Skip to main content
. 2020 Apr 10;13:66. doi: 10.1186/s13068-020-01705-z

Table 2.

Oxidation of HMF, DFF, HMFA and FFA with different enzymes after 72 h

Yield [%] Enzyme No enzyme
AO GAO CAT LAC LPO HRP
Substrate: HMF
 HMF 71.2 94.9 100 100 99.4 99.3 99.7
 DFF 25.6 5.1 0.3
 HMFA 0.6 0.7
 FFA 3.1
 FDCA
Substrate: DFF
 HMF 0.4 2.1 0.7 0.7 0.7 0.7 0.5
 DFF 96.4 96.6 98.2 98.0 98.2 98.4 98.5
 HMFA
 FFA 3.2 1.3 1.1 1.3 1.1 0.9 1
 FDCA
Substrate: HMFA
 HMF 100
 DFF
 HMFA 100 97.1 100 99.9 96.4 95.4
 FFA 2.7 0.4 0.6
 FDCA 0.2 0.1 3.1 4.0
Substrate: FFA
 HMF
 DFF
 HMFA 18.2 0.3 0.2 0.9
 FFA 70.2 99.4 99.1 98.6 95.9 99.3 99.5
 FDCA 11.6 0.6 0.6 1.1 3.2 0.7 0.5

Reaction conditions: final reaction volume 5 mL, 1, 2 or 8 µM enzyme (1 µM AO, 2 µM CAT and 8 µM GAO, LAC, LPO and HRP) or no enzyme (control), 10 mM HMF, DFF, HMFA or FFA in 50 mM sodium phosphate buffer (pH 7) at 30 °C and constant stirring at 150 min−1. Reactions with AO also included 1 µM FAD. HMF 5-hydroxymethilfurfural, HMFA 5-hydroxymethyl-2-furoic acid, DFF 2,5-diformylfuran, FFA 5-formyl-2-furoic acid, FDCA 2,5-furandicarboxylic acid, AO alcohol oxidase from Pichia pastoris, GAO galactose oxidase from Dactylium dendroides, CAT catalase Aspergillus niger, LAC laccase from Trametes versicolor, LPO fungal lignin peroxidase, HRP horseradish peroxidase. The average relative error was ± 11% and was estimated based on selected repeated experiments