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Rooted versus Unrooted

Phylogenetic trees are either rooted or unrooted, depending on
the research questions being addressed. The root of the
phylogenetic tree is inferred to be the oldest point in the tree
and corresponds to the theoretical last common ancestor of all
taxonomic units included in the tree. The root gives direc-
tionality to evolution within the tree (Baldauf, 2003). Accurate
rooting of a phylogenetic tree is important for directionality of
evolution and increases the power of interpreting genetic
changes between sequences (Pearson et al., 2013).

Many techniques such as molecular clock, Bayesian mo-
lecular clock, outgroup rooting, or midpoint rooting methods
tend to estimate the root of a tree using data and assumptions
(Boykin et al., 2010). However, Steel (2012) discusses root
location in random trees and points out that information in
the prior distribution of the topology alone can convey the
location of the root of the tree. These results show that the tree
models that treat all taxa equally and are sampling consistently
convey information about the location of the ancestral root in
unrooted trees (Steel, 2012).
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Why Do We Need a Rooted Tree?

We are interested in rooting a phylogenetic tree in order to
show the path of evolution of biological species. Therefore
most users of phylogenetic trees want rooted trees because
they give an indication of the directionality of evolutionary
change. The root of phylogenetic tree is crucial in evolutionary
interpretation of the tree (Williams, 2014), because an un-
rooted tree species shows only the relationships among the
taxa and does not define the evolutionary path (Figure 1(a)).
When Do We Need an Unrooted Tree?

An unrooted tree is desired when we do not have a distantly
related group (sequence) for comparison or when primary
interest is focused only on relationships among the taxa rather
than on the directionality of evolutionary change. Unrooted
trees are beneficial in depicting clusters of related sequences.
Unrooted gene trees have also become more prevalent within
the multispecies coalescent phylogenetic framework, leading
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to systematic approaches for inferring unrooted species trees
from unrooted gene tree topologies (Liu and Yu, 2011). Gene
trees and species trees can have similar topologies but often
there is considerable discordance between gene tree and spe-
cies trees (Degnan, 2013). For this reason, understanding how
to root gene trees will have implications for accurate species
tree inference (Figures 1(b) and 1(c)).
How Do You Root a Phylogenetic Tree?

Outgroup Rooting

There are several rooting methods (Table 1), however the most
popular and widely used is the outgroup method (Wheeler,
1990; Tarrío et al., 2000; Hess and De Moraes Russo, 2007;
Boykin et al., 2010). Outgroup method assumes that one or
more of the taxa are divergent from the rest of the taxa
(ingroup). The branch linking the ingroup and outgroup be-
comes the starting point, and defines all subsequent evo-
lutionary events within the tree (Brady et al., 2011; Williams,
2014). In addition to providing evolutionary information of
the ingroup, the outgroup has other additional functions. It
allows the identification of distinct features within ingroup
sequences (Wheeler, 1990). An important aspect of outgroup
method is the need for a priori knowledge on the appropriate
outgroup to use for the set of sequences (Wheeler, 1990; Hess
and De Moraes Russo, 2007). However, this is also the main
bottleneck for this method, especially within higher taxonomic
groups such as angiosperms, birds, and mammals where a
consensus outgroup is lacking (Qiu et al., 2001). As a con-
sequence, many authors are forced to choose between different
sorts of outgroups that are either phylogenetically close or
phylogenetically distant (Rota-Stabelli and Telford, 2008).

Lack of an appropriate outgroup results in drawbacks such as
the long branch attraction (LBA). LBA occurs mainly when the
outgroup taxa are distantly related to the ingroup due to either
large divergence time and/or increased rate of evolution (Tarrío
et al., 2000). This results in homoplastic changes occurring
at rapidly evolving sites thus resulting in artifactual rooting
(random rooting) (Wheeler, 1990; Hendy and Penny, 2011;
Maddison et al., 1984). Several criteria have been proposed to
prevent LBA within phylogenetic trees, through a multistep
process as proposed by Rota-Stabelli and Telford (2008) to assist
in outgroup selection especially in the case of arthropod classes.
They include: (1) low substitution rate; (2) ingroup like GþC
composition; (3) new strand bias estimators ‘skew index’; (4)
the tendency of the outgroup to avoid ‘random branding effect’;
and (5) phylogenetic proximity to the arthropod.

An alternative approach to assess the importance of an
outgroup in rooting the tree is explored by Graham et al.
(2002); this is by establishing whether the outgroup provides
sufficient signal in response to root location, indicative
of historic linkage or due to LBA. Using Pontederiaceae, an
aquatic monocot, as the case study they assessed how the
nearest outgroup provides for rooting Pontederiaceae com-
pared to those less closely related relatives and further
investigate the role of LBA when determining the optimal
rooting of Pontederiaceae. However, they concluded that LBA
may influence rooting, and may be supporting the wrong
outgroup. To further reduce LBA and to ensure robustness of
the outgroup rooting method they recommend multiple
sampling of outgroups within the sister group rather than
sampling within less closely related taxa.
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Midpoint Rooting

Midpoint rooting calculates tip to tip distances and then places
the root halfway between the two longest tips (Swofford et al.,
1996). The ancestral point will be identified if the tree has
constant rates of evolution. The method is exclusively
dependent on the branch length of the phylogenetic tree and
the assumption of the molecular clock (Holland et al., 2003).
Homogeneity is assumed across the branch and that the two
most divergent taxa evolved at equal rates (Holland et al.,
2003; Swofford et al., 1996). If the tree is balanced, midpoint
rooting works well. However, a major limitation of midpoint
rooting is the dependence on having clocklike data and a
balanced topology.

The midpoint rooting method is often applied to viral
genetic datasets because in many cases outgroups are un-
known. For example, Stavrinides and Guttman (2004) utilize
midpoint rooting to establish the evolutionary relationship of
severe acute respiratory syndrome (SARS) coronaviruses. They
carried out phylogenetic analysis of the viral genes encoding
for viral structural proteins specifically, envelope matrix (M)
and nucleocapsid (N) proteins. The midpoint rooting of the
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Table 1 Four methods for rooting phylogentic trees

Rooting method Pros Cons Software

Outgroup Accurate Must have an outgroup PAUP
Long branch attraction Figtree

R package: ape (http://www.inside-r.
org/packages/cran/ape/docs/
unroot)

Midpoint Fast Dependent on clocklike data PAUP
No outgroup needed Not good with unbalanced trees R package: phangorn (https://cran.r-

project.org/web/packages/
phangorn/phangorn.pdf)

Molecular clock No outgroup needed Computationally intense PAUP
Robust to violations of the clock PAML

Bayesian molecular
clock

Alternative rootings uncovered Must customize the prior Post Root (http://www.stat.osu.edu/
Blkubatko/software/phyl_util.html)

No outgroup needed Root annotator (http://sourceforge.
net/projects/rootannotator/)
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trees generated using the M protein data shows two groups,
one that consisted of porcine, feline, and canine and one that
contained bovine and murine coronaviruses (Coronaviridae).
On the other hand, the N protein tree is midpoint rooted on
the branch leading to the group 1 coronaviruses. Moreover, the
appropriateness of midpoint rooting is supported by the re-
sults of Tajima’s relative rate test (Tajima, 1993), indicating no
rate heterogeneity among the coronavirus groups (Stavrinides
and Guttman, 2004).

This method should be used as an alternative to the out-
group rooting method and could be adopted as the default
method when the outgroup method is difficult to apply either
due to problems with available outgroups, such as LBA or lack
of a priori knowledge of the outgroup (Hess and De Moraes
Russo, 2007).
Molecular Clock Rooting

The molecular clock rooting method has one assumption: the
rate of evolution is constant for the sequences of interest (Yang
and Rannala, 2012). The rate is typically expressed in substi-
tutions per site per year or substitutions per site per million years
(Brown and Yang, 2011). The strict clock is often used in ana-
lyses of sequences sampled at the intraspecific level, for which
usually there is an exceptionally low rate of variation (Brown
and Yang, 2011; Ho and Duchêne, 2014). The molecular clock
assumption becomes problematic for distantly related species
because there is a linear relationship between the genetic dis-
tances and approximate divergence. The slope of the line directly
corresponds to the evolutionary rate variation among species
especially among divergent taxa (Welch and Bromham, 2005).
Before utilizing the molecular clock method for rooting a
phylogenetic tree users should test if a molecular clock is ap-
propriate to describe the data. Testing for the molecular clock
entails generating two maximum likelihood trees, one com-
puted with the molecular clock enforced and one without the
molecular clock enforced and then utilizing the likelihood ratio
test (Felsenstein, 1983; Holder and Lewis, 2003).
Bayesian Molecular Clock Rooting

Huelsenbeck et al. (2002) proposed the use of Bayesian in-
ference under the molecular clock assumption to infer the root
of a phylogenetic tree. After obtaining the posterior distri-
bution of trees under Bayesian inference, the root of the tree is
inferred to be the root position with the highest posterior
probability. This method also provides the posterior prob-
ability that the root lies on any branch of the ingroup topol-
ogy. Another advantage of the Bayesian method is that it
allows the user to evaluate alternative rootings. Other rooting
methods only return one rooting for a particular dataset,
without any numerical assessment of confidence in that
rooting. A Bayesian molecular clock analysis successfully
identified the root of Orcuttieae (Poaceae) (Boykin et al.,
2010) when all other methods failed. Post_root was developed
to analyze the output from MrBayes (Ronquist et al., 2012)
or ExaBayes (Aberer et al., 2014) runs. The output from
Post_Root will give the number of unique roots and also the
most probable root position.

Most recently, Calvignac-Spencer et al. (2014) have further
developed Post_Root to a web-based interface in their quest to
identify the branch root posterior probability (RPP) of the
most recent Ebola outbreak in West Africa. They were forced to
rely on Bayesian molecular clock rooting because there is no
known outgroup for Ebola. It is often the case when analyzing
viral sequences that no outgroup is known; therefore the
Bayesian molecular clock rooting is a very useful alternative,
especially when rooting is crucial for viral outbreaks.
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