity in the stimulated network compared to the nonstimulated
one (Fig. 6). Results further confirm that TMS induces network-
specific cortical activity dynamics as a function of the probed cor-
tical nodes. No significant effect of time (P > 0.05) was found at the
repeated measure ANOVA, indicating that the combination of
stimulation conditions remained statistically similar across TMS
sessions.
Additionally, we ran supplementary correlation analyses in

electrode space to further confirm the test−retest reliability of
TEPs over the entire scalp. We found highly overlapping scalp
topographies within stimulation conditions (i.e., DAN stimula-
tion in visit 1 vs. visit 2) but distinct spatiotemporal dynamics
across stimulation conditions (i.e., DAN vs. DMN), corroborat-
ing the reproducibility of TMS-induced network-specific activa-
tions (see SI Appendix, Results and Fig. S5 for details).

Network Specificity of TMS Activations Is Correlated with Cognitive
Performance. One of our hypotheses was that the magnitude of
network dissociation (DMN/DAN) following TMS would be re-
lated to individual variability in cognition. We used a network
specificity metric (network engagement specificity [NES]), showing
the degree of activation patterns within the stimulated network
relative to the nonstimulated network, thus quantifying how well
TMS-induced activity propagates within the targeted networks (see
EEG Source Metrics for details). Given previous reports of an as-
sociation between cognitive profile and, for example, RSNs dy-
namics (29), network efficiency (30), and network-to-network
interplay (26), our goal was to see whether the specificity of
network-level responses to TMS (characterized by high activations
in the stimulated networks versus decreased engagement of non-
stimulated networks), was related to individual variability in cog-
nition. Higher NES values reflect more specific TMS-induced
cortical activity dynamics, possibly capturing brain topological
properties related to segregation/integration.

Fig. 4. Time−frequency responses and propagation of network activations in source space. (A) Time−frequency distribution of ERSPs following stimulation
of DAN and DMN in each network. Group-averaged ERSPs for DAN network response are shown following DAN (Upper Left) and DMN (Upper Right)
stimulation. DMN responses are shown in the same order (Lower). Vertical dashed lines indicate TMS pulse, and contour lines show significant clusters (P <
0.01) in each panel compared to baseline. (B) Normalized average MNE current density time series in DAN (solid green line) and DMN (solid red line) maps
following TMS of DAN and DMN targets are shown (Upper). Colored regions represent rectified current density amplitudes (Lower). Gray shaded regions
show 400-ms time windows used to compute area under the curve in each network map for each stimulation. (C) Colored bars in Upper show group-averaged
values with SEs in each network map before (Pre) and after (Post) TMS of DAN (green bars) and DMN (red bars). Lower shows individual Post-TMS cortical
activation values expressed as the ratio of total cortical activity in the stimulated network relative to the nonstimulated network map. For instance, in the case
of DAN stimulation (green dots), individual values show the ratio of z-score sums in the DAN map relative to z-score sums in the DMN map for each subject.
Individual trends for the total amount of cortical activity in each network map are shown with colored dotted lines connecting each subject’s ratio scores
across stimulation conditions.
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Source activation patterns at selected TEP peaks of repre-
sentative subjects with high and low NES scores are provided in
Fig. 7 A and B, respectively. We found significant and positive
correlations between NES values (see Methods for details) and
IQ scores (Fig. 7 C, Right, with green-colored scatters: r = 0.53,
P = 0.02), showing that individuals with high activity in the
stimulated network but relatively low activity in nonstimulated
network(s) display a better overall cognitive performance. We
also observed positive, but nonsignificant, correlations between
logical fluid intelligence scores and NES (Fig. 7 C, Left, with
blue-colored scatters: r = 0.4, P = 0.11), and between relational
fluid intelligence scores and NES (Fig. 7C, red-colored scatters:
r = 0.33, P = 0.17). Notably, no significant correlations were
observed between NES and a serial reaction time task (SRTT)
(r = 0.01, P = 0.99), suggesting that DMN−DAN dissociation is
plausibly more specifically related to high-order cognitive per-
formance than to motor/sensory performance. Additionally, as a
control condition, we also computed NES values for cortical
activations in the resting-state period (−500 to −100) preceding
TMS and examined the correlations between resting-state NES

and cognitive performance (Fig. 7C, black-colored scatters).
Unlike TMS-induced NES, resting-state EEG NES values were
poorly correlated with fluid intelligence (logical: r = 0.29, P =
0.21; relational: r = 0.04, P = 0.80) and IQ scores (r = −0.02,
P = 0.84).

Discussion
Here we used fMRI-guided single-pulse TMS to induce a con-
trolled perturbation into parietal nodes of DMN and DAN, and
captured fast-evolving electrophysiological dynamics at high
temporal and spatial resolution. EEG response dynamics were
reconstructed in individual source space using functional net-
work maps as regions of interest (ROIs). We found that targeted
stimulation of the DMN node resulted in greater activation of
the DMN compared to DAN, whereas stimulation of the DAN
resulted in the opposite pattern. Notably, this differential acti-
vation was distributed over time and according to stimulated
network topography (Fig. 5), rather than just localized to the site
of stimulation. Our findings suggest that TMS-evoked activity
propagates specifically into functionally connected distal regions
of the same network, showing local and distributed effects of
TMS over resting-state fMRI networks in humans. Crucially, we
replicated our results across two identical sessions 1 mo apart,
thus showing that fMRI-guided TMS-induced network activa-
tions within RSNs are highly reproducible across sessions. Fur-
thermore, we also provide preliminary evidence that the
specificity of network activations across individuals is related to
cognitive function. Specifically, we found that cognitive abilities
were more strongly correlated with network activations induced
by TMS than with resting-state EEG dynamics. Overall, our data
revealed several findings with noteworthy implications for future
research. First, direct external manipulation of RSN activity by
means of TMS combined with high temporal resolution neuro-
imaging using EEG may provide unique information about fast,
millisecond-level interaction patterns between brain networks
that are not observable via fMRI or resting-state EEG. External

Fig. 5. Temporal dynamics of TMS-induced network interactions. (A)
Comparison of group-averaged time series for each network across stimu-
lation conditions. Solid colored lines show network-level responses for DAN
(dark green) and DMN (dark red) averaged across subject and stimulation
conditions (DAN: Right; DMN: Left), while shaded regions reflect variation
with SE of measurements. Vertical green lines over the x axis show signifi-
cant time points that survive after cluster-based permutations (P < 0.05). (B)
Differences in network-level responses computed by subtracting DAN from
DMN current density time series for each subject (n = 21) across stimulation
conditions (DAN: orange; DMN: dark red; with shaded regions showing
variability in each stimulation condition as SE). Vertical green lines over the x
axis show significant time points that survive after cluster-based permuta-
tions (P < 0.05). (C) Significant t maps (P < 0.05) averaged over significant
time windows in B (green vertical lines) showing differences across the
cortex between two stimulation conditions. Higher t values (red) show ver-
tices with significantly higher activity following DAN stimulation, while
lower t values (blue) show vertices with significantly higher activity follow-
ing DMN stimulation.

Fig. 6. Reproducibility of network-level cortical responses to TMS. (A) Nor-
malized average current density time series across TMS visits extracted from
DAN (Left) and DMN (Right) maps. (B) Group averages of network activations
for each stimulation site (green bars for DAN, and red bars for DMN) are
shown for visit 1 (Left) and visit 2 (Right). Asterisks indicate significant
differences (DAN Stim visit 1, DAN vs. DMN comparison, *P = 0.02; DMN
Stim visit 1, DMN vs. DAN comparison, *P = 0.04; DMN Stim visit 2, DMN vs.
DAN comparison, *P = 0.04) between networks after correcting for mul-
tiple comparisons (comparisons are shown with horizontal black lines).
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stimulation of a node of a given RSN propagates preferentially
within other nodes of the stimulated network and also reveals
oscillatory modulations predominantly at the natural frequency
of the stimulated network or brain region, thus confirming pre-
vious evidence of brain-level effects of TMS (8, 27). Second,
TMS-induced network interactions are reproducible such that
they can be repeatedly captured across sessions over different
days, endorsing their application in future clinical trials focusing
on network-level brain dysfunction (31). Finally, preliminary evi-
dence of the correlation between the specificity of network en-
gagement and individual fluid and crystallized intelligence levels
suggest perturbation-based propagation patterns as promising
physiologic biomarkers of human cognition.

TMS-Induced RSNs Activations. Originally, the presence of RSNs
was first identified by metaanalysis of positron emission tomog-
raphy scans showing decreased activity during task performance
within specific nodes of frontal and parietal brain regions, a
network of regions subsequently defined as the DMN (1). Since
then, the functional architecture of RSNs in humans has been
predominantly studied via fMRI by characterizing spatial dy-
namics of the BOLD signal in the resting brain. Owing to

inherent limitations in the BOLD signal, an increasing number
of studies over the years have employed multimodal neuro-
imaging techniques to better understand the neural origins and
spatial−temporal signatures of RSNs (32–40). Combined
fMRI−EEG studies have also provided considerable evidence
for the electrophysiological basis of RSNs by demonstrating
spatially coherent maps in EEG source space that grossly re-
semble fMRI-based RSNs (36, 39, 41). However, studies relating
the spectral dynamics of resting-state EEG to the time course of
BOLD activity have revealed heterogeneous findings. In one of
the earlier reports, Mantini et al. (38) compared the time course
of multiple RSNs identified through independent component
analyses (ICA) with broadband EEG spectral power, revealing
how EEG oscillations in almost all of the frequency bands are
partly correlated with most of the RSN activity, suggesting a link
between BOLD activity and millisecond-level EEG activity.
However, other studies reported weak or no correlation, or even
inverse correlations (42–45). Thus, no consensus has been
reached on the nature or direction of correlations between EEG
spectral power features and dynamic functional connectivity
profiles within or across specific RSNs. Moreover, the correlational
nature of these studies is a fundamental limitation for understanding

Fig. 7. Relationships between TMS-induced network activation and cognitive performance. (A and B) Spatiotemporal dynamics of reconstructed EEG sources
at selected time points (surface images), corresponding TEPs (solid black lines for each EEG channel), current density time series (colored solid lines), and
rectified current density amplitudes with the total amount of electrocortical activity (z-score sums) in each network ROI (colored bars) for two representative
subjects with (A) a high NES index (see Methods for details) and (B) a low NES index. (C) Scatterplots with regression lines show correlation trends between
individual NES scores and cognitive performance at fluid intelligence (Left), IQ (Middle), and SRTT (Right). Black dots/lines show NES index computed before
TMS, representing spontaneous network-to-network interplay, while colored dots/lines show NES index computed after perturbation via TMS. Bar plots also
show the direction and magnitude of bivariate Pearson correlations (r); *P < 0.05.
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causal dynamics or functional interactions across RSNs. Ac-
cordingly, many recent studies have highlighted the importance
of moving beyond resting-state correlational studies, and sug-
gested the importance of utilizing direct external manipulation to
better infer causal interactions between RSNs (12, 13, 21, 46–49).
Here we employed a network perturbation approach by using

fMRI-guided TMS-EEG to examine the extent to which TMS of
cortical nodes of the DMN or DAN evokes distinct network-
level responses. Our data showed unique TMS-induced activa-
tion patterns and oscillatory characteristics as a function of the
stimulated cortical node. In particular, we showed that TMS of
two cortical nodes with relative anatomical proximity (i.e., both
located in the right parietal lobe) generate spatially distinct ac-
tivation patterns, and that TMS-induced cortical potentials not
only endure locally within the stimulated network node but also
preferentially propagate following the topography of the same
network and at its dominant oscillatory frequency. These results
are in line with previous TMS-EEG (15, 18, 27) and TMS-fMRI
studies (33, 50–52) showing propagation of TMS-induced activity
beyond the stimulation site. Early TMS-EEG studies pre-
dominantly focused on the motor system (53, 54) and showed
focal responses following TMS that rapidly spread into adjacent
ipsilateral motor regions and subsequently propagate into con-
tralateral motor areas, presumably through transcallosal con-
nections. Studies monitoring changes in fMRI connectivity
before and after repetitive TMS protocols targeting nonmotor
networks have also reported a modulation of network activations
within local and distant stimulated networks nodes (51, 55, 56).
More recently, reciprocal propagation of evoked responses
induced with invasive stimulation has been reported across
RSNs following intracranial electrical stimulation of different
RSN nodes in neurosurgical patients (57). Our data extend
these results by providing evidence of the possibility to 1) en-
gage targeted RSNs following noninvasive perturbation of two
neighboring cortical nodes and 2) capture their responses with
millisecond resolution, evoking local and distinct distributed
cortical propagation patterns resembling network topographies
suggested by fMRI data. Previous reports (8, 21, 52) have
addressed the clinical and therapeutic value of taking a network
perspective on brain stimulation, promoting neuronavigated ex-
perimental perturbations to better understand the aberrant
network-to-network interplay underlying symptomology in vari-
ous psychiatric and neurological disorders. Consistent with such
notions, our findings support perturbation-based noninvasive
neuroimaging as a feasible and reliable multimodal tool to engage
and characterize network-level responses in the human brain.

Reproducibility of Network Engagement. TEPs contain rich neu-
rophysiological information in time, frequency, and source do-
main, thus serving as a direct measure of both instantaneous and
lasting changes in cortical physiological properties (e.g., excit-
ability, inhibition, and connectivity) (14, 58). In addition, TEPs
show distinct topographical distribution and component structure
across cortical sites in healthy (27) and clinical populations (16, 17,
59–63). To date, although reliability of group-averaged TEPs has
been examined at the electrode level (64–66), to the best of our
knowledge, no studies have evaluated the reproducibility of TMS-
evoked activations at the network level by using RSNs as ROIs in
source space. Here, by running two identical sessions 1 mo apart
for each study participant, we were able to show that source re-
constructions of individual TEPs are highly reproducible both for
DAN and DMN (Fig. 5).
There is an ongoing debate regarding the presence of robust

nontranscranial peripheral components in TMS-evoked EEG
responses as a major factor limiting the interpretation and utility
of TEPs. Although the validity and reliability of the present results
could be challenged by the contribution of peripherally evoked
responses, such as somatosensory and auditory potentials (67),

there are several lines of evidence suggesting that our findings
reflect transcranial evoked cortical activity. First, we followed
state-of-the-art procedures to minimize somatosensory-evoked
potentials and auditory-evoked potentials (AEPs), by placing a
foam layer underneath the coil and by employing auditory noise
masking (68). Second, we applied a two-step ICA to remove TMS-
specific artifacts first, as well as remaining muscle, electrode, and
cardiac artifacts. This procedure is included to specifically identify
and remove components with a spatial topography and time
course consistent with AEPs (SI Appendix, Fig. S1). AEPs were
clearly present only in five subjects during the second ICA run
(less than 25% of our sample), suggesting that noise masking is a
useful and effective procedure to suppress unspecific TMS-
induced auditory activations. Third, our source analyses show-
ing specificity of TMS-induced activations within the stimulated
network strongly argue against the potential contamination of our
data with somatosensory or auditory potentials. The presence of
temporally stable and high-amplitude sensory responses would
dominate the TEP topography and result in relatively uniform
activation patterns across stimulation conditions, particularly given
that the stimulation sites were anatomically close to each other
and would likely result in quite similar nontranscranial effects.
Finally, our topographical reliability analyses (SI Appendix, Fig.
S5) at the single-electrode level are also in line with source-level
network activations, showing topographical specificity for TMS of
DAN versus DMN. It should be noted that somatosensory-evoked
potentials would be primarily distributed to the somatosensory
cortex contralateral to the stimulation site, while auditory-evoked
components would be bilaterally distributed over the superior
temporal lobes regardless of the stimulation site. The presence of
either somatosensory-evoked potentials or AEPs would be
expected to dominate the spatial topography (and localized
sources) of TEPs, and result in relatively uniform activation
patterns across stimulation sites. In particular, we found higher
activations over DMN-specific prefrontal regions up to 600 ms
after DMN stimulation that are absent for DAN stimulation,
suggesting the topographical specificity of evoked responses as a
function of the stimulated node/network.
Overall, our reproducibility results for network stimulation

expand previous evidence demonstrating that anatomically tar-
geted TEPs can capture brain activity characterizing consciousness
and brain plasticity levels, as well as gross cortical physiological
differences across brain disorders (15, 17, 27, 60). We believe the
reproducibility of network-level responses will provide convincing
grounds and motivation for future studies focusing on RSN-
guided TMS biomarkers, as well as to better identify thera-
peutic targets and experimentally modulate connectivity dynamics
in abnormally functioning networks.

Specificity of the TMS-Induced Network Activity Is Correlated with
Cognition. The potential for uncovering cortical correlates of
variability in human behavior through functional connectivity
analysis has generated increasing interest in the study of the
human connectome. The majority of studies so far have focused
on modeling/correlating data acquired during unconstrained
resting state and, to a certain degree, showed that resting-state
correlation patterns between various networks can be used to
predict individual variability in several cognitive functions (6, 26),
personality traits (69), and behavior (70). However, recent evidence
suggests that task-based neuroimaging may better delineate the
association between individual connectivity patterns and cognitive
abilities (46, 47). A recent study by Greene et al. (46), for instance,
reported superior performance in predicting fluid intelligence for
models built on task fMRI compared to resting-state fMRI ones,
suggesting that task-based designs may “perturb” the brain along a
particular cognitive dimension and thus provide the opportunity to
identify subtle differences in individual patterns of brain connec-
tivity. Although TMS initially perturbs relatively local nodes,
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induced activity propagates across brain regions over time (71)
and provides a snapshot of the connectivity profile of the
stimulated node(s). In this context, our NES metric can be
considered a proxy of network integrity, as well as a measure of
network-to-network integration/segregation. To support this
framework, we ran preliminary correlational analyses based on
the idea that direct stimulation of functional network nodes
(which does not rely on subjects’ attention to and motivation to-
ward a given cognitive task) should generate robust, specific, and
reproducible brain states capturing differences in network-to-
network dynamics relevant for cognitive performance (48). Our
analyses reveal significant positive correlations between the spec-
ificity of network activations and fluid/crystallized cognitive abil-
ities, suggesting that the characteristics of brain activity following
perturbation within and between networks may constitute a
valuable biomarker of human cognition (outperforming resting-
state EEG data alone). More specifically, we found that TMS
induces an opposing oscillatory pattern between DMN and DAN,
highly resembling DMN/DAN fMRI connectivity data (3). The
negative functional connectivity pattern between these networks is
reported to be critical for optimal cognitive functioning and
thought to serve as neural substrate for adaptively directing at-
tentional resources between self-referential and externally ori-
ented tasks (3, 20, 72, 73). Interestingly, and in line with the
present results, a recent report by our group has shown that 1)
distributed brain regions having robust coactivation during the
solution of fluid intelligence (gf) tasks highly overlap with the to-
pography of DAN (74) and, more importantly, 2) the strength of
negative correlations between these regions and the DMN is a
significant predictor of individual gf performance (26). This sug-
gests that network-targeted TMS-EEG is able to capture the same
fMRI dynamics, but at high temporal resolution. More impor-
tantly, perturbational approaches like the one adopted in the
present investigation could help disentangle the nature of “anti-
correlations” in fMRI data (3), by providing a modality-
independent, high temporal resolution causal evidence of their
existence and potential relevance. Finally, we found that network
engagement was not correlated with performance on a control
motor learning task, suggesting that the relationship between
evoked cortical network dynamics and cognition is not a general
and nonspecific finding. Future studies are needed for a com-
prehensive investigation systematically comparing spontaneous,
task-based, and perturbation-based neuromarkers of human cognition.

Limitations of the Study and Future Directions. Although source
localization of EEG responses to TMS of parietal nodes revealed
distinct propagation patterns depending on the network being
stimulated, more precise spatial mapping of TMS-induced net-
work effects would be better captured by ideally combining TMS-
EEG with concurrent fMRI acquisitions (28, 57, 75). While the
technology for integrated TMS-EEG−fMRI designs is still in its
infancy, such a multimodal neuroimaging approach would allow
thorough delineation of fast-evolving dynamics of distributed
network activations with high spatial resolution, and better un-
derstanding of whether distributed network activations as mea-
sured by TMS-EEG are reflected in spatial topography of TMS-
evoked BOLD activations as well.
Another important consideration concerns the need to ex-

tend the current network perturbation approach with relevant
task designs for controlling brain state during stimulation. Given
the established dynamic and reciprocal associations between
DAN and DMN both at rest and during cognitive performance,
it is essential to examine 1) to what extent TMS-induced net-
work activations within and across perturbed networks overlap
with network activations during task performance and 2)
whether TMS-induced network dynamics prospectively predict
task performance in both healthy and neurological/psychiatric
populations.

Conclusions
Direct external manipulation of RSN activity may provide valuable
information about fast-evolving interactions between functionally
opposing brain networks otherwise not observable through low
temporal resolution fMRI or resting-state EEG analyses. This
corroborates the idea that a controlled perturbation of a complex
system provides more unique characterization of its topology and
dynamics than measuring its spontaneous behavior, promoting the
adoption of perturbation-based biomarkers in cognitive neurosci-
ence and clinical research.

Methods
Participants. Data collected from 21 right-handed healthy volunteers (mean
age = 33.4 ± 8.6 y, ranging from 19 y to 49 y) were analyzed for this study.
Experimental protocols and voluntary participation procedures were explained
to all participants before they gave their written informed consent to the study
which conformed to the Declaration of Helsinki, and had been approved by the
Institutional Review Board of the Beth Israel Deaconess Medical Center.

Structural MRI Data Acquisition. A T1-weighted (T1w) anatomical MRI scan
was obtained for all participants and used for neuronavigation. MRI data were
acquired on a 3T scanner (GE Healthcare, Ltd.) using a three-dimensional spoiled
gradient echo sequence: 166 axial-oriented slices for whole-brain coverage;
240-mm isotropic field-of-view (FOV); 0.937-mm × 0.937-mm × 1-mm native
resolution; flip angle = 15°; echo time (TE)/repetition time (TR) ≥ 2.9/6.9 ms;
duration ≥ 432 s.

Resting-State fMRI Data and Preprocessing. Resting-state fMRI data were
collected on a 3T GE scanner in three runs of 5 min each with eyes open, with the
following parameters: axial plane (bottom-up), FOV = 240 mm, TE = 25 ms, TR =
3,196 ms, slice thickness = 2.5 mm, flip angles = 90°, voxel size of 1.87 × 1.87 ×
2.5. We preprocessed the resting-state fMRI data using FMRIPREP (v1.2). To in-
dividualize the functional networks, the approach developed byWang et al., (76)
was used. Briefly, this approach includes 18 functional networks using 17 net-
works from Yeo-2011 group-average functional networks, with an additional
network representing the hand area (SI Appendix,Methods). For more details on
the procedure for personalization, see the original publication by Wang et al.

Baseline Assessments. All participants were scheduled for a 5-h baseline visit
during which they underwent a careful cognitive and motor performance
assessment. The cognitive evaluation included a modified Edinburgh hand-
edness questionnaire (77) and a NEO Personality inventory (NEO-FFI) (78). A
total of 14 cognitive tasks were split over two different batteries covering
multiple cognitive functions such as attention, abstract reasoning, inhibition,
verbal and visuospatial working memory, and switching, presented on a
Windows laptop PC (Microsoft) equipped with E-Prime 2.0 (Psychology
Software Tools Inc.). As preliminary analyses, we aimed at correlating indi-
vidual network-targeted TEPs to two broad domains of global human cog-
nition, namely, fluid (gf) and crystallized (gc) intelligence (79, 80). These two
domains represent, respectively, 1) abstract reasoning abilities related to
hypothesis-testing and reasoning (gf), measured via the Sandia Matrices
(SM) (81), and 2) semantic knowledge measured via the Test of Premorbid
Functioning (TOPF) (gc) (82). SM and TOPF tests were selected as cognitive
tasks representing general intelligence (i.e., the g factor, commonly repre-
sented as IQ), both in its fluid (gf) and crystallized (gc) components. As a
control task, we also included SRTT. SRTT is a widely used motor task (83) to
capture implicit sequence learning (see SI Appendix, Methods for task
descriptions).

For each task, accuracy and reaction times (RTs) were recorded and then
combined to compute the inverse efficiency scores (IES) (83). IES consider
changes in speed−accuracy trade-off typically observed during sustained
cognitive testing (83, 84). IES values were used as cognitive task performance
scores in the analyses.

IES=
RTs

1− error  rate
.

TMS. TMS was delivered using a figure-of-eight−shaped coil with dynamic
fluid cooling (MagPro 75-mm Cool B-65; MagVenture A/S) attached to a
MagPro X-100 stimulator (MagVenture A/S). Individual high-resolution T1w
images were imported into the Brainsight TMS Frameless Navigation system
(Rogue Research Inc.), and coregistered to digitized anatomical landmarks
for online monitoring of coil positioning.
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Motor-evoked potentials (MEPs) were recorded from the right first dorsal
interosseous (FDI) and the abductor pollicis brevis (APB) muscles. Ag−AgCl
surface electrode pairs were placed on the belly and tendon of the muscles
and a ground was placed on the right ulnar styloid process.

EEG.Whole-scalp 64-channel EEG data were collected with a TMS-compatible
amplifier system (actiCHamp system; Brain Products GmbH) and labeled in
accordance with the extended 10–20 International System. EEG data were
online-referenced to Fp1 electrode. Electrode impedances were maintained
below 5 kΩ at a sampling rate of 1,000 Hz. EEG signals were digitized using
a BrainCHamp DC amplifier and linked to BrainVision Recorder software
(version 1.21) for online monitoring. Digitized EEG electrode locations on
the scalp were also coregistered to individual MRI scans using Brainsight TMS
Frameless Navigation system.

TMS Targets. In order to identify individualized TMS targets, group-level
resting-state functional networks maps were used, based on a seven-net-
work cortical parcellation (85). The seven networks correspond to visual, so-
matosensory, limbic, dorsal attention, ventral attention, default mode, and
frontoparietal RSNs. Confidence maps for each RSN were used, representing
the confidence of each vertex belonging to its assigned network across a
sample of 1,000 healthy subjects (expressed as valued between −1 and 1), with
larger values indicating higher confidence. By using group-level functional
parcellations and confidence maps estimated from 1,000 healthy subjects, we
were able to target the most consistent and reliable regions within each
network, therefore increasing the generalizability of TMS-EEG findings. We
first projected the seven-network functional cortical atlas and the confidence
maps onto subject’s cortical surface using the spherical registration imple-
mented in Freesurfer software (Fig. 1A). The resulting maps were then
resampled to native structural T1w MRIs. Voxels within each network were
weighted by the confidence map, and the voxels with the highest confidence
in the right angular gyrus and the right superior parietal were chosen for DMN
and DAN stimulations, respectively (Fig. 1E). Individualized DMN and DAN
targets mapped to Montreal Neurological Institute (MNI) space are provided
to show variability of targeted nodes across individuals (Fig. 1F).

Experimental Procedures. Throughout the session, participants were com-
fortably seated in an adjustable chair. At the beginning of each session, the
motor hotspot for eliciting MEPs in the FDI muscle was determined by de-
livering single TMS pulses and moving the TMS coil in small incremental steps
after two to three stimulations in each spot, over the hand region of left
motor cortex with 45° rotation in relation to the parasagittal plane (inducing
posterior-to-anterior current in the underlying cortex) (86). The hotspot was
defined as the region where single-pulse TMS elicits larger and more con-
sistent MEPs in the FDI muscle, as compared to the APB muscle, with the
minimum stimulation intensity (87). The FDI hotspot was digitized on each
participant’s MRI image. Resting motor threshold (RMT) was determined on
the FDI hotspot as the minimum stimulation intensity eliciting at least five
MEPs (≥50 μV) out of 10 pulses in the relaxed FDI using monophasic current
waveforms (86). In compliance with the International Federation of Clinical
Neurophysiology safety recommendations, participants were asked to wear
earplugs during hotspot and RMT trials to protect their hearing, and to min-
imize external noise (88). TMS was administered with a thin layer of foam
placed under the coil to minimize somatosensory contamination of the TMS-
evoked EEG potentials. To minimize AEPs related to the TMS click, auditory
white noise masking was used throughout the TMS stimulation (89).

Following determination of RMT, a total of 120 single TMS pulses were
delivered to each stimulation target (DMN node target in the angular gyrus
and DAN node target in the superior parietal lobule) at an intensity of 120%
RMT with randomly jittered (3,000 to 5,000 ms) interstimulus intervals over
two repeated blocks of 60 trials each (Fig. 1A). Operators continuously
monitored participants during the TMS blocks for their wakefulness, and
prompted them to keep their eyes open and stay fully relaxed in case of visible
signs of drowsiness or tension. Each participant completed two identical ex-
perimental sessions 4 wk apart.

EEG Data Processing. All EEG data preprocessing was performed offline using
EEGLAB functions 14.1 (90−92), and customized scripts running in Matlab
R2017b (MathWorks Inc.). All steps of EEG data processing on a sample
dataset and resulting signal transformation showing evolution of TEPs, with
final scalp topography of a selected TEP are provided in SI Appendix,
Methods and Fig. S1. Control analyses examining the impact of TMS-induced
muscle artifacts are also provided in SI Appendix, Results and Fig. S3.

EEG Channel Metrics. Global cortical activation levels following TMS of DMN
and DAN were quantified with global mean field power (GMFP) analyses on
TEPs (see SI Appendix, Methods and Fig. S2 for details). The GMFP can be
used to measure the global brain response to TMS (93). Local mean field
power (LMFP) analysis was also performed to identify local evoked activity
induced by TMS of DMN and DAN (see SI Appendix, Methods and Fig. S3 for
details). TEP time series were also used to test reproducibility of TEPs re-
sponses in electrode space.

EEG Source Reconstruction. All TMS-evoked EEG source reconstruction was
performed using Brainstorm (94). First, digitized EEG channel locations and
anatomical landmarks of each subject were extracted from Brainsight
(nasion, left preauricular, and right preauricular points), and registered onto
individual MRI scans in Brainstorm (Fig. 1C). Next, the EEG epochs, −500 ms
to 1,000 ms with respect to TMS pulse, for each TMS trial were uploaded,
and average epoch time series was generated for each subject (Fig. 1B).
Forward modeling of neuroelectric fields was performed using the sym-
metric boundary element method (95, 96), all with default parameter
settings. Noise covariance was estimated from individual trials using the
pre-TMS time window as baseline (−500 to 0 ms). Inverse modeling of the
cortical sources was performed using the minimum norm estimation
(MNE) method with dynamic statistical parametric mapping and constraining
source dipoles to the cortical surface. The resulting output of EEG source re-
construction was the MNE current density time series for each cortical voxel.

EEG Source Metrics. We first extracted average current density time series
from DMN (red shaded areas on the cortex in Fig. 1C) and DAN (green shaded
areas on the cortex in Fig. 1C), projected on surface space for each individual
for both DMN and DAN stimulation. To examine TMS-induced oscillatory
characteristics across stimulation conditions, we first computed event-related
spectral perturbations (ERSPs) for each network. Using an open source EEGLAB
function (newtimef), we implemented Morlet wavelets ranging from 0.5 to 3
cycles with a 500-ms window size sliding 20 ms in each iteration. ERSPs were
baseline normalized (−500 to 0 ms), and significant poststimulus activations
were determined using bootstrapping.

We then normalized (z score) the current densities to the noise covariance
kernel and rectified the resulting time series (Fig. 4 B, Upper) for time domain
analyses. We finally computed the total cortical activation within each net-
work in 400-ms windows before (pre-TMS: −500 to −100 ms; Fig. 4 B, Lower)
and after (post-TMS: 15 ms to 400 ms) TMS. Resulting current density z-score
sums represent the total amount of source reconstructed electrocortical ac-
tivity in each RSN map for a given time window.

We also examined whether the degree of network-specific activations
following TMS were related to individual differences in cognitive abilities. To
do so, we quantified an NES by simply computing the average percentage of
TMS-induced activity in the stimulated network relative to the nonstimulated
network for each stimulation condition, as follows:

NES  =  
DANstim

�
DAN
DMN * 100

�
+DMNstim

�
DMN
DAN * 100

�

2
.

NES was used to run bivariate correlations between network specificity and
cognition scores.

Statistical Analysis. All statistical analyses were performed using custom
scripts utilizing Matlab statistical toolbox (Version 17A, The MathWorks Inc.).
To compare GMFP and LMFP time series across stimulation conditions, we
performed cluster-based permutation (permutation n = 10,000) paired t test
statistics (28) (see SI Appendix, Results for GMFP and LMFP analyses). Paired
sample t tests were used to compare sum of source activation values across
conditions both before and after TMS. One-way ANOVA was performed to
compare sum GMFP values across stimulation conditions. A repeated mea-
sures ANOVA was performed for test−retest comparison with Time (visit 1
vs. visit 2) as within-subject factor. A two-by-two ANOVA (stimulation con-
dition: DAN vs. DMN) × 2 (network maps: DMN vs. DAN) was performed to
examine the effect of stimulation condition on network activations both
before and after TMS. Pairwise comparisons with Bonferroni corrections (P =
0.05/number of comparisons) were performed to examine significant main
effects on network activity differences across stimulation conditions.

Pearson product-moment correlations were used to examine the re-
producibility of TEPs across sessions. Simple linear regressions with scatter-
plots were run to compute bivariate relationships between NES and cognitive
performance for gf-relational, gf-logical, and IQ. Significance level was set as
(P < 0.05) for all statistical analyses.
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Data Availability. Compressed raw and preprocessed data, as well as code,
have been uploaded at the Berenson-Allen Center for Noninvasive Brain
Stimulation site (http://www.tmslab.org/santalab.php).
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