Skip to main content
. 2020 Feb 28;10(3):131. doi: 10.3390/diagnostics10030131

Table 11.

Comparative results of the proposed models and other models used with different dataset.

Model Accuracy (%) Senstivity (%) Specificity (%) Dataset
Linear classifier 66.5 65.2 67.2 Kaggle
Vanilla 3DCNN 70.5 59.3 76.1 Kaggle
3D AlexNet 85.79 82.74 88.04 Kaggle
3D-Googlenet 87.95 82.74 91.61 Kaggle
DFCNet [24] 86.02 80.91 83.22 LIDC-IDRI
TumorNet [42] 87.41 81.70 85.17 LIDC-IDRI
CMixNet [17] 88.79 93.97 89.83 LIDC-IDRI
straight 3D-CNN + softmax classifier [16] 90.23 86.40 93.09 Kaggle
Hybrid 3D-CNN + RBF-based SVM [16] 91.8 88.53 94.23 Kaggle
3D CMixNet + GBM [17] 91.13 LIDC-IDRI
3D CMixNet + GBM + Biomarkers [17] 94.17 94 91 LIDC-IDRI
Ours: DeeplabV3plus(ex_65) + Mobilenet-V1_1.0_224 93 90.01 94.3 Kaggle
Ours: DeeplabV3plus(ex_65) + Inception-V3 95.66 91.2 97.24 Kaggle