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a b s t r a c t 

In this paper, we describe our method for the ISIC 2019 Skin Lesion Classification Challenge. The challenge 

comes with two tasks. For task 1, skin lesions have to be classified based on dermoscopic images. For task 2, 

dermoscopic images and additional patient meta data are used. Our deep learning-based method achieved first 

place for both tasks. The are several problems we address with our method. First, there is an unknown class 

in the test set which we cover with a data-driven approach. Second, there is a severe class imbalance that we 

address with loss balancing. Third, there are images with different resolutions which motivates two different 

cropping strategies and multi-crop evaluation. Last, there is patient meta data available which we incorporate 

with a dense neural network branch. 
• We address skin lesion classification with an ensemble of deep learning models including EfficientNets, 

SENet, and ResNeXt WSL, selected by a search strategy. 
• We rely on multiple model input resolutions and employ two cropping strategies for training. We counter 

severe class imbalance with a loss balancing approach. 
• We predict an additional, unknown class with a data-driven approach and we make use of patient meta 

data with an additional input branch. 
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Specifications Table 

Subject Area: Computer Science 

More specific subject area: Deep learning and skin lesion classification 

Method name: Convolutional neural network 

Name and reference of original 

method: 

Not applicable – our method is based on multiple approaches which we cite and detail 

in the method description 

Resource availability: Public code: https://github.com/ngessert/isic2019 

Challenge results: https://challenge2019.isic-archive.com/leaderboard.html 

Datasets: 
• https://challenge2019.isic-archive.com/data.html (official) 
• https://github.com/jeremykawahara/derm7pt (7-point) 

Method details 

Datasets 

The main training dataset contains 25331 dermoscopic images, acquired at multiple sites and 

with different preprocessing methods applied beforehand. It contains images of the classes melanoma 

(MEL), melanocytic nevus (NV), basal cell carcinoma (BCC), actinic keratosis (AK), benign keratosis 

(BKL), dermatofibroma (DF), vascular lesion (VASC) and squamous cell carcinoma (SCC). A part of the

training dataset is the HAM10 0 0 0 dataset which contains images of size 600 × 450 that were centered

and cropped around the lesion. The dataset curators applied histogram corrections to some images 

[1] . Another dataset, BCN_20 0 0 0, contains images of size 1024 × 1024. This dataset is particularly

challenging as many images are uncropped and lesions in difficult and uncommon locations are

present [2] . Last, the MSK dataset contains images with various sizes. 

The dataset also contains meta-information about the patient’s age group (in steps of five years),

the anatomical site (eight possible sites) and the sex (male/female). The meta data is partially

incomplete, i.e., there are missing values for some images. 

In addition, we make use of external data. We use the 955 dermoscopic images from the 7-point

dataset [3] . Moreover, we use an in-house dataset which consists of 986 images. For the unknown

class, we use 353 images obtained from a web search. We include images of healthy skin, angiomas,

warts, cysts, and other benign alterations. The key idea is to build a broad class of skin variations

that should encourage the model to assign any image that is not part of the eight main classes to the

ninth broad pool of skin alterations. We also consider the three types of meta data for our external

data, if it is available. 

For internal evaluation, we split the main training dataset into five folds. The dataset contains

multiple images of the same lesions. Thus, we ensure that all images of the same lesion are in the

same fold. We add all our external data to each of the training sets. Note that we do not include any

of our images from the unknown class in our evaluation as we do not know whether they accurately

represent the actual unknown class. Thus, all our models are trained to predict nine classes but we

only evaluate on the known, eight classes. 

We use the mean sensitivity for our internal evaluation which is defined as 

S = 

1 

C 

C ∑ 

i =1 

T P i 
T P i + F N i 

where TP are true positives, FN are false negatives and C is the number of classes. The metric is also

used for the final challenge ranking. 

Image preprocessing 

As a first step, we use a cropping strategy to deal with the uncropped images which often show

large, black areas. We binarize the images with a very low threshold, such that the entire dermoscopy

field of view is set to 1. Then, we find the center of mass and the major and minor axis of an

ellipse that has the same second central moments as the inner area. Based on these values we

https://github.com/ngessert/isic2019
https://challenge2019.isic-archive.com/leaderboard.html
https://challenge2019.isic-archive.com/data.html
https://github.com/jeremykawahara/derm7pt
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Fig. 1. Cropping strategy for dermoscopic images with a large, black area around the images. 
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erive a rectangular bounding box for cropping that covers the relevant field of view. The process

s illustrated in Fig. 1 . We automatically determine the necessity for cropping based on a heuristic

hat tests whether the mean intensity inside the bounding box is substantially different from the

ean intensity outside of the bounding box. Manual inspection showed that the method was robust.

n the training set, 6226 were automatically cropped. In the test set, 3864 images were automatically

ropped. Next, we apply the Shades of Gray color constancy method with Minkowski norm p = 6,

ollowing last year’s winner [4] . This is particularly important as the datasets used for training differ

 lot. Furthermore, we resize the larger images in the datasets. We take the HAM10 0 0 0 resolution as

 reference and resize all images’ longer side to 600 pixels while preserving the aspect ratio. 

eta data preprocessing 

For task 2, our approach is to use the meta data with a dense (fully-connected) neural network.

hus, we need to encode the data as a feature vector. For the anatomical site and sex, we chose

 one-hot encoding. Thus, the anatomical site is represented by eight features where one of those

eatures is one and the others are zero for each lesion. The same applies to sex. In case the value is

issing, all features for that property are zero. For age, we use a normal, numerical encoding, i.e. age

s represented by a single feature. This makes encoding missing values difficult, as the missingness

hould not have any meaning (we assume that all values are missing at random). We encode a

issing value as -5 as 0 is also part of the training set’s value range. To overcome the issue of missing

alue encoding, we also considered a one-hot encoding for the age groups. However, initial validation

xperiments should slightly worse performance which is why we continued with the numerical

ncoding. 

eep learning models 

eneral approach 

For task 1, we employ various CNNs for classifying dermoscopic images. For task 2, our deep

earning models consist of two parts, a CNN for dermoscopy images and a dense neural network for

eta data. The approach is illustrated in Fig. 2 . As a first step, we train our CNNs on image data only

task 1). Then, we freeze the CNNs weights and attach the meta data neural network. In the second

tep, we only train the meta data network’s weights and the classification layer. We describe CNN

raining first, followed by the meta data training. 
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Fig. 2. General approach for combining dermoscopic image processing and meta data processing. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CNN architectures 

We largely rely on EfficientNets (EN) [5] that have been pretrained on the ImageNet dataset with

the AutoAugment v0 policy [6] . This model family contains eight different models that are structurally

similar and follow certain scaling rules for adjustment to larger image sizes. The smallest version B0

uses the standard input size 224 × 224. Larger versions, up to B7, use increased input size while also

scaling up network width (number of feature maps per layer) and network depth (number of layers).

We employ EN B0 up to B6. For more variability in our final ensemble, we also include a SENet154

[7] and two ResNext variants pretrained with weakly supervised learning (WSL) on 940 million images

[8] . 

CNN data augmentation 

Before feeding the images to the networks, we perform extensive data augmentation. We use 

random brightness and contrast changes, random flipping, random rotation, random scaling (with 

appropriate padding/cropping), and random shear. Furthermore, we use CutOut [9] with one hole and

a hole size of 16. We tried to apply the AutoAugment v0 policy, however, we did not observe better

performance. 

CNN input strategy 

We follow different input strategies for training that transform the images from their original size

after preprocessing to a suitable input size. First, we follow a same-sized cropping strategy which we

employed in the last year’s challenge [10] . Here, we take a random crop from the preprocessed image.

Second, we follow a random-resize strategy which is popular for ImageNet training [11] . Here, the

image is randomly resized and scaled when taking a crop from the preprocessed image. 

CNN training 

We train all models for 100 epochs using Adam. We use a weighted cross-entropy loss function

where underrepresented classes receive a higher weight-based frequency in the training set. Each 

class is multiplied by a factor n i = ( N/ N i ) 
k where N is the total number of training images, N i is

the number of images in class i and k controls the balancing severity. We found k = 1 to work

best. We also tried to use the focal loss [12] with the same balancing weights without performance

improvements. Batch size and learning rate are adopted based on GPU memory requirements of each

architecture. We halve the learning every 25 epochs. We evaluate every 10 epochs and save the model

achieving the best mean sensitivity (best). Also, we save the last model after 100 epochs of training

(last). Training is performed on NVIDIA GTX 1080TI (B0-B4) and Titan RTX (B5,B6) graphics cards. 
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eta data architecture 

For task 2, the meta data is fed into a two-layer neural network with 256 neurons each. Each layer

ontains batch normalization, a ReLU activation and dropout with p = 0.4. The network’s output is

oncatenated with the CNN’s feature vector after global average pooling. Then, we apply another layer

ith batch normalization, ReLU, and dropout. As a baseline we use 1024 neurons which are scaled up

or larger models, using EfficientNet’s scaling rules for network width. Then, the classification layer

ollows. 

eta data augmentation 

We use a simple data augmentation strategy to address the problem of missing values. During

raining, we randomly encode each property as missing with a probability of p = 0.1. We found this

o be necessary as our images for the unknown class do not have any meta data. Thus, we need to

nsure that our models do not associate missingness with this class. 

eta data training 

During meta data training, the CNN’s weights remain fixed. We still employ our CNN data

ugmentation strategies described above, i.e., the CNN still performs forward passes during training

nd the CNN’s features are not fixed for each image. The meta data layers, i.e., the two-layer network,

he layer after concatenation and the classification layer are trained for 50 epochs with a learning rate

f 0.0 0 0 01 and a batch size of 20. 

rediction 

After training, we create predictions, depending on the CNN’s input strategy. For same-sized

ropping, we take 36 ordered crops from the preprocessed image and average the softmaxed

redictions of all crops. For random-resize cropping, we perform 16 predictions for each image with

our differently scaled center crops and flipped versions of the preprocessed images. For the meta

ata, we pass the same data through the network for each crop. Again, the softmaxed predictions are

veraged. 

nsembling 

Finally, we create a large ensemble out of all our trained models. We use a strategy where

e select the optimal subset of models based on cross-validation performance [13] . Consider C =
 c 1 , . . . , c n } configurations where each configuration uses different hyperparameters (e.g. same-sized

ropping) and baseline architectures (e.g. EN B0). Each configuration c i contains m = 5 trained models

best), one for each cross-validation split v j . We obtain predictions ˆ y i 
j 

for each c i and v j . Then, we

erform an exhaustive search to find C ∗⊆C such that ˆ y ∗ = 

1 
| C ∗| 

∑ 

i ∈ C ∗
1 
m 

∑ m 

j=1 ˆ y i 
j 

maximizes the mean

ensitivity S .We consider our 8 top performing configurations from the ISIC 2019 Challenge Task 1 in

erms of CV performance in C .We perform the search using the best models found during training

nly but we also include the last models in the final ensemble to have a larger variability. Finally, we

btain predictions for the final test set using all models of all c i ∈ C ∗. 

ethod validation 

For evaluation, we consider the mean sensitivity S for training with images only and for training

ith additional meta data. The results for cross-validation with individual models and our ensemble

re shown in Table 1 . Overall, large ENs tend to perform better. Comparing our input strategies, both

ppear to perform similarly in most cases. Including the ninth class with different skin alterations

lightly reduces performance for the first eight classes. Ensembling leads to substantially improved
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Table 1 

All cross-validation results for different configurations. We consider 

same-sized cropping (SS) and random-resize cropping (RR) and 

different model input resolutions. Values are given in percent as 

mean and standard deviation over all five CV folds. Ensemble 

average refers to averaging over all predictions from all models. 

Ensemble optimal refers to averaging over the models we found 

with our search strategy for the optimal subset of configurations. 

C = 8 refers to training with eight classes without the unknown 

class. T1 refers to Task 1 without meta data and T2 refers to Task 

2 with meta data. ResNext WSL 1 and 2 refer to ResNeXt-101 WSL 

32 × 8d and 32 × 16d, respectively [8] . 

Configuration Sensitivity T1 Sensitivity T2 

SENet154 SS 224 × 224 67.2 ± 0.8 70.0 ± 0.8 

ResNext WSL 1 SS 224 × 224 65.9 ± 1.6 68.1 ± 1.3 

ResNext WSL 2 SS 224 × 224 65.3 ± 0.8 69.1 ± 1.5 

EN B0 SS 224 × 224 C = 8 66.7 ± 1.8 68.8 ± 1.5 

EN B0 SS 224 × 224 65.8 ± 1.7 67.4 ± 1.6 

EN B0 RR 224 × 224 67.0 ± 1.6 68.9 ± 1.7 

EN B1 SS 240 × 240 65.9 ± 1.6 68.2 ± 1.8 

EN B1 RR 240 × 240 66.8 ± 1.5 68.5 ± 1.8 

EN B2 SS 260 × 260 67.2 ± 1.4 69.0 ± 2.5 

EN B2 RR 260 × 260 67.6 ± 2.0 70.1 ± 2.0 

EN B3 SS 300 × 300 67.8 ± 2.0 68.5 ± 1.7 

EN B3 RR 300 × 300 67.0 ± 1.5 68.4 ± 1.5 

EN B4 SS 380 × 380 67.8 ± 1.1 68.5 ± 1.1 

EN B4 RR 380 × 380 68.1 ± 1.6 69.4 ± 2.2 

EN B5 SS 456 × 456 68.2 ± 0.9 68.7 ± 1.6 

EN B5 RR 456 × 456 68.0 ± 2.2 69.0 ± 1.6 

EN B6 SS 528 × 528 68.8 ± 0.7 69.0 ± 1.4 

Ensemble Average 71.7 ± 1.7 73.4 ± 1.6 

Ensemble Optimal 72.5 ± 1.7 74.2 ± 1.1 

Official Testset 63.6 63.4 

 

 

 

 

 

 

 

 

 

 

 

 

performance. Our optimal ensembling strategy improves performance slightly. The optimal ensemble 

contains nine out of the sixteen configurations. 

Regarding meta data, performance tends to improve by 1 to 2% points through the incorporation

of meta data. This increase is mostly observed for smaller models as larger models show only minor

performance changes. The final ensemble shows improved performance. 

For our final submission to the ISIC 2019 Challenge task 1 we created an ensemble with both

the best and last model checkpoints. For task 2, we submitted an ensemble with the best model

checkpoints only and an ensemble with both best and last model checkpoints. The submission with

only the best model checkpoints performed better. Overall, the performance on the official test set is

substantially lower than the cross-validation performance. The performance for task2 is lower than 

the performance for task 1. 

Table 2 shows several metrics for the performance on the official test set. For task 1, the

performance for the unknown class is substantially lower than for all other classes across several

metrics. For task 2, the performance for the unknown class is also substantially reduced, compared to

task 1. 

Challenge background 

Automated skin lesion classification is a challenging problem that is typically addressed using 

convolutional neural networks. Recently, the ISIC 2018 Skin Lesion Analysis Towards Melanoma 

Detection challenge resulted in numerous high-performing methods that performed similarly to 

human experts for the evaluation of dermoscopic images [14] . To improve diagnostic performance

further, the ISIC 2019 challenge comes with several old and new problems to consider. In particular,

the test set of the ISIC 2019 challenge contains an unknown class that is not present in the dataset.
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Table 2 

Results from the official test set of the ISIC 2019 Challenge for each class. We consider 

the AUC, the AUC for a sensitivity larger than 80% (AUC-S), the sensitivity and specificity. 

Note that the sensitivity given here is differently calculated than S. Values are given in 

percent. 

Class Task1 Task2 

AUC AUC-S Sens. Spec. AUC AUC-S Sens. Spec. 

MEL 0.928 0.849 0.594 0.962 0.931 0.849 0.545 0.976 

NV 0.96 0.93 0.71 0.975 0.96 0.932 0.637 0.983 

BCC 0.949 0.904 0.721 0.94 0.947 0.901 0.649 0.958 

AK 0.914 0.824 0.484 0.965 0.919 0.841 0.46 0.966 

BKL 0.904 0.805 0.394 0.985 0.908 0.821 0.324 0.991 

DF 0.979 0.963 0.578 0.992 0.98 0.965 0.556 0.993 

VASC 0.956 0.925 0.644 0.991 0.942 0.912 0.495 0.995 

SCC 0.938 0.876 0.439 0.986 0.93 0.878 0.408 0.987 

UNK 0.775 0.581 0.00283 0.999 0.612 0.253 0 0.999 
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lso, the severe class imbalance of real-world datasets is still a major point that needs to be

ddressed. Furthermore, the training dataset, previously HAM10 0 0 0 [1] , was extended by additional

ata from the BCN_20 0 0 0 [2] and MSK dataset [15] . The images have different resolutions and were

reated using different preprocessing and preparation protocols that need to be taken into account.

or challenge task 1, skin lesions have to be classified based on dermoscopic images only. For task 2,

ermoscopic images and additional patient meta data have to be used. 

ethod discussion 

We explore multi-resolution EfficientNets for skin lesion classification, combined with extensive

ata augmentation, loss balancing and ensembling for our participation in the ISIC 2019 Challenge.

n previous challenges, data augmentation and ensembling were key factors for high-performing

ethods [4] . Also, class balancing has been studied [16] where loss weighting with a cross-entropy

oss function performed very well. We incorporate this prior knowledge in our approach and also

onsider the input resolutions as an important parameter. Our results indicate that models with a

arge input size perform better, see Table 1 . For a long time, small input sizes have been popular

nd the effectiveness of an increased input size is likely tied to EfficientNet’s new scaling rules

5] . EfficientNet scales the models’ width and depth according to the associated input size which

ead to high-performing models with substantially lower computational effort and fewer parameters

ompared to other methods. We find that these concepts appear to transfer well to the problem of

kin lesion classification. 

When adding meta data to the model, performance tends to improve slightly for our cross-

alidation experiments. The improvement is particularly large for smaller, lower-performing models.

his might indicate that meta data helps models that do not leverage the full information that is

vailable in the images alone. 

The ISIC 2019 Challenge also includes the problem to predict an additional, unknown class. At the

oint of submission, there was no labeled data available for the class, thus, cross-validation results

o not reflect our model’s performance with respect to this class. The performance on the official

est provides some insights into the unknown class, see Table 2 . First, it is clear that the performance

n the unknown class is substantially lower than the performance on the other classes. This could

xplain why there is a substantial difference between our cross-validation results and the results on

he official test set. Second, we can observe a substantial performance reduction for the unknown

lass between task 1 and task 2. This might explain the lack of improvement for task 2, although our

ross-validation performance improved with additional meta data. This is likely linked to the fact that

e do not have meta data for our unknown class training images. Although we tried to overcome the

roblem with meta data dropout, our models appear to overfit to the characteristic of missing data

or the unknown class. 
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Overall, we find that EfficientNets perform well for skin lesion classification. In our final

ensembling strategy, various EfficientNets were present, although the largest ones performed best. 

This indicates that a mixture of input resolutions is a good choice to cover multi-scale context for

skin lesion classification. Also, SENet154 and the ResNext models were automatically selected for the 

final ensemble which indicates that some variability in terms of architectures is helpful. 
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