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Abstract

The focus on amyloid plaques and neurofibrillary tangles has yielded no Alzheimer’s disease 

(AD) modifying treatments in the past several decades, despite successful studies in preclinical 

mouse models. This inconsistency has caused a renewed focus on improving the fidelity and 

reliability of AD mouse models, with disparate views on how this can be accomplished. However, 

the interactive effects of the universal biological variables of AD that include age, APOE 
genotype, and sex are often overlooked. Age is the greatest risk factor for AD, while the ε4 allele 

of the human APOE gene, encoding apolipoprotein E, is the greatest genetic risk factor. Sex is the 

final universal biological variable of AD, as females develop AD at almost twice the rate of males 

and, importantly, female sex exacerbates the effects of APOE4 on AD risk and rate of cognitive 

decline. Therefore, this review evaluates the importance of context for understanding the role of 

APOE in preclinical mouse models. Specifically, we detail how human AD pathology is mirrored 

in current transgenic mouse models (“What”) and describe the critical need for introducing human 

APOE into these mouse models (“Who”). We next outline different methods for introducing 

human APOE into mice (“How”) and highlight efforts to develop temporally defined and location-

specific human apoE expression models (“When” and “Where”). We conclude with the 

importance of choosing the human APOE mouse model relevant to the question being addressed, 

using the selection of transgenic models for testing apoE-targeted therapeutics as an example 

(“Why”).
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I. The “What” of APOE Transgenic AD Mouse Models: The Development of 

AD Pathology and the Effect of Universal Biological Variables

Alzheimer’s Disease (AD) is a complex, uniquely human condition that has eluded 

understanding and effective treatment for over a century. Nevertheless, dozens of transgenic 

(Tg) mouse models that recapitulate specific aspects of AD pathogenesis enable mechanistic 

interrogation and hypothesis testing impossible to achieve in human patients. In this first 

section, we describe the major pathological hallmarks of AD, review Tg mouse models that 

reproduce AD-like pathology, and introduce the universal biological variables of AD, 

specifically age, APOE and sex. These three variables are considered universal in that all 

people age, and all people have a biological sex and two APOE alleles, as compared to rare 

risk-enhancing mutations or to modifiable risk factors that impact only a certain proportion 

of the population.

Pathological Hallmarks of AD

Amyloid is a common quaternary protein structure consisting of parallel β-pleated sheets, 

providing the most condensed storage form for overabundant proteins (Chiti and Dobson, 

2017). Unlike other quaternary structures, there is no amino acid sequence that defines 

amyloidogenic proteins; rather, it is the most condensed storage for any overproduced 

protein. In AD, these two overproduced proteins are amyloid-β (Aβ) peptide and 

microtubule associated protein tau (MAPT) that aggregate into amyloid structures termed 

amyloid plaques and neurofibrillary tangles (NFT). These two structures are the pathological 

hallmarks required for a definitive postmortem diagnosis of AD (Serrano-Pozo et al., 2011).

Because amyloid plaques are observed before NFT in humans, early hypotheses described 

amyloid plaques as precipitants to tangle formation, which then produce the progressive 

synaptic loss, neuronal atrophy, and cognitive decline that characterize the disease (Bloom, 

2014, Selkoe and Hardy, 2016, Beyreuther and Masters, 1991). Evidence has largely 

disproven this “amyloid hypothesis,” with two major findings contradicting a direct 

connection between plaque load and cognitive deficits. First, dozens of trials with amyloid-

targeting therapeutic agents have failed to produce any clinical benefit, despite pronounced 

reductions in amyloid pathology (recent conflicting Phase 3 results with aducanumab 

notwithstanding) (Liu et al., 2019, Mehta et al., 2017). Second, a significant subset of the 

elderly displays extensive amyloid plaque deposition yet age without signs of cognitive 

impairment (Bennett et al., 2006). Conversely, familial AD (FAD) is caused exclusively by 

mutations that enhance proteolytic processing of amyloid precursor protein (APP) to 

amyloid-β (Aβ), primarily the Aβ42 isoform, indicating a critical role for the Aβ peptide in 

the disease process (as reviewed by Van Cauwenberghe et al., 2016). The key research focus 

now resides on the soluble oligomeric Aβ (oAβ) species – the formation, toxicity, and 
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persistence of which is influenced by numerous other pathologic factors beyond the scope of 

this review (e.g. inflammation, metabolic perturbation, and lipid homeostasis).

With NFT comprising the other pathological hallmark of AD, the role of tau has also been 

investigated extensively in preclinical studies. MAPT is a large, 134kb gene that may 

contain up to 16 exons in its mature RNA (Caillet-Boudin et al., 2015, Sergeant et al., 2005). 

Alternative splicing and other modifications result in the expression of 6 unique tau 

isoforms, which differ in that they possess either three or four copies of a C-terminus 

repeated region (3R or 4R) and anywhere from zero to two N-terminal inserts (N0, N1, N2) 

(Buee et al., 2000). These isoforms may be abnormally phosphorylated under various 

pathogenic conditions, thereby increasing the propensity of the protein to aggregate. Tau 

aggregates have numerous toxic effects on axonal transport, synaptic function, and neuronal 

survival, which may occur in both an amyloid-dependent and -independent manner (Ittner 

and Gotz, 2011, Chong et al., 2018).

Investigations into the aggregation cascades of Aβ and hyperphosphorylated tau have 

identified two distinct pathways (Figure 1) (Crespo et al., 2016, Powers and Powers, 2008, 

Necula et al., 2007, Ehrnhoefer et al., 2008, Perez et al., 2019, Uversky, 2010, Kjaergaard et 

al., 2018). In the “on pathway,” the given protein monomers aggregate to form oligomers, 

followed by continually larger structures (protofibrils, fibrils, and coiled coils for Aβ; paired 

helical filaments for tau), ultimately culminating in the stacking of β-pleated sheets in 

parallel to form the final amyloid structure (plaques or tangles). Although illustrated as 

discrete events, this pathway may more accurately be considered a series of transient 

intermediates. Alternatively, in the “off pathway,” the protein monomers combine to form 

soluble oligomers as the stable end-product. Ongoing research continues to debate the 

details (and existence) of these two pathways; however, this framework provides an 

explanation for amyloid-positive, cognitively normal individuals. The formation of persistent 

Aβ and tau oligomers through the “off” pathway – versus their transient, intermediate nature 

in the “on” pathway – also better explains the critical pathogenic role and marked toxicity of 

both oAβ and tau oligomers, which have been the subject of countless studies reviewed 

multiple times elsewhere (Cline et al., 2018, Sakono and Zako, 2010, Benilova et al., 2012, 

Lasagna-Reeves et al., 2011, Shafiei et al., 2017). While beyond the scope of this review, 

this framework has also been increasingly applied to other neurodegenerative conditions 

characterized by abnormal protein misfolding and accumulation, such as α-synuclein in 

Parkinson’s disease, in which the soluble oligomeric form may actually be the proximal 

neurotoxin (Bengoa-Vergniory et al., 2017).

Amyloid/Aβ Models—The critical role of Aβ in AD led to the development of Tg mice 

carrying FAD mutations (FAD-Tg) that increase the proteolytic processing of APP to Aβ42 

or increase the Aβ42/Aβ40 ratio. Under neuron-specific promoters, mutations in human (h-) 

genes encoding APP, presenilin-1 or presenilin-2 genes (APP, PS1, and PS2, respectively) 

result in AD-like amyloid pathology in FAD-Tg mice (Oakley et al., 2006, Games et al., 

1995, Duff et al., 1996, Holcomb et al., 1998, Hsiao et al., 1996, Radde et al., 2006, Mucke 

et al., 2000, Jankowsky et al., 2001). These mice are a powerful tool for the study of specific 

features of AD pathology and as preclinical AD models. A comparison of the regional 

development of Aβ pathology in brain of FAD-Tg mice and human AD patients is provided 
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in Figure 2A. To aid in orientation, four particular regions (frontal cortex, hippocampus, 

cerebellum, and brain stem) common to both species, plus mouse olfactory bulb as an 

obvious difference, are labeled in the leftmost panel. Aβ deposition in human AD patients 

begins in frontal and temporal cortex before progressing to hippocampus and occipital 

cortex. In the final stages, amyloid deposition is saturated in the frontal and temporal 

cortices (Masters et al, 2015). Similarly, FAD-Tg mice exhibit plaque deposition beginning 

in the subiculum and deep layers of the frontal cortex, followed by a spread of deposits 

throughout the cortex, and into the hippocampus, and thalamus (Oakley et al., 2006, Tai et 

al., 2017, Youmans et al., 2012). Comparable to human AD, the most severe pathology is in 

the frontal cortex and subiculum. FAD-Tg models do sacrifice physiological relevance by 

overexpressing multiple mutant transgenes via heterologous promoters, resulting in Aβ 
accumulation occurring in early or mid-adulthood, compromising the impact of aging.

More recent models have been engineered as humanized APP targeted replacement (TR) 

mice, in which the (mutated or normal) human Aβ coding domain is introduced and 

controlled by the mouse promoter and enhancer regions. In these mice, more physiologically 

relevant expression levels of APP mutants are still sufficient to induce AD-like pathology 

and cognitive deficits, with a modest worsening of pathology, but not cognition, with female 

sex (Saito et al., 2014, Masuda et al., 2016, Sakakibara et al., 2018, Pervolaraki et al., 2019). 

Given their relatively recent development, these APP-TR mice require further analysis to 

ensure they consistently recapitulate various features of amyloid pathology – such as age of 

onset, regional progression, and morphology – that have been extensively characterized in 

FAD-Tg mice.

Tau Models—Given the toxic effects of tau and following failures of Aβ-targeting 

therapies tested in FAD-Tg mouse models, mouse models of tau pathology have become 

more widespread as an alternative or complementary approach. Mouse (m-) tau is 

predominantly expressed as the three 4R isoforms and does not naturally aggregate into 

stable NFTs (Janke et al., 1999, Kampers et al., 1999). To account for these features, Tg 

mice that incorporate h-MAPT (MAPT-Tg) have been developed. Because h-tau expression 

is complex, MAPT-Tg mice have utilized different isoforms of h-tau with or without various 

MAPT mutations to induce tau protein aggregation and NFT formation, including P301S, 

P301L and ΔK280 (Roberson, 2012, Mocanu et al., 2008, Ramsden et al., 2005, Yoshiyama 

et al., 2007; as summarized in Koss et al., 2016, Jankowsky and Zheng, 2017). This 

extensive variation means that a diverse library of MAPT-Tg mouse models, which develop 

tau pathology to varying degrees over unique time courses, is available to study tau-

mediated neurodegeneration. However, the complexity of h-tau makes standardization and 

comparison of MAPT-Tg mouse models challenging.

Importantly, while mutations in APP or PS1 cause FAD in humans, mutations in MAPT 
cause various forms of frontotemporal dementia (FTD) (Poorkaj et al., 1998, Spillantini and 

Goedert, 1998, Hutton et al., 1998, Irwin, 2016). Notably, FTD demonstrates a pattern of 

tauopathy distinct from the Braak staging characteristic of tauopathy in AD (Figure 2B). 

While tauopathy associated with AD in humans begins in the entorhinal cortex and midbrain 

(Braak and Braak, 1991, Hyman et al., 2012), FTD, as its name suggests, first impacts the 

frontal and temporal cortices with the entorhinal cortex only affected later in the disease 
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(Irwin, 2016). As reviewed recently, MAPT-Tg mice more closely recapitulate a human 

FTD pattern than an AD pattern with pathology concentrated in the frontal cortex 

(Jankowsky and Zheng, 2017). Compared to even the most aggressive FAD-Tg models (e.g. 

5xFAD), mutated h-MAPT drives massive neuronal loss in MAPT-Tg mice, resulting in 

significant enlargement of the ventricles and extensive atrophy of the frontal cortex 

(Ramsden et al., 2005, Yoshiyama et al., 2007, Jawhar et al., 2012). These unique features 

and limitations of MAPT-Tg mice should be considered in designing preclinical studies.

Amyloid/Aβ + Tau Models—Given the toxic and poorly understood interaction between 

tau and amyloid observed in AD, mouse models that combine both pathologies have also 

been studied (Oddo et al., 2003b, Oddo et al., 2003a, Jackson et al., 2016, Jankowsky and 

Zheng, 2017, Lippi et al., 2018, Saito et al., 2019). The most well-characterized of these 

models is the 3xTg mouse, which incorporates h-APP, PS1, and MAPT mutations (Billings 

et al., 2005, Oddo et al., 2003b, Oddo et al., 2003a). However, in these mice, cognitive 

deficits appear before any appreciable amyloid or tau pathology, which is the reverse of 

human AD. Numerous other mice that develop both tau and Aβ pathology via overexpressed 

FAD- or FTD-causing mutants have been reported (summarized in Lippi et al., 2018). An 

alternative strategy to insert non-mutated human APP and/or MAPT genes into mouse 

genome through targeted replacement “humanizes” the mice and provides a more 

physiologically relevant expression profile of APP or tau proteins, but these mice show mild 

pathology even at old age (Saito et al., 2019, Andorfer et al., 2003, Yetman et al., 2016). 

Moreover, despite important advances made in our ability to replicate the pathological 

hallmarks of AD with these mice, the models referenced in this section fail to adequately 

consider the universal biological variables of AD, which limits their translatability to human 

patients. Acting as a “decision guide” for choosing an APOE-Tg mouse model, the 

following sections of this review detail the progress made in incorporating the h-APOE gene 

into mouse models of AD and explore the enhanced physiological relevance of these models 

over their m-APOE-expressing counterparts (Table 1).

Universal Biological Variables

The universal biological variables of AD are age, APOE genotype, and sex. Age is the 

greatest risk factor for AD, with APOE4 the greatest genetic risk factor. The human APOE 
gene encodes apolipoprotein E (apoE), with three isoforms: apoE2, apoE3 and apoE4. Sex is 

the other universal biological variable of AD, as females exhibit an almost two-fold greater 

lifetime AD risk and greater dementia burden compared to males (Barnes et al., 2005, 

Andersen et al., 1999, Oveisgharan et al., 2018, Vest and Pike, 2013). Underappreciated 

until relatively recently was the interaction between APOE4 and sex, with female APOE4 
carriers possessing an increased AD risk compared to male APOE4 carriers (Ungar et al., 

2014, Altmann et al., 2014, Fleisher et al., 2005, Breitner et al., 1999, Farrer et al., 1997, 

Martinez et al., 1998, Andersen et al., 1999, Bretsky et al., 1999, Molero et al., 2001, Corder 

et al., 2004). Few studies with FAD- and/or MAPT-Tg mice have stratified results by sex, 

but results are consistent with female sex exacerbating the development of AD-like 

pathology in these mice (Wang et al., 2003, Masuda et al., 2016, Gimenez-Llort et al., 2008, 

Bhattacharya et al., 2014). However, Tg mouse models that lack APOE4, or studies that use 
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only male mice, produce results that cannot be fully interpreted either by sex, APOE, or the 

critical interaction found in female APOE4 carriers.

II. The “Who” of APOE Transgenic AD Mouse Models: The Role of Human 

APOE in AD Pathology

Proper consideration of APOE as a universal biological variable of AD in preclinical mouse 

studies requires recognition of the significant protein differences between m- and h-apoE. 

ApoE variation observed across humans is unique to our species, which makes modeling its 

significant impact on AD risk and pathogenesis challenging. In this section, we first discuss 

important distinctions between m- and h-apoE. Then, we review the various mouse models 

that incorporate h-APOE, either on its own in an otherwise normal mouse, or in combination 

with other Tg mutations or exogenous insults that produce AD-like pathology.

Notably, we do not describe in detail Tg mice that combine h-APOE expression with other 

late-onset AD risk-enhancing mutations. These models, such as the APOE4/TREM2*R47H 

mouse, are in early stages of development with limited data reported to date (Sasner, 2019). 

Moreover, these secondary mutations are quite rare, ranging from allele frequencies of 0.12–

0.26% for TREM2*R47H in Caucasian populations to non-existent in Chinese or African-

American populations (Guerreiro et al., 2013, Jonsson et al., 2013, Mehrjoo et al., 2015, Jay 

et al., 2017, Miyashita et al., 2014, Ma et al., 2014, Wang, 2018b, Guo et al., 2018, Jin et al., 

2015). Thus, both the reliability and translatability of results gathered in these models are 

limited. Rather, in this section we discuss better characterized and more informative APOE-

Tg mouse models that guide interpretation of AD-like pathology through the universal 

biological variables of AD.

APOE Transgenic Mice

Mouse vs. Human APOE—Differences between mouse and human apoE are numerous 

and significant. The human apoE protein exists in three main isoforms, while mice express 

only one form of apoE. These three human isoforms vary at only two of the 299 amino acids 

within the protein secondary structure (apoE2: Cys112/Cys158, apoE3: Cys112/Arg158, 

apoE4: Arg112/Arg158). Importantly, the homology between m- and h-apoE amino acid 

sequences is only 70% (Rajavashisth et al., 1985). Although m-apoE includes the equivalent 

of Arg112/Arg158 residues found in h-apoE4, the extent of the coding sequence variation 

between the two species produces substantial downstream consequences in the tertiary 

structure, as m-apoE functions as a single-domain protein, while h-apoE forms two distinct 

N- and C-terminus domains (Nguyen et al., 2014). Numerous studies comparing m- and h-

apoE have identified significant differences, ranging from their basic function in lipid 

binding and transport to their effects on AD pathology (Weisgraber, 1994, Nguyen et al., 

2014, Liao et al., 2015, Hudry et al., 2013, Fagan et al., 2002, Fagan et al., 1999). With 

regard to AD pathology, in spite of the negative consequences associated with the APOE4 
allele, replacement of m-apoE with h-apoE critically delays AD pathology and decline in 

memory performance, while also introducing an isoform-specificity that mirrors human AD 

patients (APOE4 earlier and more severe; APOE2 later and more mild) in FAD-Tg mouse 
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models (Balu et al., 2019, Bales et al., 1997, Bales et al., 2009, Youmans et al., 2012, Tai et 

al., 2011, Tai et al., 2017).

APOE Targeted Replacement—Mice expressing h-apoE isoforms have become a 

critical tool to study AD pathogenesis. Even without any additional FAD mutations, these 

mice exhibit isoform-specific differences in lipid physiology and synaptic function – both 

critical aspects of AD pathology. APOE-TR mice, in which the m-APOE coding sequence is 

replaced by that of a h-APOE allele, display alterations in synaptic number and structure, 

network connectivity, and behavior based on the specific apoE isoform expressed (Zhu et al., 

2012, Sun et al., 2017, Neustadtl et al., 2017, Dumanis et al., 2013, Gillespie et al., 2016, 

Dumanis et al., 2009, Ji et al., 2003, Wang et al., 2005, Bour et al., 2008, Grootendorst et al., 

2005, Koutseff et al., 2014). Some of these studies have also observed interaction between 

APOE genotype, sex, and aging, showing the ability of APOE-TR mice to reproduce the 

critical interaction of the universal biological variables of AD (Andrews-Zwilling et al., 

2010, Leung et al., 2012). At a more fundamental level, the apoE4 protein is found at lower 

concentrations than apoE3 in these mice, and, in apoE3/E4 heterozygotes, the apoE4 

isoform contributes to reduced apoE levels (Ramaswamy et al., 2005, Riddell et al., 2008a). 

This reduced presence of apoE4 may be due to its relative lack of structural stability and a 

greater propensity to undergo proteolytic degradation compared to apoE3 (Tamboli et al., 

2014, Rohn, 2013). Functionally, apoE4 exhibits decreased affinity for lipids such as 

cholesterol compared to apoE3, with numerous studies demonstrating that apoE4-containing 

lipoproteins in the brain are smaller compared to apoE3-containing lipoproteins (Huang and 

Mahley, 2014, Weisgraber, 1994, Tai et al., 2014b, Hu et al., 2015, Heinsinger et al., 2016, 

Samieri et al., 2013). Reduced protein levels combined with hypolipidation of apoE4 

contribute to the many pathological interactions described in the following sections and form 

the basis of several therapeutic strategies detailed at the end of this review. As a result, 

incorporating h-APOE into mouse models is critical for studying AD. However, one major 

limitation is that, although APOE2 is considered neuroprotective in humans, 100% of 

homozygous APOE2 mice have type III hyperlipoproteinemia, compared to only 10% of 

humans homozygous for APOE2 (Sullivan et al., 1998, Mahley et al., 1999, Koopal et al., 

2017, Corsetti et al., 2018). Thus, APOE2-TR mice should be used with caution when 

compared with APOE3- or APOE4-TR mice, as the consequences of this condition, which is 

characterized by significantly increased plasma levels of chylomicron and VLDL remnants, 

for AD remain unknown.

Amyloid/Aβ Pathology and APOE

Given its wide-ranging toxic effects, reliable replication of oAβ pathophysiology is a 

necessary feature of preclinical AD models. This reproduction requires consideration of the 

differential effects of apoE isoforms on the formation and clearance of soluble oAβ. Across 

studies, Aβ deposition, soluble oAβ levels, and amyloid plaque pathology are consistently 

elevated in human AD brain samples in the presence of apoE4 compared to other isoforms 

(Tai et al., 2013, Hashimoto et al., 2012, Koffie et al., 2012, Hoglund et al., 2017). Also, 

oAβ efflux was diminished across engineered human vessels with apoE4 compared to apoE3 

(Robert et al., 2017). The presence of any h-apoE isoform accelerates proteolytic 
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degradation of soluble Aβ by microglia, but this effect is weaker with apoE4-containing 

particles compared to apoE3 and apoE2 (Jiang et al., 2008).

H-apoE-expressing FAD mouse models (FAD/APOE-Tg) reproduce this apoE isoform-

dependent variation in Aβ pathology. In Tg2576, APP/PS1, PDAPP, and 5xFAD mice, 

genetic replacement of m-APOE with one of the three human alleles introduced a delayed 

isoform-specific effect on oAβ levels, Aβ deposition, and amyloid plaque pathology in the 

brain, with levels highest in apoE4-expressing mice (Bales et al., 2009, Pankiewicz et al., 

2014, Youmans et al., 2012, Tai et al., 2013, Castellano et al., 2011, Pankiewicz et al., 2017, 

Kim et al., 2011, Fryer et al., 2005, Holtzman et al., 2000, Tai et al., 2017). Viral-mediated 

expression of human apoE in PDAPP, APP/PS1, and Tg2576 mice also induced an isoform-

dependent effect on Aβ pathology, again highest in apoE4-expressing mice (Hudry et al., 

2013, Dodart et al., 2005). Importantly, studies in EFAD mice, which overexpress Aβ via 

5xFAD mutations and express h-apoE3 (E3FAD) or h-apoE4 (E4FAD), reproduce the 

interactive effects of APOE4 and female sex on AD pathology. These interactive effects 

include increased Aβ pathology, greater cognitive deficits, decreased microglial interaction 

with plaques and lower microglial TREM2 expression, and increased cerebrovascular 

pathology in female APOE4 carriers compared to male APOE4 carriers (Tai et al., 2017, 

Stephen et al., 2019, Thomas et al., 2016, Balu et al., 2019). Moreover, with EFAD mice, the 

interactive effects of age, APOE genotype, and sex on survival rates were examined with 

female E4FADs exhibiting the shortest lifespan and male E3FADs the longest, with male 

E4FADs and female E3FADs in between (Balu et al., 2019). These findings demonstrate the 

importance of FAD/APOETg mice in modeling the apoE/Aβ interaction, which cannot be 

achieved with mice expressing their natural apoE protein.

Tau Pathology and APOE

Compared to the APOE4/Aβ interaction, the correlation between tau pathology and APOE4 
is relatively poorly established in human patients. One recent study showed that apoE4 

reduced the age of onset for FTD patients, independent of Aβ pathology (Koriath et al., 

2019), while data from Rush University’s longitudinal human cohorts suggest that apoE 

isoforms only modulate tau pathology in the presence of Aβ pathology (Farfel et al., 2016). 

Neither of these studies stratified participants by sex; thus, these conflicting results may be 

the product of our limited understanding of the effects of the universal biological variables 

of AD on tau pathology.

In attempts to further elucidate the relationship between APOE genotype and tau pathology, 

MAPT-Tg mouse models that express h-APOE (MAPT/APOE-Tg) have been developed. In 

a key study, the Holtzman group demonstrated that, compared to P301STg mice crossed 

with APOE3- or APOE2-TR mice, P301S/APOE4-TR mice demonstrated increased tau 

levels, inflammation, and brain atrophy (Shi et al., 2017). However, a follow-up report from 

the Bu group employing viral-mediated P301L MAPT expression in APOE-TR mice found 

no exacerbation of tau pathology, inflammation, or cognitive deficits with apoE4 (Zhao et 

al., 2018). In fact, this second study observed exacerbation of this pathology in the presence 

of apoE2. However, the complete penetrance of Type III hyperlipoproteinemia in APOE2-

TR mice as detailed above represents an important caveat for interpreting results from this 
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model. Moreover, these two studies utilized different MAPT mutants (P301S vs P301L) and 

different expression methods (Tg vs. viral). Further study of MAPT/APOE-Tg mice is 

certainly warranted in order to better define the relationship between h-apoE isoforms and 

tau pathology, especially given the observations that late-stage AD may become increasingly 

amyloid-independent in spite of continued accumulation of pathology (Hyman, 2011). As 

noted in Section I, investigators must pay particular attention to whether the MAPT-Tg 

mutation employed more closely models human AD or FTD, although the clinical data 

described at the beginning of this subsection (Koriath et al., 2019, Farfel et al., 2016) 

suggest that the relationship of both pathologies with APOE status is worthy of further 

investigation.

Amyloid/Aβ + Tau Pathology and APOE

Recent work suggests that the presence of amyloid plaques and phosphorylated tau 

synergistically promote neurodegeneration in AD patients (Pascoal et al., 2017a, Pascoal et 

al., 2017b, Fortea et al., 2014, Desikan et al., 2012). However, information on the interaction 

between the two proteins is severely limited in the context of APOE genotype and sex. 

Although human cohorts are in majority APOE4 carriers and females, many studies do not 

stratify their human populations by APOE genotype and sex. Therefore, models expressing 

h-apoE in combination with Aβ and tau pathologies provide greater insight into their 

interactions.

To study the effects of h-apoE on the interaction between Aβ and tau pathology, a cross 

between APOE4-TR and 3xTg mice was developed (3xTg/APOE-TR) (Oddo et al., 2009). 

This initial study noted that h-apoE4 delayed both Aβ and tau pathology compared to m-

apoE. Further studies observed that female 3xTg/APOE4-TR exhibited greater Aβ 
pathology compared to male 3xTg/APOE4-TR and female 3xTg, demonstrating a 

synergistic interaction between APOE4 genotype and female sex (Hou et al., 2015). While 

analysis of sex differences was an important inclusion, the comparison of h-apoE4 to m-

apoE (rather than to other h-apoE isoforms) was a major limitation of these studies. When a 

full h-apoE isoform comparison was performed, greater tau pathology was observed in 

3xTg/APOE4-TR compared to 3xTg/APOE3-TR or 3xTg/APOE2-TR mice (Bennett et al., 

2013). However, because the majority of that study focused on acute effects of traumatic 

brain injury, a longitudinal analysis of 3xTg/APOE-TR mice on a wider range of AD 

pathological markers is still needed to further characterize this model.

Modifiable Risk Factors and APOE

Amyloid plaques and NFTs together constitute the classic AD pathology, but the vast 

majority of patients with dementia, including those with a clinical AD diagnosis, do not 

develop these pathological hallmarks on an otherwise healthy background. This so-called 

“mixed pathology” is actually the most commonly observed phenotype in demented patients, 

and, in particular, cerebrovascular disease has been identified as a major contributor to 

dementia (Bennett, 2017, Matthews et al., 2009). Another study estimated that roughly 30% 

of the AD burden could be attributed to modifiable risk factors, including hypertension, 

diabetes mellitus, smoking, obesity, and physical inactivity (Norton et al., 2014). APOE4 
allele increases the risk for cardiovascular disease and diabetes and correlates with increased 
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plasma low-density lipoprotein cholesterol levels (Bennet et al., 2007, Xu et al., 2016, El-

Lebedy et al., 2016). Synergistic effects have also been observed between APOE4 and these 

modifiable factors in AD risk (Peila et al., 2002). Therefore, apoE4 could be considered to 

act as a “first hit” primer for the central nervous system (CNS) to be further compromised by 

a “second hit” (e.g. traumatic brain injury (TBI), diabetes, vascular disease, etc.), such that 

apoE4 exacerbates the effects of the modifiable risk factor on brain pathology (Mahley et al., 

2006).

Associations between modifiable risk factors and APOE genotype are reproduced in APOE-

TR mice. APOE4-TR mice that are genetically obese or placed on a high-fat diet (HFD) – 

two models of diabetes/dyslipidemia – show greater disturbances in glucose and lipid 

metabolism (Arbones-Mainar et al., 2016, Johnson et al., 2017, Arbones-Mainar et al., 

2008). APOE4-TR mice on HFD performed worse in Morris water maze testing and had less 

cerebral blood flow than APOE3-TR mice. Moreover, EFAD mice on HFD exhibited greater 

signs of AD pathology and glial activation in apoE4- than apoE3-expressing mice (Johnson 

et al., 2017, Johnson et al., 2019, Moser and Pike, 2017, Nam et al., 2018). In a separate 

study of EFAD mice, apoE4 exacerbated cerebrovascular pathology and cognitive deficits 

following exposure to the bacterial endotoxin lipopolysaccharide (LPS), a model of chronic, 

low-grade peripheral inflammation characteristic of comorbid conditions such as diabetes 

(Marottoli et al., 2017). APOE4 carriage also exacerbated pathology following TBI in 

multiple studies in APOE-TR, FAD/APOE-Tg, and 3xTg/APOE-TR mouse models 

(Laskowitz et al., 2010, Bennett et al., 2013, Cao et al., 2017). These findings that connect 

apoE4 to exacerbated AD and vascular pathology following metabolic and/or inflammatory 

insults underscore the importance of incorporating h-APOE in modeling modifiable risk 

factors for AD. The contribution of these modifiable risk factors to AD burden also suggests 

that future studies should incorporate measures of metabolism, inflammation, and vascular 

function as efficacy readouts along with Aβ and tau pathology to enhance translatability to 

human disease.

III. The “How” of APOE Transgenic AD Mouse Models: Transgenic 

Strategies for Incorporating Human APOE

After the APOE4 allele was identified as the greatest genetic risk factor for AD, the demand 

for mouse models expressing h-APOE grew rapidly. As research technologies have 

advanced, several different strategies to introduce h-APOE into mice have emerged. In this 

portion of the review, we provide an overview of these strategies and comment on their 

contributions to AD research over the past three decades.

Multi-Gene Cluster

An initial method of introducing h-APOE consisted of recombining the entire ~58 kilobase 

locus of human chromosome 19 that encodes APOE and two members of the apolipoprotein 

C family (APOC1 and APOC2) into a large artificial chromosome, such as the P1 

bacteriophage-derived or yeast artificial chromosome (PAC or YAC, respectively) (Simonet 

et al., 1993, Allan et al., 1995, Loring et al., 1996). Transfer of the entire multi-gene cluster 

provided valuable information on many distal regulatory elements. However, transfecting 
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these large strands of DNA resulted in the overexpression of apoE in irrelevant tissues, with 

no expression in the brain, reducing their relevance to AD (Simonet et al., 1993, Allan et al., 

1995).

Heterologous Promoters

A common method of introducing APOE is with heterologous promoter constructs, ensuring 

expression in CNS cell types. As reviewed previously by our group, heterologous promoters, 

including Thy1, GFAP, PGK, PDGF, transferrin, and NSE, drive the expression of apoE in 

either neurons or astrocytes in various brain regions (Tai et al., 2011, Bowman et al., 1995, 

Smith et al., 1998, Sun et al., 1998, Buttini et al., 1999, Tesseur et al., 2000b, Tesseur et al., 

2000a, Huber et al., 2000). With these models, cell-and region-specific effects of h-apoE 

isoforms were elucidated (discussed in greater detail in Section IV below). However, the use 

of heterologous promoters introduced two major challenges. First, as these mice were 

developed in an APOE−/− background, only promoter-specific cells produced apoE. Second, 

the cells that produced apoE generally expressed it at higher than physiological levels and 

outside of the endogenous regulatory mechanisms. Thus, while useful for studying certain 

aspects of apoE biology, heterologous promoters are insufficient to accurately model h-

APOE expression in mice.

Endogenous Promoters

The APOE-TR model is the predominant method to express h-APOE in mice. These mice 

were engineered through homologous recombination to contain the h-APOE coding 

sequences in place of the m-APOE coding sequences, but with intact mouse regulatory 

sequences (Sullivan et al., 1997). As described in the preceding sections of this review, 

APOE-TR mice exhibit isoform-specific phenotypes that mirror human patients, ranging 

from reduced apoE4 protein levels in the brain (compared to apoE3 or apoE2) to memory/

cognitive deficits in APOE4 carriers, particularly females (Koutseff et al., 2014, Zhu et al., 

2012, Dumanis et al., 2009, Bour et al., 2008, Riddell et al., 2008a). APOE-TR mice provide 

a more patient-relevant baseline to explore the cognitive and pathologic effects of various 

insults that are modulated by apoE isoforms (e.g. TBI, high-fat diet, etc.), and the crosses 

with other Tg models of AD detailed above in Section II are critical for modeling the 

interaction of h-apoE with amyloid and tau pathology.

IV. The “When” and “Where” of APOE Transgenic AD Mouse Models: 

Location- and Time-specific Effects of ApoE on AD Pathology

Development of pathology and cognitive decline in AD patients occurs over the course of 

decades and involves numerous interactions between the brain and peripheral tissues. In the 

next section of this review, we will discuss recent advances in the temporal-and regional-

specificity of apoE expression. These studies represent preliminary efforts to better 

understand how the isoform-specific impact of apoE varies over the lifespan or with the 

location of apoE expression.
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Temporal Specificity

Having described numerous interactions between apoE and AD pathology in the above 

sections of this review, we must also recognize that AD pathogenesis is characterized by a 

long prodromal period before onset of clinical symptoms. Aβ aggregation, tau accumulation, 

synaptic loss, and even neuronal death occur years to decades before any appreciable 

cognitive deficit in patients (Sperling et al., 2011, Jack et al., 2010, Gomez-Isla et al., 1996). 

Because each copy of the APOE4 allele accelerates age of onset by approximately eight 

years, apoE4 likely produces detrimental effects at a young age (Liu et al., 2013). 

Determining the precise time course of apoE isoform-specific effects on AD pathogenesis 

will eventually facilitate optimal treatment strategies for patients.

Two recent studies controlled temporal expression of h-apoE in mice to further define the 

timeline of apoE4-related AD pathology. In APP/PS1 mice engineered to express h-apoE in 

astrocytes by an inducible promoter, the critical window for the effect of apoE4 in promoting 

Aβ aggregation was early in life (<6M) (Liu et al., 2017a). In that study, apoE4 had no effect 

during the rapid phase of insoluble amyloid (e.g. fibrils and plaques) deposition later in life 

(>6M). Conversely, induction of apoE3 at any age did not exacerbate amyloid pathology 

and, in fact, reduced Aβ-associated gliosis and increased PSD-95, suggesting that both the 

temporal window and the specific apoE isoform are critical for modulating AD pathology. In 

a complementary study, anti-sense oligonucleotides (ASOs) were used to knock down h-

apoE expression in APP/PS1 mice at various time points. When apoE (either apoE3 or 

apoE4) was reduced at birth, Aβ aggregation and deposition were also significantly reduced, 

but when apoE was not knocked down until 6 weeks of age (after Aβ aggregation had 

begun), no change in overall amyloid burden was noted at 4M (Huynh et al., 2017). Both of 

these studies demonstrated increased pathology with apoE4 vs. apoE3 and indicated that 

apoE isoform effects are restricted to the initial seeding and oligomerization of Aβ42. 

However, a key limitation of these studies was that they did not stratify for sex and, for the 

ASO study in particular, only analyzed amyloid aggregation, without evaluating the other 

AD pathological factors that, as mentioned above, become more prominent later in disease 

progression. Utilizing these time-limited APOE expression models in broader studies will 

enhance our understanding of the time course over which apoE isoforms differentially 

modulate AD pathology development.

Cell and Region Specificity

In addition to the varying effects of apoE on AD pathogenesis with time, the location of 

apoE expression also plays an important role in disease progression. Regional analysis of 

APOE-TR mice reveals that apoE protein levels are highest in cerebellum and lowest in 

hippocampus and frontal cortex (Sullivan et al., 2004). In the EFAD mice, apoE levels, 

regardless of isoform, are cerebellum > cortex > hippocampus (Youmans et al., 2012). This 

regional variation may provide some explanation as to why AD pathology preferentially 

affects the hippocampal regions first, as lower apoE levels could provide less protection 

against early Aβ aggregation. Importantly, we must note that certain observations, such as 

delayed amyloid pathology in mice expressing any h-apoE isoform compared to APOE 
knockout (KO) mice described in Section II, support the hypothesis that apoE4 is a loss of 

positive function; conversely, other observations, such as reduced amyloid pathology 
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following early reductions in apoE reviewed here in Section IV, might conversely suggest a 

gain of toxic function. Two explanations may help resolve this apparent conflict. First, the 

specific apoE isoform exerts a critical impact on Aβ pathology, such that apoE3 provides 

greater protection than apoE4. Moreover, study results depend on the particular form of 

amyloid being quantified. As shown in Figure 1, the “on” vs. “off” pathways of Aβ 
aggregation allow for increased oAβ to occur simultaneously with decreased plaques, and 

vice versa. Thus, particular attention should be paid in future studies into the apoE/Aβ 
interaction to sensitively and specifically detecting these various aggregated species. The 

ability of APOE-TR and FAD/APOE-Tg mice to recapitulate human regional brain 

expression patterns in the context of the three apoE isoforms make them a useful tool for 

these studies and for other mechanistic investigations into the influence of apoE on other 

AD-relevant pathology.

In contrast to the natural expression patterns produced in APOE-TR mice, heterologous 

promoter constructs (introduced in Section III above) drive h-APOE expression toward 

specific cell types or regions within the brain. Using Thy1 and PDGF promoters resulted in 

apoE expression in hippocampal and cortical neurons, while the PGK promoter directed 

neuronal expression throughout the entire mouse brain (Tesseur et al., 2000b). Use of these 

promoter constructs demonstrated that neuronal expression of h-apoE4 contributed to tau 

hyperphosphorylation, which, in follow-up experiments, caused significant axonal 

dysfunction and degeneration (Tesseur et al., 2000a). Subsequent studies using either Thy1 

or NSE promoter constructs combined neuron-specific apoE expression with additional 

insults, such as crossing with h-APP mice or administering the excitotoxin kainic acid, to 

reveal increased Aβ pathology and neurodegeneration, respectively, in the presence of apoE4 

compared to apoE3 (Buttini et al., 1999, Brecht et al., 2004, Van Dooren et al., 2006). NSE 

promoter-driven apoE expression also revealed apoE4-mediated deficits in cognitive 

behavioral tasks that was worse in female mice, which may be explained by particular 

toxicity of apoE4 fragments to GABAergic interneuron populations (Raber et al., 1998, 

Andrews-Zwilling et al., 2010, Knoferle et al., 2014). The other major cell-specific apoE 

expression model utilizes the GFAP promoter to restrict h-apoE expression to astrocytes, 

which are the major cell type that produces apoE protein in the brain. Mice transfected with 

GFAP-apoE demonstrate isoform-specific worsening in neuronal morphology, microvascular 

pathology, motor function, and cognitive performance (Smith et al., 1998, Sun et al., 1998, 

Tang et al., 2009, Meng et al., 2015, Chaudhari et al., 2016, Ji et al., 2003, Hartman et al., 

2001, van Meer et al., 2007).

Because the heterologous promoter strategy results in overexpression of apoE significantly 

above normal protein levels, these mice have not received widespread use. Instead, APOE-

TR mice, which express h-apoE at normal physiological levels, are more prevalent given 

their greater accuracy and translatability. However, models of neuron-and astrocyte-specific 

expression still fill an important niche for mechanistic investigation of the isoform-specific 

effects of apoE.
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Central vs. Peripheral APOE Expression

In recent years, appreciation of the interactions between peripheral and CNS apoE on AD 

pathology has grown. The apoE protein does not cross the blood-brain barrier, meaning that 

peripheral apoE (expressed primarily by hepatocytes) and CNS apoE (expressed primarily 

by astrocytes) form two distinct “pools” (reviewed recently in (Chernick et al., 2019)). 

While the contributions of peripheral apoE to AD modifiable risk factors and comorbid 

pathologies (high cholesterol, type 2 diabetes, cardiovascular disease) are described above, 

the development of new APOE-Tg models that spatially restrict the expression of apoE has 

illuminated the direct role of peripheral versus CNS apoE on AD pathology as well. 

Knocking out m-APOE in the brain did not result in cognitive deficits, whereas full APOE-

KO mice did exhibit cognitive deficits (Lane-Donovan and Herz, 2016). However, this study 

utilized m-APOE, which limits translatability to h-APOE and AD.

To build on those findings, researchers from the Bu and Nielsen groups recently presented 

data from mice expressing h-apoE isoforms specifically in either vascular mural cells or 

hepatocytes, with apoE4 worsening vascular and neuropathology as compared to apoE3 or 

apoE2 in both cases (Yamazaki et al., 2018, Patra et al., 2018). When crossed with APP/PS1 

mice, liver-specific apoE4 expression worsened Aβ pathology while liver-derived apoE3 was 

protective (Alzforum, 2018). Notably, in these studies, region-specific apoE isoform 

expression occurred on an APOE-KO background, which complicates the interpretation of 

their findings. In a separate article, the Holtzman group recently reported that specific 

reduction of h-apoE expression in the livers of APP/PS1/APOE-TR mice did not affect brain 

Aβ plaque deposition (Huynh et al., 2019). As only the Holtzman results have been peer-

reviewed and published, further study on the role of peripheral apoE in modulating brain 

pathology is necessary. Moreover, because these studies used the APP/PS1 model, analysis 

naturally focused on amyloid pathology, but the effect of central vs. peripheral apoE 

expression on other pathological factors is also worthy of exploration. These cell-type or 

region-specific inducible models will be critical tools for the next phase of AD research, 

particularly with the heightened focus recently on the brain-periphery connection.

V. The “Why” of APOE Transgenic AD Mouse Models: Preclinical Testing 

of Therapeutic Strategies Targeting ApoE

The above-reviewed APOE-Tg preclinical mouse models highlight the critical role of h-

apoE isoforms in modulating AD pathology and the importance of APOE4 in unmasking the 

increased risk in females. Another consequence of the pleiotropic effects of apoE in the 

brain is that a drug acting through improving positive functions or reducing toxic gain of 

functions of apoE at a foundational level could provide wide-ranging therapeutic benefit. 

AD mouse models can be used to refine a hypothesis, dissect a signaling mechanism or, as 

in our example, test a therapeutic targeting apoE. The choice of a mouse model requires not 

simply choosing a mouse that develops the relevant pathology, but fully understanding the 

strengths and limitations of the model. In this final section, we evaluate six major categories 

of therapeutic compounds in development that target apoE and discuss the importance of 

choosing the specific APOE-Tg mouse model relevant to the hypothesized mechanism of 

action of each candidate. Based on the universal biological variables of AD, we assume the 
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importance of h-APOE and the use of male and female cohorts. In addition, while a 

particular model of pathology may be indicated as the primary model, examination in 

models that mimic other pathological mechanisms is also suggested as the role of APOE in 

AD pathology is multifaceted.

ApoE2 Overexpression (Figure 3.1)

While APOE4 constitutes the most important genetic risk factor for AD, the APOE2 allele 

induces a significant protective effect, lowering AD risk two- to four-fold for one or two 

copies, respectively, compared to APOE3 carriers (Bertram et al., 2007, Corder et al., 1994). 

Thus, overexpression of apoE2 has been postulated as a potential therapeutic strategy to 

correct apoE4-associated deficits. Indeed, intracerebroventricular injection of lentiviral 

APOE2 reduced hippocampal Aβ load in PDAPP mice (Dodart et al., 2005). More recently, 

a single thalamic injection of an adeno-associated virus (AAV)rh.10h vector engineered to 

contain the APOE2 coding sequence significantly decreased brain Aβ levels in APP/PS1/

APOE4 mice (Zhao et al., 2016). An open label Phase 1 clinical trial (NCT03634007) to 

determine maximum tolerated dose and assess brain apoE2 expression levels with this vector 

in 15 APOE4 homozygous MCI/AD patients was scheduled to begin in October 2019.

Despite positive results, numerous challenges remain in the development of this virus-based 

therapeutic. Along with ensuring intracisternal injection safety in human patients, potential 

adverse effects of apoE2 overexpression and detrimental interactions of the new apoE2 

protein with endogenous apoE4 must both be identified. Additionally, the use of an APOE-

Tg model to test this strategy should include both Aβ and tau pathology (only Aβ has been 

utilized to date), with careful attention paid to readouts that assess inflammation as well, 

given the diverse effects of apoE on AD pathology.

More generally, we lack a full understanding of the APOE2 protective mechanism. ApoE2 

may be in a functional continuum with apoE3 and apoE4 (Table 2), based on relative apoE 

protein levels and lipid binding affinities observed in both APOE-TR mice and human 

cortical samples (Conejero-Goldberg et al., 2014, Riddell et al., 2008b, Tai et al., 2014a). 

Other observations, including significantly reduced binding to low-density lipoprotein 

receptors (LDLRs), suggest apoE2 may have a unique function compared to apoE3 and 

apoE4 (Mahley et al., 2006). Further complicating an apoE isoform functional continuum is 

the recent identification of the APOE3 Christchurch (R136S) mutation, which delayed 

symptom onset in a familial AD patient for several decades (Arboleda-Velasquez et al., 

2019). However, the APOE3 Christchurch mutation is an exceedingly rare mutation that 

requires homozygosity to delay FAD. Moreover, case reports describing carriers of this 

mutation suggest it confers an even greater risk for type III hyperlipoproteinemia than the 

apoE2 allele (Wardell et al., 1987). Additional study is critical before comparison can be 

made between the APOE3 Christchurch mutation and common APOE genotypes.

With the known limitation of type III hyperlipoproteinemia in APOE2-TR mice, the AAV 

delivery strategy offers an alternative for studying these allelic differences and, more 

generally, the effects of apoE2 in vivo. Virus-mediated expression of apoE2 on an APOE3- 
or APOE4-TR background will facilitate identification of physiologic differences and help 

probe continual vs. discrete functions of the isoforms. Future research efforts such as these 
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will provide valuable insight into the protective mechanism of apoE2 and, potentially, 

illuminate new routes to harness this protection for a therapeutic purpose.

ApoE Lipidation Inducers (Figure 3.2)

Reduced lipidation of apoE4, observed both in vitro and in vivo, is a structural deficit that 

has been implicated in several pathological deficits, and, thus, is a hypothesized therapeutic 

target for AD (Wahrle et al., 2004, Fitz et al., 2012, Wahrle et al., 2008, Rebeck, 2017, 

Wahrle et al., 2005). Nascent apoE particles secreted by glial cells are lipidated primarily by 

cholesterol transport proteins ABCA1 and ABCG1, leading to the hypothesis that increasing 

expression of these transporters will reverse apoE4 lipidation deficits. The primary 

molecular target for increasing ABCA1/G1 is the liver X receptor (LXR), a nuclear receptor 

that serves as the primary transcription factor controlling ABCA1/G1 expression (Qiu et al., 

2001, Costet et al., 2000). LXR agonists TO901317 and GW3965 decrease Aβ pathological 

burden and improve memory performance in various FAD-Tg mouse models (Riddell et al., 

2007, Fitz et al., 2010, Cui et al., 2011, Koldamova et al., 2005, Vanmierlo et al., 2011, 

Burns et al., 2006, Terwel et al., 2011, Donkin et al., 2010). However, LXRα-stimulated 

production of triglycerides in the liver leads to adverse effects, precluding clinical 

development of these agents (Schultz et al., 2000, Quinet et al., 2006). Newer, selective 

LXRβ agonists have been synthesized and characterized (reviewed in El-Gendy et al., 2018), 

with compounds from both Bristol-Myers Squibb and Wyeth entering Phase 1 trials. 

However, BMS-852927 (NCT01651273) decreased circulating neutrophil levels, while 

LXR-623 (Wyeth, NCT00366522) produced CNS-related adverse effects (Katz et al., 2009, 

Kirchgessner et al., 2016). From these two trials, it is difficult to determine whether the side 

effects were due to LXR agonism or were unique to the individual drug candidates being 

tested.

Despite challenges in achieving selectivity, preclinical development of LXR agonists 

continues, and strategies to bypass LXRα-mediated side effects have been reported (Fan et 

al., 2018). Because ABCA1 deficiency has been linked to both amyloid-dependent and -

independent AD-related pathology (Karasinska et al., 2009, Karasinska et al., 2013, Corona 

et al., 2015, Fitz et al., 2014, Castranio et al., 2018), a diverse set of preclinical APOE-TR 

models will be appropriate for future in vivo studies with these compounds. Specifically, 

APOE-TR mice provide a platform for evaluating target engagement with assays ranging 

from native gel electrophoresis for apoE-containing particle size to size exclusion 

chromatography techniques that evaluate shifts in lipid and lipoprotein profiles (LaDu et al., 

1994, LaDu et al., 2012). FAD/APOE-Tg models would enable testing of amyloid-

dependent effects, and combining APOE-TR with a second hit, such as HFD-, TBI- or LPS-

induced inflammation, could be used to analyze amyloid-independent effects. Moreover, 

peripheral ABCA1 modulates vascular cholesterol deposition (Oram, 2002, Stukas et al., 

2014), permitting a comparison between CNS vs. peripheral apoE-expressing mice, 

provided these Tg models become better characterized in the next several years. These 

testing strategies using APOE-Tg mice enhance translational impact that has been limited to 

date by the use of FAD-Tg mice expressing m-apoE (Moutinho and Landreth, 2017).
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ApoE4 Structural Correctors (Figure 3.3)

Small-molecule structure correctors of apoE4 remain in an early stage of development. 

ApoE4 structural correctors were initially identified in 2005 from a library of small 

molecules that bind to apoE4 to prevent the N- to C-terminal domain interaction, 

“converting” it to an apoE3-like structure (Ye et al., 2005). While beneficial functional 

effects have been reported in N2a neuroblastoma cells and iPSC-derived neurons (Brodbeck 

et al., 2011, Wang et al., 2018a, Chen et al., 2012, Mahley and Huang, 2012), the lack of any 

reported animal studies limits the therapeutic potential of these compounds. Although 

structure correcting drugs have been developed for other conditions (e.g. Ivacaftor for cystic 

fibrosis), evidence of bioavailability, tolerability, and efficacy in animal models is necessary 

to establish structure correctors as therapeutic candidates for AD. In particular, APOE-TR 

mice serve as a basic model to test the hypothesis that expression levels and lipidation of 

apoE4 mirror those of apoE3 following treatment. As in vitro studies have described a 

reversal of apoE isoform-dependent tau pathology in neurons (Wang et al., 2018a), efficacy 

studies could utilize a MAPT/APOE-Tg model to evaluate the translation of these results 

from cells to animals, although such a model must be better established. A more 

fundamental issue is the use of neuronal cells for the production of apoE as it is widely 

accepted that glial cells, particularly astrocytes, are the primary apoE-expressing cell type in 

the brain.

ApoE Inducers (Figure 3.4)

In both human and APOE-TR mouse brains, apoE4 levels are lower than those of apoE3 

(Riddell et al., 2008a, Martinez-Morillo et al., 2014). To address the reduced levels of apoE4 

in the brain, compounds that increase apoE expression, particularly in APOE4 carriers, have 

been proposed as therapeutic agents for AD. The most prominent such compound is 

bexarotene (Bex), a retinoid X receptor (RXR) agonist that is an FDA-approved 

chemotherapeutic. However, because RXR is a nuclear receptor in the same family as LXR, 

it is critical to keep in mind that while Bex may induce the expression of APOE, it also 

targets ABCA1/G1. Thus, Bex could also have been classified as a potential therapeutic to 

induce apoE lipidation (Figure 3.2). In a high-profile study, Cramer and colleagues 

demonstrated rapid clearance of Aβ and reversal of numerous functional deficits with Bex 

administration, though results from follow-up experiments were mixed (Veeraraghavalu et 

al., 2013, Tesseur et al., 2013, Price et al., 2013, Fitz et al., 2013, Cramer et al., 2012). A 

Phase 2 human clinical trial (NCT01782742) found no change in amyloid burden, with 

adverse increases in serum triglycerides (Cummings et al., 2016). Another proposed apoE-

inducing therapeutic for AD is probucol, which reduces blood-brain barrier (BBB) 

dysfunction, cognitive deficits, and synaptic impairment in wild-type mice when paired with 

a diabetogenic diet or following intracerebroventricular Aβ peptide injections (Mamo et al., 

2019, Santos et al., 2012). A Phase 1b/2a clinical trial with probucol is listed as complete 

nearly two years ago, though results have yet to be reported (NCT02707458)

Novel analogs of Bex, along with other LXR/RXR agonists, have been developed in the past 

year, and new screens for apoE inducers have been performed as well (Yuan et al., 2019, 

Ren et al., 2019, Pollinger et al., 2019, Fan et al., 2016, Finan et al., 2016). Most of these 

newly-described compounds have limited (or no) in vivo data supporting their efficacy, thus 
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moving into animal models represents an important next phase of their development. Given 

that reduced apoE4 or apoE3 levels have been found to correlate with increased brain Aβ 
deposition in mice and humans (DeMattos, 2004, Lambert et al., 2005, Bales et al., 2009, 

Gupta et al., 2011), an FAD/APOE-Tg mouse (such as EFAD, or APP/PS1/APOE-TR) will 

be a useful model to study whether apoE inducers can reverse the development of Aβ 
pathology. Importantly, a study by our group with Bex revealed reduction in soluble Aβ 
levels in E4FAD mice, but not E3FAD mice, highlighting the clarity of analysis provided by 

a model that incorporates APOE genotype (Tai et al., 2014a, Koster et al., 2017). Studies 

with h-APOE inducible mice discussed in Section IV also emphasize a critical period of AD 

progression during which apoE inducers would provide the highest therapeutic impact.

ApoE-targeted Peptides (Figure 3.5)

Several peptides that target various aspects of apoE-mediated pathology via diverse 

mechanisms have been developed. The first peptide, CS-6253, consists of 26 amino acids 

from the C-terminus of the apoE protein that form an amphipathic helical structure. The 

peptide acts to stabilize ABCA1 in the cell membrane, thus facilitating cholesterol efflux in 
vitro and improving apoE4 lipidation in APOE4-TR mice (Hafiane et al., 2015, Boehm-

Cagan et al., 2016). Another peptide with similar function, named 4F for its four 

phenylalanine residues, has been studied extensively for cardiovascular disease before it was 

observed to increase apoE4 lipidation in vitro and reduce Aβ pathology and cognitive 

deficits in APP/PS1 mice (Handattu et al., 2009, Chernick et al., 2018). Additionally, two 

peptides based on the receptor-binding domain of apoE (COG133, consisting of residues 

133–149 of apoE, and COG1410, derived from residues 138–149) have been described as 

anti-inflammatory and neuroprotective following testing in FAD mice with a knockout of the 

nitric oxide synthase 2 gene; another similar peptide reversed pathology and cognitive 

deficits in 3xTg and 5xFAD mice (Lynch et al., 2005, Laskowitz et al., 2007, Christensen et 

al., 2011, Vitek et al., 2012, Sawmiller et al., 2019). Notably, none of the aforementioned 

peptides (Figure 3.5.A) has been studied in an AD model that incorporates h-APOE 
expression, a critical limitation for a drug with proposed mechanism of action mimicking or 

enhancing h-apoE lipidation, as the h-apoE isoforms are known to have functional and 

pathological differences.

Finally, a peptoid based on residues 12–28 of the Aβ42 sequence has been reported to block 

the apoE/Aβ42 interaction (Figure 3.5.B), with beneficial reductions in amyloid pathology 

and cognition in APP/PS1 and, with an earlier peptide version, APP/PS1/APOE-TR mice 

(Sadowski et al., 2004, Liu et al., 2017b, Liu et al., 2014). Whether blocking this interaction 

will ultimately prove beneficial or harmful in human AD patients remains to be determined, 

as the authors aim to specifically prevent the apoE/Aβ42 interaction. The drug instead likely 

inhibits all interaction regardless of apoE isoform, potentially ameliorating any protective 

actions of apoE3 or apoE2 (Pankiewicz et al., 2014). Further, the possibility exists that this 

peptoid simply disrupts Aβ aggregation independent of apoE; testing in a FAD/APOE-KO 

mouse alongside the FAD/APOE-Tg models expressing various isoforms would rule out this 

possibility and show the importance of apoE – or the apoE4 isoform in particular – in the 

mechanism of action of this drug candidate.
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ApoE-targeted Antibodies (Figure 3.6)

Monoclonal antibodies have become an attractive therapeutic option for many diseases due 

to their high specificity and minimal off-target effects compared to small molecules. 

However, poor results with Aβ-directed antibodies in late-stage trials may temper 

excitement for therapeutic antibodies targeting other AD-related proteins. Efficacy of several 

apoE-targeting antibodies has been reported, with one recently described that preferentially 

binds non-lipidated and aggregated forms of apoE3 and apoE4 to reduce Aβ pathology in 

APP/PS1/APOE4-TR mice (Kim et al., 2012, Liao et al., 2014, Liao et al., 2018). Continued 

research into apoE-directed antibodies as AD therapeutics will require a broader assessment 

of their effects. While published studies noted a decrease in Aβ plaque burden, no other 

changes in CNS pathological markers of AD have been reported. Moreover, no changes in 

apoE levels were observed, and any changes in apoE structure or function (e.g. lipidation 

state) were not described.

Over the next several years, it is likely that antibodies will be developed that preferentially 

target single apoE isoforms, bind to functional lipidated apoE rather than aggregated forms, 

and/or alter brain levels of apoE (either by targeting apoE for degradation to decrease apoE 

or by stabilizing lipoproteins to increase apoE). With regard to preclinical testing of these 

antibodies, the failure to clinically translate reduced plaques to improved cognition with Aβ-

directed monoclonal antibodies suggests that we should explore other potential mechanisms 

of action aside from amyloid plaque reduction. Thus, despite positive observations with one 

anti-apoE antibody in APP/PS1/APOE4-TR mice, these antibodies could also be examined 

for their effects on apoE isoform-dependent tau pathology (i.e. in an MAPT/APOE-Tg 

model) or on apoE-dependent inflammation (i.e. APOE-TR mice injected with LPS). A 

more diverse preclinical profiling of apoE-targeted antibodies will answer critical questions 

about their desired therapeutic profile and better position them for clinical development as 

AD treatments.

VI. Conclusion: Choosing the Right Mouse Model

Because mouse APP and MAPT genes do not readily produce toxic Aβ species or NFT, 

modeling AD pathology in mice remains a challenge. New models are continually 

generated, with a recent AlzForum search yielding 179 different AD mouse models, each of 

which is often characterized for only a single feature of interest. Given the complexity of the 

disease, hundreds of additional models could be generated without ever producing one that 

fully recapitulates human AD or is characterized beyond a gene of interest to provide 

context and allow for informed conclusions. Thus, the focus of AD transgenics should be on 

maximizing the reliability and validity of the mouse model to answer a given research 

question. In order to accomplish this goal, the universal biological variables of AD must be 

considered. FAD- and MAPT-Tg mice, along with newer “humanized” APPTR and MAPT-
TR mice, recapitulate aspects of AD-like (or FTD-like) pathology but do not permit 

interpretation of the effects of APOE or sex as universal biological variables of AD. 

Incorporation of h-APOE is critical for accurate preclinical modeling of the disease and for 

exposing the increased risk to female APOE4 carriers, and, in this review, we have described 

numerous contexts for understanding apoE isoform-dependent impact in mice. APOE4 
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exacerbates amyloid pathology in FAD-Tg mouse models, may affect tau pathology in 

MAPT-Tg mouse models, and aggravates the effects of a second insult that reproduces 

modifiable risk factors. An even more nuanced interrogation has occurred with Tg mice that 

have been engineered to express h-APOE only in specific cell types, in certain brain regions, 

in CNS vs. peripheral compartments, or at certain times throughout the lifespan. Thus, 

diverse AD mouse models that express h-APOE are available for future mechanistic studies, 

though it is critical that the correct models be chosen to test the hypothesis at hand. To 

demonstrate this point, we concluded by reviewing apoE-targeted therapeutics and, in 

particular, an analysis of their results in appropriate APOE-Tg mouse models.
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3xTg triple-transgenic (mutated human APP, PS1, and MAPT) 

mouse

3xTg/APOE-TR triple-transgenic (mutated human APP, PS1, and MAPT) 

mouse expressing human APOE

5xFAD transgenic mouse harboring five familial AD mutations 

(three in APP, 2 in PS1)

Aβ amyloid-β

AAV adeno-associated virus

ABCA1 ATP-binding cassette protein A1

AD Alzheimer’s disease

ASOs anti-sense oligonucleotides

APOC apolipoprotein C gene

APOE apolipoprotein E gene

ApoE apolipoprotein E

APP amyloid precursor protein

APP amyloid precursor protein gene

APP/PS1 transgenic mouse expressing mutant human APP and PS1
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APP/PS1/APOE-TR APP/PS1 transgenic mouse expressing a human apoE 

isoform

BBB blood-brain barrier

Bex Bexarotene

CNS central nervous system

EFAD 5xFAD transgenic mouse expressing a human apoE 

isoform

FAD familial Alzheimer’s disease

FAD/APOE-Tg FAD transgenic mice expressing human APOE

FAD/APOE-KO APOE-null FAD mice

FAD-Tg FAD transgenic mice

FTD frontotemporal dementia

FTDP-17 frontotemporal dementia and parkinsonism linked to 

chromosome 17

GFAP glial fibrillary acidic protein

h- human

HFD high-fat diet

iPSC induced pluripotent stem cells

KO knock-out

LDLR low-density lipoprotein receptor

LPS lipopolysaccharides

LXR liver X receptor

MAPT microtubule-associated protein tau

MAPT-Tg transgenic mouse with human tau

MAPT/APOE-Tg transgenic mouse with human tau and human APOE

MCI mild cognitive impairment

M months

m- mouse

NFT neurofibrillary tangles

NSE neuron-specific enolase
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oAβ oligomeric Aβ

PAC phage P1-derived artificial chromosome

PDAPP PDGF promoter-driven APP expression transgenic mouse

PDGF platelet-derived growth factor

PGK phosphoglycerate kinase

PP2A protein phosphatase 2A

PS1 presenilin-1

PS1 presenilin-1 gene

RXR retinoid X receptor

TR targeted replacement

Tg transgenic

Thy1 thymocyte-differentiation antigen 1

TREM2 gene encoding the triggering receptor expressed on 

myeloid cells 2

TBI traumatic brain injury

YAC yeast artificial chromosome
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HIGHLIGHTS

• What: AD is uniquely human, but molecular mechanisms can be measured in 

Tg-mice.

• Who: A universal biological variable of AD, APOE is critical for preclinical 

models.

• How: There are several strategies for developing an APOE-Tg mice.

• When/Where: Developmental and region-specific models probe APOE-

expression patterns.

• Why: Therapeutic strategies targeting apoE can exploit the relevant mouse 

model(s).
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Figure 1. Aβ and tau aggregation.
Two pathways for Aβ and tau monomer aggregation. In the on pathway, protein monomers 

sequentially aggregate to form larger structures culminating in an amyloid structure, either 

amyloid plaques for Aβ or NFT for tau. In the off pathway, protein monomers aggregate into 

oligomers – a persistent, stable, and pathogenic conformation. The upper panel was adapted 

from Pimplikar (2009); amyloid plaque and NFT staining adapted from Winblad and 

colleagues (2016).
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Figure 2. Progression of Aβ and tau pathology in humans and Tg mice.
A) Comparison of Aβ pathology progression between AD human patients and FAD-Tg 

mouse models. B) Comparison of tau pathology progression among AD human patients 

(Braak staging), FTD human patients, and MAPT-Tg mouse models. The frontal cortex, 

hippocampus, cerebellum, and brainstem in both human and mouse brain are labeled in 

leftmost panel in A) to aid in orientation, with additional labels provided to indicate regions 

affected by pathological progression. Human Aβ and Braak staging panels were adapted 

from Masters and colleagues (2015). Human FTD was adapted from Wszolek and 

colleagues (2006). MAPT-Tg mouse pathology was adapted from Sahara and colleagues 

(2013).
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Figure 3. Therapeutic strategies to target apoE.
Six major categories of apoE-targeted therapeutic candidates in development are ideal for 

preclinical testing in APOE-Tg mouse models. These include apoE2 overexpression, apoE4 

structural correctors, apoE lipidation promoters, apoE inducers, apoE-directed peptides, and 

antibodies that target various forms of apoE.
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Table 2.

Functional and pathologic differences among apoE isoforms in the periphery and central nervous system.

Readouts in Human Periphery APOE2 APOE3 APOE4

Cholesterol Low Intermediate High

Plasma apoE levels High Intermediate Low

VLDL affinity Low Similar to APOE2 High

LDL affinity High Similar to APOE4 Low

HDL affinity High Similar to APOE2 Low

Plasma LDL levels

Low

Intermediate LDL

High

• Less efficient clearance of 
remnant particles by LDL 
receptor (LDLR)

• More efficient 
clearance of remnant 
particles

• Hepatic LDLR up-regulated 
as a result of slowed 
clearance

• Hepatic LDLR down-
regulated as a result 
of efficient clearance

Cardiovascular risk Low Intermediate High

Type III hyperlipoproteinemia risk Develops in < 10% of APOE2/2 (requires 
second genetic or environmental factor). No risk No risk

Readouts in Human CNS APOE2 APOE3 APOE4

ApoE levels Similar to ApoE3 High Low

AD risk Low Intermediate High
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