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METHODOLOGY

The BELT and phenoSEED platforms: shape 
and colour phenotyping of seed samples
Keith Halcro1*, Kaitlin McNabb1, Ashley Lockinger1, Didier Socquet‑Juglard2, Kirstin E. Bett2 and Scott D. Noble1

Abstract 

Background:  Quantitative and qualitative assessment of visual and morphological traits of seed is slow and impre‑
cise with potential for bias to be introduced when gathered with handheld tools. Colour, size and shape traits can be 
acquired from properly calibrated seed images. New automated tools were requested to improve data acquisition 
efficacy with an emphasis on developing research workflows.

Results:  A portable imaging system (BELT) supported by image acquisition and analysis software (phenoSEED) was 
created for small-seed optical analysis. Lentil (Lens culinaris L.) phenotyping was used as the primary test case. Seeds 
were loaded into the system and all seeds in a sample were automatically individually imaged to acquire top and side 
views as they passed through an imaging chamber. A Python analysis script applied a colour calibration and extracted 
quantifiable traits of seed colour, size and shape. Extraction of lentil seed coat patterning was implemented to further 
describe the seed coat. The use of this device was forecasted to eliminate operator biases, increase the rate of acquisi‑
tion of traits, and capture qualitative information about traits that have been historically analyzed by eye.

Conclusions:  Increased precision and higher rates of data acquisition compared to traditional techniques will help 
to extract larger datasets and explore more research questions. The system presented is available as an open-source 
project for academic and non-commercial use.
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Background
Lentils (Lens culinaris L.) are graded and sold based on 
a variety of visual traits. These differences can be subtle 
and are influenced by genetic and environmental fac-
tors. Researchers evaluate thousands of seed samples 
by visual inspection and manual dimensional measure-
ments, which are time-consuming and imprecise tasks. 
There are practical limitations on the number and size 
of samples that can be assessed which creates limitations 
in the statistically valid conclusions that can be made. 
To overcome these restrictions, a complete system was 
requested by lentil researchers to analyze seeds with the 
expectation of quantifying size, shape, colour and seed 

coat patterning. The system would include a machine 
for image acquisition and software to acquire, process 
and analyze seed images. Analysis would return quanti-
fiable measurements suited for rigorous statistical analy-
sis to improve the understanding of the genetics of seed 
quality traits and identify genes relevant to the breeding 
program.

The requirements presented by researchers inter-
ested in seed analysis at the University of Saskatchewan 
described a means of quantifying seed colour and shape 
statistics for a large number of samples (> 10,000 annu-
ally), represented by sub-samples containing 100 to 200 
seeds. Previous practice was a visual assessment of these 
sub-samples for qualitative colour classification, and 
size characterization using either standard sieves and/or 
manual measurements of a small number (< 10) of seeds 
using calipers. A speed target for image acquisition of 
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one 200-seed sample per minute was set, representing a 
significant increase in throughput and information avail-
able compared to manual methods. Solutions that could 
be made broadly available and support the development 
of new measurement and analysis techniques were desir-
able. Researchers were not content with a black-box 
device and they pushed for an open platform that could 
be extended and repurposed to further research goals.

Devices to enable high-throughput grading of phe-
notypic traits of seed coats have been explored previ-
ously, with some being commercially available. Solutions 
explored have included flatbed scanners [12, 17] and 
overhead cameras that image many seeds at once (Vibe 
QM3, Neutec Group Inc., Farmingdale NY, USA; Opti-
count, Process Vision LLC, Richmond VA, USA; Vid-
eometerLab 4, Herlev, Denmark).1 These methods 
generally require some method of separating groups of 
seed physically (SeedCount, Next Instruments, Condell 
Park NSW Australia) or in post processing. Where mul-
tiple seeds are imaged together, the spatial resolution is 
typically lower compared to the resolution attainable 
when imaging a single seed. Other commercial systems 
such as high-speed sorters for commercial seed sorting 
or those targeted at a laboratory environment (QSorter 
Explorer, QualySense AG, Glattbrugg, Switzerland) use 
relatively sophisticated multi-camera imaging systems 
to image seeds in a particular orientation, and incorpo-
rate sorting equipment that may not be required in all 
settings. Commercial systems provide a convenient, off-
the-shelf solution and often bundle in technical support 
to solve data acquisition issues and provide insight into 
analysis problems. The ability to adapt commercial solu-
tions to new or established workflows, measurements or 
analysis will vary with system and vendor.

This problem sat in a gap between existing solutions; 
existing inexpensive or open-source approaches did not 
inherently meet the desired throughput or resolution 
expectations, while commercially available lab-grade 
products were inflexible and difficult to develop research 
workflows for. This led to the development of a hopper-
fed, seed-singulating, dual-lane, conveyor-based system 
for image acquisition (BELT), and a set of open-source 
batch-processing analysis codes (phenoSEED) that are 
scalable for analyzing (and re-analyzing as required) 
the forecasted terabytes of image data from BELT. The 
impetus to create BELT and phenoSEED was a relatively 
narrow scope of improving traditional seed analysis by 
increasing the rate of acquisition and removing operator 

bias. BELT was developed with a wide range of design 
objectives to facilitate extracting information from singu-
lated seeds in small batches typical of lab-scale analysis. 
phenoSEED was focused on extracting colour informa-
tion with maximum accuracy and pulling shape and size 
parameters to chart desirable phenotypes. A cross sec-
tion render of BELT (Fig.  1) and the phenoSEED flow-
chart (Fig.  2) are presented here to contextualize the 
remainder of this paper.

Existing software to enable seed phenotyping is often 
focused on calculating size and shape parameters from 
2D images [19]. Expansion into three dimensional shape 
analysis yields interesting information on seed plump-
ness and symmetry which are properties associated with 
highly sought after traits in lentil [4, 15]. To enable cal-
culation of three-dimensional seed shape properties, sys-
tems often incorporate several cameras arranged around 
the staging area to observe a seed from orthogonal posi-
tions. With two orthogonal views of the same seed, volu-
metric properties can be extracted through mathematical 
means, often with the assumption of modelling the seed 
as an ellipsoid [7, 13]. Greater refinements include mod-
elling the seed as a tilted ellipsoid by identifying the 
upper and lower halves, but this necessitates a sharp 
delineation from the upper and lower surfaces in the 
image as a result of directional lighting [13]. The expan-
sion into identifying ellipsoid tilt increases the precision 
of height estimations slightly but the lighting require-
ments are stringent.

Groups have identified the need for accurate colour 
information when grading seeds and comparing results 
across devices [1, 10, 14] and have worked to develop cali-
bration of images in agriculture while minimizing in-field 
requirements [18]. Colour calibration brings the colour 
of any images captured to what would be expected under 
a standard illuminant (standardized light source defini-
tion) to facilitate colour comparisons [9]. Colour infor-
mation can be represented in a variety of ways, including 
perceptually uniform colour spaces. Perceptually uniform 

Fig. 1  BELT Cross section render of the physical BELT system

1  Product and company names are acknowledged as examples of the state of 
the art or to provide relevant technical detail. This is not intended to be an 
exhaustive list, nor as an endorsement or criticism of said product or com-
pany by the authors.
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colour spaces such as CIELab (L*a*b*) are preferred for 
food studies as they represent human perception [23]. 
Distance between two points in the L*a*b* colour space 
is directly related to the difference a human could distin-
guish between the two [16]. This provides parity between 
machine separation of colour by measurements of dis-
tance and human separation of colour by perception [2, 
20].

Results
Image acquisition performance
The overall performance of the data acquisition system 
met the design objectives of attainable speed and ease of 
acquisition. Operators required only minutes of training 
before they could use BELT to acquire images. The acqui-
sition system used a barcode scanner to read the sample 
envelope labels already in use by the breeding project 
which prevented errors arising from manual entries of 
identifying information. Seed images acquired by BELT 
were immediately displayed on the control GUI to give 
feedback to the user and allowed for multiple users to be 
trained easily and quickly. Each seed image was a top-
down view between the floating channel rails which held 
a reflective prism to show a side view of a passing seed 
as shown in Fig.  3. Camera settings were locked in and 
hidden from the operator, enabling both straightforward 
operation and consistent imaging settings. Consistent 
settings led operators to trust in expected results and 
diagnose errors quickly. Static lighting and camera light-
gathering parameters allowed colour calibration to be 
determined once and applied without adjustment over an 
extended working period.

The vibratory feeder that carried seeds from the 
hopper to the conveyor has proved to require some 

attention from the operator. Due in part to the wide 
range of physical properties of the samples, flow con-
tinuity can vary. The angle of the vibratory feeder was 
adjustable to make certain that seeds of varying sizes 
were singulated properly, and an adjustable gate was 
implemented to help manage flow from the hopper. It 
has been observed that operators tend to gently agi-
tate the seeds to maintain steady flow from the hop-
per. While the design has been effective considering its 
simple construction (a 3D-printed feeder mounted on a 

Fig. 2  Seed image processing flowchart. Preprocessing is conditional and can be skipped

Fig. 3  Sample images of several seeds. a lentil with a 
dark seed coat b canola c yellow pea d green pea e oat f wheat
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generic aquarium air pump), it has been identified as an 
area for improvement in the design.

Optical triggering was based on 3 mm diameter infra-
red light emitting diodes and phototransistors that were 
installed above the conveyor belt. These diodes and pho-
totransistors sat too high off the conveyor belt to ensure 
reliable triggering by very small seeds (wild lentils or 
canola seeds). These triggers were reimplemented using 
1.6 mm surface-mount components. This has also meant 
that small stones or other debris would cause false trig-
gers resulting in images that do not contain seeds. An 
area of ongoing work in post-processing is distinguishing 
faulty images of non-seed items or broken and damaged 
seeds.

Size calibration
The ruler from an X-Rite ColorChecker Digital SG 
(X-Rite, Grand Rapids, MI) with one-millimetre devia-
tions was imaged under three conditions—with face 
up sitting on the conveyor, facing the prism while near 
the prism edge, and facing the prism at a far distance. 
Images of a ruler in the imaging chamber (Fig.  4) were 
analyzed to create linear fits of pixel counts to physical 
distances. The marked divisions of the ruler were hori-
zontal in the image, and an edge filter was used to find 
the vertical position of the edges of the marks. Summing 
the edge filter along rows created a periodic series that 

had peaks associated with transitions between white 
and black areas. The nominal ruler divisions were plot-
ted against the pixel position of positive peaks with a 
simple linear fit. The processing steps for size calibration 
are shown in Fig. 5. The results of the camera calibrations 
are presented in Table 1. Any conversion of size or shape 
information extracted from the top view to physical 

Fig. 4  Sample height calibration images. a A top view, 
b, c two side views with different distances from the prism. Note the 
depth of focus is shallow and the side view of the ruler when it is far 
from the prism is not nearly as sharp as the other views

Fig. 5  Height calibration process. a a cropped image 
of a ruler b the results of summing the sobel edge filter image along 
the direction of the ruler rick marks c peaks in the signal are plotted 
against the distance between ruler tick marks

Table 1  Information of  linear regression fits of  camera 
pixel size

Each cell has two entries, one for each camera. R 2 values for each fit line were 
above 0.99. Note that the side view scaling is linearly interpolated between near 
and far view based on the midpoint of the object relative to the end points

View Camera Slope [mm/px] Intercept [mm] End Point [px]

Top A 0.0094 0.012 –

B 0.0095 − 0.006 –

Near side A 0.0093 0.002 1000

B 0.0094 0.009 1250

Far side A 0.0101 0.008 2200

B 0.0102 − 0.016 200
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measurements applied the size calibration directly. Any 
side view items like height linearly interpolated a value 
of size calibration based on the horizontal position of the 
longest vertical line in the top view of the seed as a proxy 
for distance to camera of the midline of the seed viewed 
in the prism mirror.

Cross‑camera validation
The calibration values of each camera were very close 
to the other, which was expected as they had the same 
lens and sensor combination and were mounted at sim-
ilar heights above the target. To test the absolute accu-
racy and cross-camera compatibility of the calibrations, 
ground and polished cylindrical thread measuring wires 
(Pee Dee, Fisher Machine Product, Hawthorne CA, USA) 
with extremely precise diameter were imaged. The diam-
eter of each target was measured with a micrometer 
with precision of one hundredth of a millimetre and the 
median diameter along the cylinder visible in the image 
acquired with BELT was recorded. Diameter measure-
ments of the circular targets are contained in Table  2. 
The image diameters were within 0.02 millimetres of 
the target in all cases, but the measurements from each 
camera were very closely related with 0.4% difference 
between them on average. The minimum calibration item 
that triggered the cameras was 0.61 mm (not shown in 
Table 2).

Colour calibration
Standard RGB to RGB calibration is often performed 
with a linear calibration while the colourspace transfor-
mation from RGB to L*a*b* is non-linear. Both opera-
tions could be put together with an artificial neural 
network that handled both calibration and colourspace 
transformation. A Multi-layer Perceptron for Regression 
(MLPR) in the scikit-learn package [8] was initialized and 

trained with images captured of the individual squares of 
an X-Rite ColorChecker Digital SG.

The results of the non-linear colour calibration fits are 
displayed in Fig.  6, in which the values of each L*a*b* 
colour channel before and after calibration are plotted 
against the supplied values for the X-Rite ColorChecker 
Digital SG. In both cameras, the uncalibrated light-
ness responses were non-linear with high RMSE values 
reported for linear fits in Table 3. The calibration aligns 
the values per channel very closely to the expected values 
as noted by slopes close to one and high coefficients of 
determination reported in Table 4. The colour intensities 
of the uncalibrated data was very low, likely due to poor 

Table 2  Summary information of  size validation 
between two cameras

The target diameter was measured with a micrometer and was also extracted 
from images from each camera. Percentage differences were calculated between 
the image and target diameter as well as between both image diameters

Target 
diameter 
[mm]

Camera Image 
diameter 
[mm]

Difference (%) Intra-camera 
difference 
(%)

1.14 A 1.13 − 0.88 0.88

B 1.12 − 1.75

3.22 A 3.23 0.31 0.31

B 3.22 0.00

4.70 A 4.70 0.00 0.00

B 4.70 0.00

Fig. 6  Colour calibration in the L*a*b* colour 
space. Plotted relationships between measured and calibrated 
data to the supplied L*a*b* values for a subset of a ColorChecker 
Digital SG
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colour response from machine vision cameras. The slope 
values show the response to colour information was only 
sixty percent of what would be expected. Calibration is 
most effective in the colour information, as can be visu-
ally perceived by comparing the lentil image in Fig. 3 to 
the same lentil image after calibration is applied which 
can be viewed in Fig. 7.

Cross‑camera validation
The differences between the predicted values and cali-
brated values were calculated using two standards for 
colour difference [16] implemented in scikit-image [21]. 
Colour differences between the supplied L*a*b* values 
and the measured values before and after calibration are 
presented in Table 5 with the old standard of � E* CIE76 
and the newer � E* CIEDE2000 [16].

Calibration reduced the colour distances significantly 
(Table 5) and it is worth re-iterating that the colour dif-
ference between L*a*b* points is proportional to the 
degree of distinction in human perception. Under a just 
noticeable difference (JND) threshold ( � E ≈ 2.3) the 
colour values can be considered to be perceptually the 

same [6]. The mean difference between the calibrated 
images and the dataset was just above the JND thresh-
old by the � E* CIE76 measurement and just below JND 
by the � E* CIEDE2000 formula.  The mean visual dis-
tinction between the calibration images and the dataset 
was reduced by a factor of six due to application of the 
calibration.

When comparing the predicted datasets against each 
other, the mean � E* CIEDE2000 distance was 3.48 (s.d. 
1.5) while the mean � E* CIEDE2000 distance between 
the original images of the dataset was 2.10 (s.d. 1.5). 
The calibrated images from different cameras were 
slightly more distinct from each other as they were 
independently distinct from the training set, and apply-
ing the non-linear calibration caused the images from 
each camera to diverge slightly from each other. Sam-
ples that diverged significantly between predicted and 
actual values ( � E* CIEDE2000>5) were usually dark (L* 
≤ 20), which suggested that the training process strug-
gled in fitting those samples. This can be viewed in 
Fig. 6 where a cluster of several calibrated points with 
L* values equal to twenty were below the fit line, mean-
ing those calibrated data were darker than the actual 
values.

Table 3  Comparisons of  linear fits between  measured 
L*a*b* images of  an  X-Rite ColourChecker Digital SG 
to the ground truth L*a*b* values

Each cell has two entries, one for each camera

Colour 
channel

Camera Measured data

Slope R2 RMSE

L∗ A 0.956 0.895 13.7

B 0.995 0.900 12.0

a∗ A 0.532 0.870 13.2

B 0.580 0.873 12.3

b∗ A 0.553 0.870 15.5

B 0.595 0.869 14.5

Table 4  Comparisons of  linear fits between  calibrated 
L*a*b* images of  an  X-Rite ColourChecker Digital SG 
to the ground truth L*a*b* values

Each cell has two entries, one for each camera

Colour 
channel

Camera Calibrated data

Slope R2 RMSE

L* A 0.987 0.998 2.03

B 1.005 0.997 2.22

a* A 0.956 0.995 2.18

B 1.036 0.994 2.29

b* A 0.963 0.998 1.75

B 1.038 0.999 1.81

Fig. 7  A sample lentil with a dark seed coat 
after colour calibration. This is the same lentil image 
showcased in Fig. 3

Table 5  Colour distances between  measured 
and calibrated data to the ground truth L*a*b* values

Each cell has two entries, one for each camera

Dataset Camera � E* CIE76 � E* CIEDE2000

Measured points A 21.1 (s.d. 12.5) 13.3 (s.d. 6.60)

B 19.1 (s.d. 11.8) 11.9 (s.d. 6.20)

Calibrated points A 3.12 (s.d. 1.48) 2.13 (s.d. 1.00)

B 3.19 (s.d. 1.80) 2.13 (s.d. 1.08)
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Clustering
K-means clustering and Gaussian Mixture Models were 
investigated for clustering colour data. Both algorithms 
were instructed to find two clusters, with the expecta-
tion that one would represent a base colour and the other 
would represent a pattern colour. K-means clustering 
randomly assigns points as cluster centres, then all points 
are assigned to a cluster based on proximity and the clus-
ter centres are updated to be equal to the cluster mean. 
This iterative process continues until cluster definitions 
stop changing. A Gaussian mixture model attempts to 
find and describe a given number of Gaussian distribu-
tions in the dataset and then calculates the maximum 
likelihood to assign each sample to a cluster. The aver-
age log-likelihood of the GMM can be returned when 
a prediction is made using a trained model. K-means 
and GMM are both fast methods of clustering and each 
model was fit to a random subsample of 10% of the avail-
able pixel data, which was still on average above twenty 
or thirty thousand points. The application of K-means 
and GMM clustering prediction on three sample lentils 
(one single colour and two patterned lentils from differ-
ent samples) are shown in Fig. 8.

Each clustering algorithm was looking for two col-
ours and their performance on single colour lentils dif-
fered significantly as recorded in Table  6. K-means and 
GMM had similar performance on patterned lentils with 
as they both report color distance greater than ten ( � E* 
CIEDE2000>10). The GMM colour distance between 

cluster centres for example A was below JND but the 
K-means colour distance was not. K-means clustering 
was ultimately not appropriate for this application as the 
algorithm would attempt to maximize distance between 
two clusters when applied to a single colour lentil by 
separating the clusters as much as possible. GMM mod-
els can overlap as they did in example A which had a less 
negative average log-likelihood as distributions over-
lapped and samples were assigned with less certainty, but 
the cluster centre distance was very small. Both cluster-
ing algorithms were easily able to find two colours of a 
pattern but the GMM allowed for single-colour lentils 
to be identified based on the scoring of the fit and a dra-
matic reduction in the cluster centre distances.

Discussion
Data processing rates
Over the course of a workday, a BELT operator could fill 
the 200 GB hard drive of the associated computer with 
150 GB of image data. Operators were able to achieve 
rates of 50 samples per hour, slightly under the desired 
target, but a significant increase over manual measure-
ments. 150 GB was a significant amount of image data to 
move and it took several hours to upload to network stor-
age as the average file movement speed on the network 
was 80 MB/s. Once the processing server had the image 
data, the phenoSEED Python script spawned 16 workers 
to process input files using a multiprocessing pool. The 
implementation of a multiprocessing pool makes it very 
difficult to profile the code without extensive changes 
in the programming style. There is no detailed function 
by function breakdown of time, but the program does 
a naïve timing of the entire analysis then divides by the 
number of files to get an overall average of time per one 

Fig. 8  The results of clustering lentil seed 
colour data. Clusters are highlighted in blue and green. 
Background pixels are red. Row (1) original lentil images cropped to 
the bounding boxes Row (2) the results of K-means clustering Row (3) 
the results of Gaussian mixture model clustering

Table 6  Summary of  Euclidean distances 
between  clusters, self-reported scores and  cluster 
populations when L*a*b* colour pixels are clustered

Example labels refer to Fig. 8. The cluster distances were calculated via � E* 
CIEDE2000.GMM: Gaussian mixture model

Clustering metric Example A Example B Example C

K-means cluster

 Distance 3.58 11.75 13.52

GMM cluster

 Distance 1.03 10.27 13.09

GMM Average

  Log-likelihood − 6.90 − 8.50 − 8.89

K-means cluster population

 (Green/Blue) 64% / 36% 51% / 49% 59% / 41%

GMM cluster population

 (Green/Blue) 73% / 27% 53% / 47% 83% / 17%
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process. The script was able to process a 9.45 MB input 
PNG image in 0.81 sec on average. This resulted in a pro-
cessing rate of approximately 11.5 MB/s, and roughly 
four hours of processing time for an input of 150 GB. The 
limiting factor was CPU usage as code optimization was 
not a goal of phenoSEED’s development.

phenoSEED included a preprocessing step that applied 
colour calibration to the image data and discarded extra-
neous information by cropping out non-seed areas. The 
results of preprocessing are termed intermediate files and 
when working from the intermediate files and skipping 
preprocessing, the script was able to extract shape, size, 
colour and clustering information in 0.29 sec per inter-
mediate file. Clustering was the major time sink; without 
it all other stats were extracted at a rate of one intermedi-
ate file per 0.065 sec. Most of the original processing time 
was spent in preprocessing which took roughly 0.5 sec.

Sample study
To demonstrate the use of BELT and phenoSEED in cre-
ating useful statistical information, a group of ten len-
til samples was assessed to find the distribution of size, 
mean seed coat colour and shape descriptors (Eqs.  1, 
2, 3) in each sample. These ten lentil samples could be 
run through BELT in less than 15 minutes, and pheno-
SEED could process the entire set in under half an hour. 
Results are easily transferred into statistical workflows 
favoured by plant scientists as evidenced by boxplots of 
the parameters of three samples of wild (W) lentil varie-
ties and seven samples of cultivated (C) lentils shown in 
Fig. 9. The wild lentils were generally smaller, darker and 
more spherical than the cultivated samples, as expected. 
Samples from wild lentils tended to have more outliers in 
colour, size and shape measurements. Outliers in shape 
descriptors suggest that segmentation may have failed 
but outliers in shape and significantly lower size would 
suggest that the seed was non-ideal, which is typical of 
wild varieties. Automatic outlier removal was not imple-
mented in phenoSEED as broken or otherwise abnormal 
lentils are valuable as sources of phenotypic information 
related to handling characteristics.

Future development
phenoSEED currently cannot be entirely divorced from 
the acquisition system as phenoSEED expects images 
in a very particular file structure that is parsed and car-
ried through as metadata. phenoSEED separated pre-
processing and main processing while also splitting 
main processing into several distinct functions that are 
clearly invoked by the top-level function. Existing func-
tions could be easily modified, or new ones added to 
form a starting point for other seed image analysis pro-
jects. Any revised script can be deployed to analyze the 

files preprocessed by a previous run of the program. Size, 
shape and colour information are common elements 
of seed selection, and any of these general traits could 
be combined with additional seed-specific information 
similar to how seed coat patterning analysis was devel-
oped for lentils. Highest among suggested improvements 
when analyzing lentils would be to extract information 
about the morphology of the colour clusters to feed into 
a classifier to classify seed coat patterns. The method of 
selecting data to fit the clustering algorithms could be 
investigated to minimize the amount of data required 
while retaining enough information. Downsampling the 
lentil image could potentially obscure fine patterns, and 
was avoided in favour of random subsampling.

Fig. 9  phenoSEED information for wild and 
cultivated lentils. Boxplots of shape, size and colour 
information for cultivated (C) and wild (W) lentil varieties
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In broader terms, a pre-trained convolutional neural 
network could be used to extract features to use in train-
ing classification algorithms for species identification, 
disease detection or general categorization. phenoSEED 
was built on sci-kit image and sci-kit learn which are 
easy-to-use Python packages, but moving to other highly 
optimized packages such as opencv for images and ten-
sorflow for neural networks would require some code 
reformatting but would increase processing speed and 
open some new avenues.

BELT can acquire images of many types of seeds larger 
than 0.6 mm and phenoSEED works with files created by 
BELT by parsing the known file structure. Refinement to 
the vibratory feeder design is being considered to effec-
tively handle more seed types. Currently there is a gate at 
the hopper to control the opening to the channels and the 
angle of descent can be adjusted. Flat disk-shaped seeds 
like lentils tended to singulate well while larger rounder 
seeds like peas would roll down the feeder and pass 
the imaging chamber while moving faster than the belt 
speed. An end-gate at the interface between the channel 
and the belt would help to queue the larger seeds. The 
image acquisition subsystem was extremely sensitive to 
ensure seeds of varied sizes would all be captured cor-
rectly. Approximately 5% of the images captured by BELT 
would have the seed partially or entirely not reflected in 
the prism and were automatically discarded by pheno-
SEED. The LabView acquisition program that handles 
camera initialization and triggering can be bundled into 
an executable and distributed.

Conclusions
A high-throughput phenotyping system was developed 
to easily and quickly score visual information of len-
til seeds. A conveyor system was assembled on a port-
able cart that held two cameras and associated LabView 
imaging software to create BELT. BELT automated seed 
movement through an imaging chamber which provided 
a good environment to capture images. An operator had 
to load and unload packets of seeds but did not influ-
ence the acquisition process. LabView software enabled 
easy initialization and automatic image acquisition with 
a user-friendly touchscreen GUI to allow users to check 
images as they were captured. Complete automation of 
data transfer was not implemented, and operators were 
responsible to push their results to a networked server 
for analysis.

phenoSEED processed images and returned results of 
extracted shape, size and colour. The phenoSEED python 
script was written with modularity in mind, so that new 
inquiries and functions can be built and re-deployed 
quickly on preprocessed data. Preprocessing reduced the 
data volume stored by eighty percent and reduced the 

time to analyze by sixty percent during subsequent runs. 
Once the preprocessed files had been generated and 
saved with accurate segmentation and colour correction, 
preprocessing was no longer required when running the 
script again with new functions. Preprocessing reduced 
disparities between the images and their calibration tar-
gets but did not completely align colour information 
from both cameras. After calibration, the mean colour 
difference between cameras is slightly greater than the 
mean colour difference between each camera and the 
calibration dataset. Preprocessing did not completely 
decouple the camera from the images as the size scaling 
factor was dependent on the camera and was calculated 
in the main processing steps.

Development of the analysis script could lead to extrac-
tion of better descriptors of lentil seed coat traits, par-
ticularly patterning density and pattern type. Analysis of 
other seeds using this imaging platform should be able 
to use preprocessing functions to isolate seeds in their 
images, while main processing functions can be used as 
they are or adjusted slightly to extract information more 
useful to the researchers working with a specific target.

We are in the process of making the code and hardware 
plans available for academic and non-commercial use. It 
is hoped that this will support the collection of more eas-
ily comparable data and encourage other research groups 
to contribute to further development of the project. At 
the time of publication, a version of the processing script 
is available at https​://gitla​b.com/usask​-specl​ab/pheno​
seed. Further information on a comprehensive hardware 
and software bundle will be made available by the authors 
as BELT is packaged for distribution.

Methods
BELT system design and description
BELT (Fig. 1) was designed around a 150 mm wide 450 
long mm conveyor with a white, low-gloss belt (Mini-
Mover Conveyors, Volcano CA) mounted on an audio-
visual cart for ease of mobility between labs. The cart 
held a small PC with a Windows operating system run-
ning a touchscreen display. A small vibratory feeder 
developed in-house was mounted on the right-hand end 
of the belt. The operator empties a sample envelope into 
the feeder, scans the barcode identifying the sample on 
the envelope, and places the empty envelope under the 
collection funnel at the left-hand end of the belt. After 
verifying the barcode was scanned correctly, the opera-
tor begins the scan via the touchscreen interface. This 
starts the conveyor and feeder, forming two lines of sin-
gulated seeds on the conveyor belt guided by 3D-printed 
rails that sit above the belt. Splitting the sample was done 
to increase the throughput of the system without adding 
significant complexity. The number of parallel pathways 

https://gitlab.com/usask-speclab/phenoseed
https://gitlab.com/usask-speclab/phenoseed
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possible is primarily a function of belt and lighting cham-
ber size, number of cameras used, and bandwidth avail-
able on the computer.

Once on the conveyor, the singulated seeds move into 
the imaging dome. The dome interior is painted with flat 
white paint to diffuse light and minimize shadow. The 
dome was illuminated with an 880 mm long strip of 6500 
K colour temperature, high colour-rendering index LEDs 
attached to raised surfaces and pointed towards the inte-
rior walls of the dome to provide diffuse lighting condi-
tions (ABSOLUTE SERIES D65, Waveform Lighting, San 
Francisco CA).

Two 5MP RGB cameras (Chameleon3 CM3-U3-
50S5C-C5 USB, FLIR Machine Vision, Wilsonville OR) 
with 35 mm machine vision lenses (LM35JC5M2, Kowa 
American Corporation, Torrance CA) and extension 
tubes for magnification were installed above two holes 
in the top of the imaging chamber. The cameras were 
triggered by infrared emitter-detector pairs contained 
in the rails separating and containing the lines of seeds 
passing through the dome. The central dividing rail also 
contained right-angled prism mirrors, positioned to pro-
vide a partial side view of the passing seed to the camera. 
The side view reflected in the prism was intended to pro-
vide information on shape and height of the lentils with-
out additional cameras. The triggering system worked 
for seeds of other sizes, as demonstrated by the images 
shown in Fig. 3 which were captured for canola (an oil-
seed), lentil, yellow and green pea (pulses) and oat and 
wheat seeds (cereals).

LabView (National Instruments, Austin TX) handled 
initialization of the USB-cameras. Digital gain for both 
cameras was set at zero to avoid introducing excess 
image noise. Lens apertures were opened to an f-stop of 
6 to maximize light intake and then exposure time was 
lowered to 2.2 ms to avoid overexposing the white con-
veyor and minimize motion blur. Conveyor speed was 
adjusted to 0.045 m/s (9fpm) so that one item would take 
10 sec to cross the length of the belt. Lenses were manu-
ally focused, with priority given to the top-down rather 
than side view. White balance per camera was set once 
through NI Max (National Instruments) then locked 
in to avoid the white balance auto-adjusting. Captured 
images were output to the display for an operator to per-
form checks. Images were saved locally, sorted into a 
folder structure based on sample ID, camera, and image 
number.

Data
Each camera created a 2200 × 1500 pixel 24-bit RGB 
PNG image that required 9.45 MB of storage space. 
Images were saved on a local drive before being moved 
to a storage server manually at the end of the workday. 

A Linux PC used a scheduled script to fetch images from 
the storage server using the Globus file transfer proto-
col (http://www.globu​s.org), call the Python processing 
script, and then push results back to the storage server.

Image analysis (phenoSEED)
A single Python script (Python Software Foundation, 
http://www.pytho​n.org) was developed to analyze all seed 
images. To mirror traditional methods, quantitative traits 
were extracted including size, shape and colour distribu-
tion of the seed coats. Qualitative traits such as pattern-
ing type and patterning intensity were secondary goals in 
the image processing. With the expectation that terabytes 
of data would have to be processed throughout the pro-
ject, data handling and processing speed were important 
considerations. Analysis was required to perform well on 
all images in the dataset, which included several different 
colours, shapes and sizes of lentil seeds.

The Linux PC used that ran phenoSEED was equipped 
with an Intel E5-2660 8-core @ 2.2GHz CPU and 64 GB 
of DDR3 RAM. The Python script was a single file with a 
main function that spawned 16 processes using Python’s 
multiprocessing package. Each process ran a top-level 
function with a reference to a single image file that called 
all necessary functions to load and preprocess the sup-
plied image and save the intermediate files. A flowchart 
of the script is shown in Fig. 2.

Preprocessing
Preprocessing applied a colour calibration to the images, 
segmented images to extract the seed regions of inter-
est, and output the pre-processing results. Segmentation 
of seed images relied on accurate colour information to 
isolate the target seed from the background. Accurate 
segmentation of the target seed created a one-bit depth 
image where pixels with a value of 0 were considered 
background and pixels with a value of 1 represented the 
shape of the target. The one-bit image mask could be 
overlaid on the colour image to extract colour informa-
tion of the target seed area.

Colour calibration  Datasets for colour calibration trans-
formations were created by imaging 117 squares (one 
greyscale row and one greyscale column were omitted) 
of the X-Rite ColorChecker Digital SG for each camera 
as 24-bit RGB images. The ColorChecker Digital SG con-
tains 140 colour swatches that span a wide colour gamut. 
Compared to the regular X-Rite ColorChecker, the Digital 
SG has an increased focus on natural tones of browns and 
greens which provides more calibration data in the range 
of expected lentil colours. Each 200x200 RGB image was 
split into 50 regions of 800 pixels and median values of 
the 50 sub-regions were extracted to minimize the effects 

http://www.globus.org
http://www.python.org
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of noise when gathering many points from a single image. 
Each scaled RGB datapoint was associated with the sup-
plied L*a*b* colour value, setting up a simple dataset of 
5850 samples. A Multi-layer Perceptron for Regression 
(MLPR) was used to fit a transfer function from captured 
RGB to supplied L*a*b* values for each camera as non-
linear mapping has shown greater accuracy for colour 
calibration than linear or quadratic mapping [5, 10]. An 
MLPR is a supervised learning neural network imple-
mented in the scikit-learn Python package that excels at 
modeling non-linear functions [8]. The MLPR feedback 
and learning was handled by an Adam solver [3] which 
updated neuron weights to minimize � E between the 
expected and calculated L*a*b* values. Seventy percent of 
the calibration data were used for training and ten per-
cent of that data were kept to validate the model perfor-
mance during training. Thirty percent of the calibration 
data was kept for testing after training had completed. A 
similar train/test split was used to calculate a transforma-
tion matrix for a linear RGB to RGB calibration. Apply-
ing the RGB to RGB calibration on the test data set aside 
resulted in a mean � E value of 8.74 between supplied 
L*a*b* and the predictions after transforming to L*a*b*. 
An MLPR evaluated similarly reported a mean � E value 
of 1.4. The application of the MLPR to a lentil seed image 
can be viewed in Fig. 7.

Segmentation  Each RGB seed image was colour cor-
rected and transferred to the L*a*b* colour space by the 
camera-specific MLPR. The L*a*b* image was cropped 
into a top view (limited to the conveyor) and a side view 
(limited to the reflection in the prism). Both colour chan-
nels (a* and b*) had very small values for the white or black 
background so the absolute values of each were individu-
ally scaled from zero to one then added together to cre-
ate merged colour channel images, one for the top view 
and one for the side view. The lightness channel was high 
for the white backgrounds in the top view and side view 
except for a vertical band in the prism reflection. The light-
ness channel was scaled from zero to one then multiplied 
by a scaling factor of 0.5 before it was subtracted from 
the merged colour image to create a final merged image. 
The final merged images had high values in the region of 
the seed which was surrounded by low value background 
areas. The mask was primarily based on colour informa-
tion, but the addition of lightness information allowed for 
segmentation of dark seeds while scaling factors reduced 
the effect of dark spots on the belt or reflected in the 
prism. Each merged image was thresholded using Otsu’s 
method [21] to create an image mask of the top or side 
area of the seed. After filling holes in the objects, the larg-
est remaining object was used as the one-bit image mask 
of the seed. The steps of segmenting a sample lentil image 

are shown in Fig. 10. Note that the lentil image in Fig. 10 
has been recombined to the full image from the split views 
for the purpose of illustration. Any mask that touched the 
border of the side or top view was automatically excluded 
from processing to avoid calculating size and shape data 
for items that did not have a clear side view.

Fig. 10  Steps of segmenting the views of a 
lentil. a colour calibrated image b a merged image of the scaled 
values of a*, b* and -L*/2 added together c results of segmentation, 
with the top mask overlaid in blue and side mask overlaid in yellow 
with size measurements overlaid. Not shown are the intermediate 
steps of cropping to the top and side views
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Preprocessing output  The horizontal position of the 
longest vertical line in the front segmented view was saved 
as a rough proxy of distance to camera through the prism 
to scale any measurements taken from the side view. Four 
items were saved as intermediate files: a colour calibrated 
cropped L*a*b* image, a top view mask, a side view mask 
and the horizontal position of the longest vertical line of 
the top view. The intermediate files were intended to be 
stored and utilized when needed to calculate informa-
tion about lentil seed coats. Re-generating the intermedi-
ate files was costly in terms of computation time but was 
only necessary if colour calibration or segmentation was 
altered.

Main processing
Following the pre-processing steps, the main process-
ing step extracted morphological and colour statistics 
from the data and applied a clustering algorithm to the 
colour data. The one-bit depth image masks were used 
as sources of shape information. The major axis length, 
minor axis length, area and perimeter of the top view 
were calculated in units of pixels. The height was calcu-
lated by doubling the length of the longest perpendicu-
lar line segment from the midline of the side view to the 
top edge of the side mask. The method of finding half of 
the height of the seed was necessary as the prisms did 
not reflect the entire scene because were held above the 
conveyor surface. Linear measurements of a seed over-
laid on an image are shown in Fig. 10. All methods that 
calculate size and shape parameters report their results 
in pixel count and were multiplied by a size calibration of 
millimetres per pixel to acquire physical measurements. 
Pixel size in the top view was assumed to be uniform as 
the cameras had narrow field of view and images were 
centred to avoid lens distortion. The scaling of an object 
reflected in the prism depended on the distance between 
the object and the prism which was represented by the 
horizontal position of the longest vertical line in the top 
view calculated during preprocessing. Objects further 
from the mirror appeared smaller in the reflection and 
the scaling factor of reflected objects was dependent on 
the position of the object on the belt.

Shape and size  Roundness and circularity were calcu-
lated to describe the 2D shape of the top view, and sphe-
ricity described the 3D shape. Roundness and circularity 
definitions were adopted from those used in the ImageJ 
software [11]. Roundness is the ratio between the area of 
the shape to the area of the circumscribed circle. Circu-
larity is a ratio of area to perimeter, normalized to a geo-
metrically perfect circle. Sphericity is a ratio of volume 
to surface area, normalized to a perfect sphere [22]. The 

surface area and volume calculation approximated the 
lentil seed as a tri-axial ellipsoid with the 2D major and 
minor axes and the height as the three axes. All three 
indices range from 0-1 with 1 representing a perfect cir-
cle or sphere.

Colour statistics  Descriptive statistics of the colour data 
over the lentil area were extracted to describe the colour 
distribution per lentil so that outliers within a sample 
group could be identified. The statistics extracted were 
the mean, maximum, minimum and standard deviation 
of each L*a*b* colour channel. These helped to catalogue 
the distribution of colours within a sample of 200 seeds.

Clustering  The L*a*b* colour values of the top view of 
the lentil were clustered into two groups using a Gauss-
ian mixture model (GMM), an unsupervised clustering 
algorithm implemented in scikit-learn (Pedregosa et  al. 
[8]). One GMM per image was fit to ten percent of the 
available pixels in the top view of the lentil, which was on 
average 20,000 sample points. The model was trained to 
find two groups within the dataset and was then used to 
predict the grouping of the rest of the individual pixels in 
the lentil top-down area. A GMM predicts the grouping 
of new samples based on maximum likelihood to be in the 
distributions learned during training. These groups would 
be assessed to determine seed hull patterning or damage.
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