Skip to main content
. 2020 Mar 19;7:100864. doi: 10.1016/j.mex.2020.100864

Table 1.

All cross-validation results for different configurations. We consider same-sized cropping (SS) and random-resize cropping (RR) and different model input resolutions. Values are given in percent as mean and standard deviation over all five CV folds. Ensemble average refers to averaging over all predictions from all models. Ensemble optimal refers to averaging over the models we found with our search strategy for the optimal subset of configurations. C = 8 refers to training with eight classes without the unknown class. T1 refers to Task 1 without meta data and T2 refers to Task 2 with meta data. ResNext WSL 1 and 2 refer to ResNeXt-101 WSL 32 × 8d and 32 × 16d, respectively [8].

Configuration Sensitivity T1 Sensitivity T2
SENet154 SS 224 × 224 67.2 ± 0.8 70.0 ± 0.8
ResNext WSL 1 SS 224 × 224 65.9 ± 1.6 68.1 ± 1.3
ResNext WSL 2 SS 224 × 224 65.3 ± 0.8 69.1 ± 1.5
EN B0 SS 224 × 224 C = 8 66.7 ± 1.8 68.8 ± 1.5
EN B0 SS 224 × 224 65.8 ± 1.7 67.4 ± 1.6
EN B0 RR 224 × 224 67.0 ± 1.6 68.9 ± 1.7
EN B1 SS 240 × 240 65.9 ± 1.6 68.2 ± 1.8
EN B1 RR 240 × 240 66.8 ± 1.5 68.5 ± 1.8
EN B2 SS 260 × 260 67.2 ± 1.4 69.0 ± 2.5
EN B2 RR 260 × 260 67.6 ± 2.0 70.1 ± 2.0
EN B3 SS 300 × 300 67.8 ± 2.0 68.5 ± 1.7
EN B3 RR 300 × 300 67.0 ± 1.5 68.4 ± 1.5
EN B4 SS 380 × 380 67.8 ± 1.1 68.5 ± 1.1
EN B4 RR 380 × 380 68.1 ± 1.6 69.4 ± 2.2
EN B5 SS 456 × 456 68.2 ± 0.9 68.7 ± 1.6
EN B5 RR 456 × 456 68.0 ± 2.2 69.0 ± 1.6
EN B6 SS 528 × 528 68.8 ± 0.7 69.0 ± 1.4
Ensemble Average 71.7 ± 1.7 73.4 ± 1.6
Ensemble Optimal 72.5 ± 1.7 74.2 ± 1.1
Official Testset 63.6 63.4