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A B S T R A C T   

As the global population increases and transportation connectivity improves in quality and prices, the demand 
for mobility increases, especially in long-haul services. According to the 2017 report of the European Commission 
in Mobility and Transport, the performance of all modes for passenger transport (roadways and airways) are 
reaching record highs. Although the benefits of the increased demand for mobility are substantial and welcome, 
an effort should be paid such as to ameliorate possible threatening side-effects that may also arise. As World 
Health Organization (WHO) denotes and as has been evident from the global COVID-19 epidemic outbreak, 
infectious diseases can be spread directly or indirectly from one person to another under common exposure 
circumstances such as air transportation (especially long-haul airline connections) that may act as the medium 
for transmitting and spreading infectious diseases. In this paper, analytical and realistic models have been in-
tegrated, for providing evidence on the spread dynamics of infectious diseases that may face Europe through the 
airlines system. In particular, a detailed epidemiological model has been integrated with the airlines’ and land 
transport network, able to simulate the epidemic spread of infectious diseases originated from distant locations. 
Additionally, a wide set of experiments and simulations have been conducted, providing results from detailed 
stress-tests covering both mild as well as aggressive cases of epidemic spreading scenarios. The results provide 
convincing evidence on the effectiveness that the European airports’ system offer in controlling the emergence of 
epidemics, but also on the time and extent that controlling measures should be taken in order to break the chain 
of infections in realistic cases.   

1. Introduction 

As the global population increases and transportation connectivity 
improves in quality and prices, the opportunities for people’s mobility 
also are improving. According to the 2017 report of the European 
Commission in Mobility and Transport (European Commission - Euro-
pean Commission, 2019), the performance of all modes of passenger 
transport (e.g. roadways and airways) are reaching record highs. 
Although the benefits of the increased demand for mobility are sub-
stantial and welcome, an effort should be paid such as to ameliorate 
possible threatening side-effects that may also arise. As the World Health 
Organization (WHO) denotes and as has been evident from the global 
COVID-19 epidemic outbreak, infectious diseases can be spread directly 
or indirectly from one person to another under common exposure cir-
cumstances. Moreover, public health crises of the past decades, like 
SARS in 2003 or the H1N1 flu pandemic in 2009, have highlighted how 
easy it is for diseases to spread around the world very rapidly, leveraging 

the air transportation, especially nowadays that air-traveling allowed 
everyone to travel anywhere in the world within a day. As experienced 
with the ongoing outbreak of the coronavirus disease (COVID-19), it is of 
high importance the air transportation industry (airports, long-haul 
airlines, authorities, etc.), which services may act as the medium for 
transmitting and spreading infectious diseases, to be specifically pre-
pared for addressing threats like global epidemics. 

According to Routley (2019) Europe remains an important linchpin 
in international traveling. It must be also noted that 4 out of 10 inter-
nationally connected airports belong to European countries, which are 
Heathrow (United Kingdom), Frankfurt (Germany), Amsterdam Schi-
phol (Netherlands) and Charles de Gaulle (France). Therefore, there is 
an acute need to understand and predict the patterns that pathogens 
follow as they are highly possible to reach one of the European airports 
and though them to be spread in the European countries. Thus, the 
question raised here is: which airports (or complete network regions) are 
more sensitive/critical for controlling a possible disease spread? 
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Subsequently, what are the methodological means that can be used for 
testing control policies for avoiding the spreading of such pathogens and 
where to apply quarantine or block measures for controlling a possible 
spread? 

In order to study the phenomenon of disease spreading from in cases 
of global epidemics a four step process is applied here: 

Step I: Network analysis of the global air transportation network 
Step II: Epidemic simulation by integrating an epidemiological 
model with the air and land transportation model 
Step III: Stress-test of alternative virus characteristics for validating 
and/or identify critical airports (or even complete regions or coun-
tries) that gating actions should be applied, and 
Step IV: Estimating the most critical time instance that gating actions 
should be applied 

Starting with the Step I, in the current paper network complexity 
analysis is conducted, which has proven important in controlling 
network epidemics (Loscalzo et al., 2017, Barab�asi, 2016). In particular, 
several centrality metrics are used and applied for identifying ‘central’ 
nodes of the air transport system (mainly airports), namely, Degree, 
Betweenness and Closeness Centrality. Each metric provided an indi-
cation of the airports’ importance according to the type of connections 
these have with the rest of the European and non-European airports, a 
fact that suggest possible future facilitation of disease spreading within 
the European region through them. Additionally to the information on 
critical nodes (airports), policy-making also require additional infor-
mation on the different effects that Europe may face in the case of 
different starting locations of infectious diseases. Moreover, in case of a 
global epidemic outbreak, it is important to know the epidemics dy-
namics related to transportation that European cities/countries will 
face. 

Therefore, in Step II extensive stress-test scenarios were conducted 
for the investigation of the European airport system’s robustness in 
protecting the European countries against possible global epidemic 
events. This concept was analyzed using the Global Epidemic and 
Mobility (GLEaM) epidemiological model and illustrated in the 
GLEAMviz software (Gleamviz.org, 2019). In detail, demographics and 
mobility data were incorporated with epidemic modeling, aiming to 
predict accurately the number of infections invaded by flight or by 
commuting. For this reason, several experiments have been analyzed 
using the GLEAMviz epidemic simulation model. The most frequently 
used epidemic models used in such cases are the Susceptible-Infected 
(SI) model, Susceptible-Infected-Susceptible (SIS) model (Song, 2017) 
and Susceptible-Infected-Recovered (SIR) model. The analytical 
approach followed in this paper, started by the implementation of three 
scenarios of SIR models for identifying disease-spreading dynamics at a 
continental level. Every scenario considered different values of recovery 
rate (μ) and transmission rates (β) parameters. The scenarios studied 
hypothetical disease outbreaks originated from the busiest airports of 

three continents, namely, Africa (Scenario 1), Asia (Scenario 2) and 
South America (Scenario 3). In detail, the airports that were concerned 
for each continent are listed below and presented in Fig. 1.  

i. African airports: Cape Town, Durban, Johannesburg, Mauritius, 
Marrakech, East London Port Elizabeth, Mahe Island, Bloemfon-
tein and Cairo,  

ii. Asian airports: Singapore, Tokyo, Tokyo Narita, Seoul, Hong 
Kong, Nagoya, Shanghai, Delhi, Mumbai, Hyderabad, Bengaluru, 
Colombo, Chennai, Ahmedabad, Karachi, Chittagong and 
Amritsar, and  

iii. South American airports: Lima, Quito, Bogota, Guayaquil, Sao 
Paulo, Rio de Janeiro, Santiago, Buenos Aires and Recife. 

The purpose of developing these scenarios was the estimation of the 
possible disease outbreak dynamics within the European region when 
the outbreak originates from the three different continents. Based on the 
results, European countries are exposed more in possible diseases out-
breaks originated from Africa and Asia. Besides this finding, this 
approach was able also to identify the parameters that may facilitate the 
disease spreading in the European region. 

In Step III, in order to identify the critical nodes (or regions) for 
controlling an epidemic outbreak, extensive stress-test subject to the 
characteristics of hypothetical viruses are conducted, controlling the 
transmission rates, estimating the effects in European countries in terms 
of spreading dynamics. By performing such stress-tests, the control 
measures that should be taken for each type of contagious virus and 
virus starting location (continents) can be identified. Identifying the 
critical airports (or even large parts of the airline network like those of 
regions or countries) within Europe, combined with the popularity/ 
criticality of the airports and the information obtained based on the 
continental analysis developed for a disease outbreak inside the Euro-
pean region, provide significant information on which European coun-
tries and airports are prone to a possible disease outbreak, an element 
crucial for supporting decisions for controlling phenomena of global 
disease outbreaks. 

Finally, in Step IV, investigation on the most effective time that 
controlling actions should be applied is undertaken. By taking into ac-
count the dynamic nature of an epidemic, the time that controlling ac-
tions are applied in the transportation network stands for a crucial 
element for breaking the transmission chain and ultimately stop the 
spread of an epidemic incident. This investigation is based on an 
‘aggressive’ type of virus (in terms of transmission rates) and focused on 
Italy under the conditions running since the beginning of 2020. Starting 
from January 2020 when Italy detected its first coronavirus cases, and 
based on the evolution of this virus after almost two months, it turned 
out that the COVID-19 virus spreading in Italy was extremely severe and 
thousands of people were infected and many of them lost their lives 
(Who.int, 2020). In this Step, the dramatic effect of the time that control 
measures taken is highlighted, since slight delays in necessary gating 

Fig. 1. Airports that were concerned in: a) Scenario 1-Africa; b) Scenario 2-Asia and; Scenario 3-South America.  
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decisions may result in uncontrolled spreading of an aggressive infec-
tious virus throughout a large region. 

Overall, this research provided a step-by-step approach for model-
ling future outbreaks spreading dynamics through the airlines network 
and identify critical nodes/airports (or even critical regions and coun-
tries) and the time that such actions should be applied in order to control 
infectious disease spreading. The rest of the paper is organized as fol-
lows. Section 2, provides an overview of related literature. Section 3 
presents the analytical framework that was followed for the scoped of 
this research. Section 4, presents the overall outcome of the analytical 
framework for realistic settings. Conclusions are reported in the final 
section. 

2. Literature review 

The continuous growth of multimodal transportation has increased 
the volume of travel flows, on the global scale. Millions of peoples are 
crossing continents on a daily basis, a fact that has enhanced the speed of 
disease spreading, making the possibility of disease outbreak within 
days a realistic scenario. Air travel belongs to one of the means that can 
rapidly spread a disease to a global scale (Findlater and Bogoch, 2018). 
Therefore, there is a need for understanding and predicting the patterns 
that diseases follow as they spread on a regional or global scale. 
Consequently, spreading-control and quarantine-based actions remain 
the main tools for public health authorities in combatting epidemics. For 
this reason, several efforts have been conducted studying the dynamic 
disease spreading incorporating several factors, such as the distance 
between regional and human mobility behavior (e.g. Wu et al., 2018), 
network topologies, length of stay, etc. However, analyzing the dynamic 
spread of diseases on an international level may not be enough for 
concluding to the measures that will work as travel restrictions. There-
fore, is critical to analyze the complexity of the networks for observing 
which vertices (airports) are more “sensitive” to a possible disease 
spread. In this scope, several studies have been implemented for 
analyzing the complexity of networks (Angeloudis and Fisk, 2006; 
Matamalas et al., 2018; Brockmann and Helbing, 2013). Additionally, 
Strona et al. (2018) studied the vulnerability of networks to epidemics 
and found that the density of infection pathways had a stronger effect on 
outbreak magnitude than the epidemic parameters when a broad range 
of network topology is considered. Furthermore, it is found that as the 
length of stay (an element of exposure to a possible threat) increases in 
highly connected locations the epidemic spread is expected to have an 
acceleration, depending also on the dominant role of the hubs either 
wise the spreading potential of the hubs is substantially reduced, 
delaying the epidemic spreading (Poletto et al., 2013). In Li et al., 2018 
paper, they identified a weak relationship between population density 
and the death rate due to epidemics. Additionally, population density is 
closely dependent on the time and the rate of disease spreading. In 
Enright and Kao, 2018 work, the author defined methods based on 
network dynamics for modeling epidemic spreading among specialists, 
and thus highlighted the opportunities and difficulties in working within 
a disease-relevant network, while suggesting available software tools for 
conducting a similar analysis. Focusing on the meta-population 
epidemic dynamics, precautionary controlling actions has been proven 
critical to epidemic spreading. Therefore, several approaches have been 
proposed and tested in the real world, such as to reduce spreading rates 
(Gong et al., 2013). 

The parameters of the epidemic dynamics modeling (e.g. trans-
mission rate and diffusion rate) are critical while they compose the 
realistic component of epidemic spreading. Therefore, for accurately 
predicting epidemic spreading dynamics it is important to identify these 
parameters. For instance, Wang et al. (2013) estimated the transmission 
rate from the infected cases at the whole population level and have 
introduced a maximum likelihood estimator for estimating the diffusion 
rate (the probability that infected in a subpopulation diffuse to a 
neighbor susceptible subpopulation). In Merler and Ajelli, 2010 paper 

they studied the epidemic transmission rate in households, schools, 
workplaces and the general population of 37 European countries. In 
detail, they found that the cumulative attack rate in the different Eu-
ropean countries had a range from 31.2% (Bulgaria) to 37.8% (Cyprus) 
and the average cumulative rate was 33.7%. Connectivity patterns be-
tween distant locations have a significant role in the epidemic spreading 
dynamics. No doubt, air transportation plays the main role of passen-
gers’ travel flows and thus it is important studying the role of the 
large-scale properties of the airline transportation network, which may 
act as a medium for spreading emerging disease, mainly due to exposure 
conditions evident in long hour flights (Colizza et al., 2006). Epidemic 
spreading forecasts aim to predict the real-time spread of a disease, i.e., 
the number of infected on a regional and international level and 
therefore to advocate policy-making measures in order to prevent a 
possible disease spreading. The allocation of limited resources in the 
identification of a potential bioterror attack is considered in the work of 
(Berman et al., 2012). Additionally, another study demonstrated how 
public health authorities could prioritize the allocation of 
response-resources in the U.S. at point of entry (Hwang et al., 2012). In 
detail, they examined the time-course for infectious air travelers to 
arrive in the U.S. from international cities. The exploration of the bio-
politics of public health in the UK through an in-depth empirical analysis 
of the representation of H1N1 in UK national and regional newspapers 
was demonstrated in Warren et al. (2010) work. 

Investigating a global phenomenon, such as disease spreading 
sometimes requires the use of powerful simulators that are given the 
demographic and mobility conditions of the population and therefore 
they can provide the dynamics of a possible disease outbreak. This 
description can be used for characterizing the capabilities of the 
GLEAMviz epidemic simulator. In detail, GLEaM simulator is a discrete 
stochastic epidemic computational model based on a meta-population 
approach (Balcan et al., 2010). Additionally (Broeck et al., 2011; Bal-
can et al., 2010; Nikolaou and Dimitriou, 2020), used the open-source 
epidemic spreading simulator, namely, GLEAMviz for emerging 
influenza-like illnesses diseases on a global scale. The study of Balcan 
et al. (2009) also developed a GLEaM meta-population model for the 
global evolution of the pandemic A (H1N1) and perform a maximum 
likelihood analysis of the parameters against the actual time infection of 
newly infected countries. Investigating and interpreting global epidemic 
phenomena can provide significant findings that can be used for 
demonstrating the impact of pandemic control measures’ efficiency on 
airports (e.g. Chung, 2015). The effectiveness of different health 
screening strategies in air travelers was analyzed and compared from 
Gold et al. (2019). In detail, the case scenario was the air travelers from 
the disease affected countries to the United States. 

In the following sections, the robustness of the European air trans-
portation system under possible global epidemic outbreak is analyzed 
and results are provided on the effects that alternative gating actions 
may have for controlling the spreading of infectious diseases in the 
European area. 

3. Simulation framework of an epidemic 

As reported in recent global epidemic incidents and proved in the 
case of COVID-19, the risk for disease spreading became a realistic 
scenario. In order to study this dynamic disease spreading it is essential 
to understand the role of the transportation network (especially of the 
airlines network) and incorporate it in a generalized epidemiological 
model, detailed and realistic enough for providing meaningful quanti-
tative support in managing authorities. Major airports globally, are 
becoming hubs in this disease spreading networks and from these nodes 
connecting alternative modes of transportation, may facilitate the 
further spreading of infectious diseases on a national and international 
level. Therefore, identifying critical nodes (airports) in the network of 
airports is essential, especially for designing and applying measures for 
preventing disease spreading. Essential information for developing 
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epidemiological models stand for the demographic data of the countries 
in a fine-grained manner, human mobility patterns and stochastic 
models of disease transmission. Here, the framework for analyzing the 
European air and land transportation system against disease spreading is 
achieved by using GLEAMviz simulator software (Gleamviz.org, 2019; 
Balcan et al., 2009; Broeck et al., 2011). In detail, this simulation-based 
produce, process the global spread of infectious diseases by integrating 
through three layers: 1st layer-population data and geographic distri-
butions (Sedac.ciesin.columbia.edu, 2019); 2nd layer-mobility data; and 
3rd layer-epidemic model which can identify complex disease scenarios 
and respond strategies (e.g. emergency travel restrictions). The resulting 
forecasts and scenario analyses that such models provide, may help 
inform authorities and help designing policies/actions in order to 
address possible pandemic threats. 

Starting with the identification of the critical airports, this was per-
formed here using alternative centrality metrics, namely, Degree, 
Betweenness and Closeness Centrality. In particular, Degree Centrality is 
defined by the number of the links that one node has, i.e., the more a 
node has linked the more central it is. Betweenness Centrality showed 
how much a node have been involved between different groups of net-
works. Closeness Centrality showed the airports that have the shortest 
path to access to the other airports. Overall, the centrality metrics 
explained the airports that more or less are critical in the integration of 
European’s airline network and, in these terms, critical in spreading 
infectious diseases. 

The epidemic model that is used in the current experimental case, 
stands for the Susceptible-Infected-Recover (SIR) model, which is 
developed over the idea that healthy people (susceptible) become 
infected when they have sufficient contact infected people by a trans-
mission rate (β) and then recovered with a fixed rate (μ). Ultimately, the 
recovered individuals are removed from the population as they become 
immune (or dead in case of fatal diseases) and they cannot be infected 
again or they cannot infect others. Fig. 2 shows the main features of the 
epidemic spread model from an initial location (airport) to the desti-
nation (also airport) based on a rate β. In particular, starting from a 
random location, the infections appear to spread to their neighbors with 
the same transmission rate. In the end when the “removal” situation 
occurs where the infected either becomes immune to the infection or the 
individual succumbs to the disease and pass, either way, the previously 
infected individual is removed from the population at risk. Equations 
(1)–(3) shows the time-dependent behavior of susceptible (s), infected 
(i) and recovered (r). 

ds
dt
¼ � βðkÞi½1 � r � i� (1)  

di
dt
¼ � μiþ βðkÞi½1 � r � i� (2)  

dr
dt
¼ μi (3)  

where k denoted the contacts of a typical individual. 
Knowing the numbers of infected individuals by surveillance activ-

ities is not sufficient for identifying the probability of new infections. 
Therefore critical rates/parameters (e.g. transmission rate, β) should be 
selected by reasonable assumptions or by thorough experimental data. 
However, the question that arises is to find the values of the parameters 
of the SIR model (transmission and recovered rate) that may lead to a 
pandemic or severe disease spreading over a region. 

In the current implementation, three scenarios were developed each 
one concerning the busiest airports of different continents as the initial 
location of the disease spreading, while the focus on the effects that each 
scenario has is in European countries. In detail, Scenario 1 concerned 
African airports, Scenario 2 Asian airports, and Scenario 3 South 
America airports. In each scenario, different variations of transmission 
rate values were tested in order to estimate the disease transmission 
patterns. Additionally, three different values of recovery rates were 
tested, this time for evaluating the seriousness of infection by testing a 
different number of days for recovery. In particular, we tested a 3-days 
recovery (no severely affected individuals by the infection while they 
recover in only 3 days), moderate-severe infection (it takes 5 days for an 
individual to recover) and severe infections (that take 10 days for an 
individual to recover). The recovery rate values that can express this 
approach are μ ¼ 0.3, μ ¼ 0.2 and μ ¼ 0.1, respectively. After the 
identification of the continents that have the highest influence of disease 
spreading inside the European region, and the implementation of the 
worst-case scenarios (i.e. choosing the transmission and recovery rate 
that appeared to produce the highest number of infections in Europe) a 
hypothesis for preventing these worst-case scenarios was tested by 
implementing countermeasures in (a) critical airports, (b) in countries 
where the critical airports are located and (c) in a particular country. 
The results from these implementations are presented in the following 
section. 

4. Application and results 

Before the implementation of the above described methodological 
framework, it is important first to observe how population and airports 
are distributed within the European region (Figs. 3 and 4). As it can be 
observed from both figures, the density of the population is correlated 
with the concentrations of airports. This observation highlights the 
importance of these airports on the transmission of a possible disease 
spreading to an epidemic. 

The investigation of dynamic global epidemic phenomena (e.g. dis-
ease spreading) requires the analytical representation of the air network 
mobility which will provide a “picture” of the phenomenon’s 
complexity. Fig. 5 shows the form of the global air transportation 
network, where it can be observed its scale and the complexity. As was 
described above, the experimental design adopted in this study starts 
with three centrality metrics (Degree, Betweenness and Closeness Cen-
trality), which were able to identify popular-critical airports. 

Tables 1–3 in the Appendix, present the results from the Degree, 
Betweenness and Closeness Centrality, respectively. It must be noted 
that in every centrality metric only the 20 most critical airports were 
depicted with a hierarchical order (from the highest metric number 
-most critical airport-to the lowest metric number –less critical airport). 
It appeared that critical airports were identified in Germany, United 
Kingdom, Belgium, Finland, Norway, and Estonia. There were also some 
airports that were identified from two centrality metrics either 
Betweenness and Closeness Centrality, or Betweenness and Degree 
Centrality or the combination of all centrality metrics (Fig. 6). As can be Fig. 2. Overall infectious diseases modeling approach.  
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Fig. 3. Density of airports within the European region.  

Fig. 4. European population density.  
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seen from the airports map and the population map and from the results 
of the centrality metrics, highly populated areas with high concentra-
tions of airports (such as Germany), appear to be critical in the entire air 
transportation network and thus vulnerable in a possible disease 
outbreak. 

The next step was the development of three spreading scenarios, 
where it was considered that a disease of a different severity (expressed 
through recovery and transmission rates) starts from the busiest airports 
of three continents (Africa, Asia, and South America). In detail, with the 
disease spreading simulation it was able to predict the number of 
infected and recovered individuals for each region, country, or town in 
Europe. Fig. 7 presents the results from the simulation of the three 
scenarios (denoted in each line) and also presents the three recovered 
rates used (denoted in each column) with the 10 different transmission 
rates. As can be observed from the figure, when the disease starts from 
the African airports the most affected continents are Oceania and South 

America for transmission rates β equals 0:3; 0:4; 0:6; 0:7; 0:8; 0:9 and 
1:0 respectivelly and for a recovered rate equal to 0:1: The other two 
recovered rates μ ¼ 0:2 and μ ¼ 0:3 showed a drop in the number of 
infected individuals and the continent that appeared to have the most 
infections in Europe and North America, respectively. Overall, in this 
scenario for every recovered rate and for transmission rate equal to 0.1 
the continents did not record any infections. 

As far as the second scenario is concerned, where the disease starts 
from the Asian continent (and airports) it appeared to have almost the 
same effect in the continents as in the first scenario with some differ-
ences, like when transmission rate equal to β ¼ 0:5:In this scenario and 
for every recovered rate it appeared that when the disease starts from 
Asian airports the highest effect appeared to be on the same continent. 
Finally, yet importantly enough, in the third scenario the impact of the 
disease on the other continents when it starts with the busiest airports in 
South America is tested. For the case where the recovered rate is equal to 

Fig. 5. Complexity of the global air transportation network.  

Fig. 6. Map showing the airports studied and the critical airports based on the three Centrality metrics.  
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μ ¼ 0:1 (i.e., 10 days for recovery) and for most of the transmission 
rates the infected and recovered population reaches high numbers. For a 
recovery rate equal to μ ¼ 0:1, a disease that starts from South America 
is expected to affect most of the European region. As for the other 
transmission rates β ¼ 0:2 and β ¼ 0:3 North America seem to record 
the highest number of infections. 

The above analysis was able to answer questions related to which 
continents are most expected to affect the European region in the case of 
a disease spreading and with what values of parameters (transmission 
rate and recovered rate). As resulted from the above analysis, the Eu-
ropean region is mostly affected by a disease spreading when the disease 
starts from Africa for every recovered rate. However, the disease is 
mostly transmitted inside the European region when the transmission 
rate equals β ¼ 1, meaning that when an infected individual comes in 

contact with a healthy individual the healthy individual will surely 
contact the disease with a possibility of 100%. Table 4 presents an 
overview of the total number of infected and recovered individuals 
during a year as predicted by the GLEAMviz simulator inside the Eu-
ropean continents concerning the different scenarios developed. The 
total number of infected depicted in this table denote all the following 
categories: people that have visited Europe as infected; and residents 
inside the European region that got infected from others. As concerns the 
total number of recovered the following categories are included: people 
that have visited the European region as infected and were recovered 
during their stay in Europe; and residents of Europe that were infected 
and recovered. The number of recoveries does not include the number of 
people that were infected during their stay in Europe and travelled 
outside the European continent and got recovered. Additionally, it can 

Fig. 7. Results of the simulation based on the three Scenarios and on different epidemic parameters (transmission rate and recover rate): a) Scenario 1, μ ¼ 0,1; b) 
Scenario 1, μ ¼ 0,2; c) Scenario 1, μ ¼ 0,3; d) Scenario 2, μ ¼ 0,1; e) Scenario 2, μ ¼ 0,2; f) Scenario 2, μ ¼ 0,3; g) Scenario 3, μ ¼ 0,1; h) Scenario 3, μ ¼ 0,2; i) 
Scenario 3, μ ¼ 0,3. 
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be seen form this table that in some cases, especially when the recovery 
rate (μ) is equal to 0.1 (i.e., the days an infected person needs for his/her 
recovery is 10 days), the total number of recovered people is larger than 
the total number of infected. This can be interpreted as that infected 
people that were recovered outside the European continent, travelled 
after their recovery to Europe and therefore are registered as recovered. 
Also, in the cases where the number of recovered individuals is smaller 
than the infected individuals is either based on the hypothesis that 

recovered individuals after their recovery travelled outside the Euro-
pean continent or on the hypothesis that some infected individuals did 
not recovered but succumb to their illness. 

An illustration of the three scenarios developed can be seen in Fig. 8 
which describes the spread of disease inside the European region when it 
originates from the continent of Africa. Special focus was given to the 
city of Frankfurt, where its airports are identified as critical concerning 
the Degree and Betweenness Centrality metrics. As can be seen on day 6 

Table 4 
Total number of infected and recovered individuals based on the three scenarios developed.  

Recovery Rates (μ) Scenario 1 (Africa) Scenario 2 (Asia) Scenario 3 (South America) 

Infected Recovered Infected Recovered Infected Recovered 

0.1 999.854 999.882 999.476 999.482 999.728 999.744 
0.2 991.614 991.615 991.278 991.270 991.001 991.001 
0.3 952.870 952.863 952.199 952.185 951.024 951.023 
Transmission Rate (β): 1 1 1  

Fig. 8. Disease dynamics within the European region 
and for the case of Frankfurt analyzing the different 
stages of the virus: a) Day 6 the disease originates 
from popular African airports; b) Day 16 first infec-
tion on Frankfurt; c) Day 25, 331 infections were 
recorded in the city of Frankfurt; d) Day 38 Frankfurt 
recorded the higher number of infections; e) Day 84 
the number of diseases was reduced and eliminated 
for Frankfurt; f) Day 365 infected population in 
Europe and the entire world were recovered from the 
disease.   
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of the simulation (disease outbreak), the first infected passengers were 
traveling from the airports of Mahe Island, Johannesburg, and Marra-
kech and for the last two airports, Lyon’s airport was the destination. 
From this trip, 1 infection was recorded in Lyon. On day 16 the first 
infection was recorded in the city of Frankfurt from a flight that was 
originated from Mahe Island on day 14. On day 25, 331 infections were 
recorded in the city of Frankfurt and as it appeared the disease was 
spread not only through air mobility but also through the roadway. In 
day 38 Frankfurt recorded a higher number of infections (91.888 peo-
ple). In day 43 Europe faced an outbreak of the disease where the highest 
number of diseases was recorded while in Frankfurt the number of 
diseases was reduced drastically (34,134 infections per 1000 in-
dividuals). After that day the number of diseases was reduced and 
eliminated in day 84 for Frankfurt. In day 365 the infected population in 
Europe and the entire world were recovered from the disease. 

Extending the above analysis, it was considered important to design 
and test gating strategies that could prevent a disease outbreak in 
Europe. Therefore, the next steps involve the testing of two challenging 
scenarios for an aggressive virus with transmission rate β ¼ 0.1 and 
recovery rate equal μ ¼ 0.1. In the first scenario the hypothesis of no- 
control policies in Europe was tested when a disease outbreak started 
from Africa (worst-case scenario). This scenario was followed by series 
of cases, were measures are taken. In particular, the measures that were 
set first were in the identified critical airports and then in the countries 

where the critical airports are located. Then, an additional scenario was 
developed based on the hypothesis of a disease outbreak originated from 
Asia and for alternative control policies, focusing on the set of measures 
only in a specific country, Italy, one of the most affected European 
countries by COVID-19. 

4.1. A disease outbreak starting from Africa 

This section describes the phases of a disease outbreak scenario 
originating from Africa. In the first phase of the disease outbreak, no- 
control measures were set for the European continent. Then a second 
case was analyzed by adopting the hypothesis of setting gating measures 
inside the European region for controlling the disease spreading in the 
region. In detail, this hypothesis was tested against one of the worst-case 
scenarios, which was a disease outbreak from the busiest African air-
ports with a recovery rate of μ ¼ 0.1 and transmission rate equals to β ¼
1, which appeared from Table 4 to record the highest number of in-
fections in Europe. However, in order to monitor diseased passengers 
and for setting gating actions to a possible disease outbreak or a 
pandemic, we made an exception in the simulation by setting a different 
transmission rate for the European region. In detail, the transmission 
rate used was β ¼ 0.1, which appeared to have zero infections for the 
case of Europe in every case scenario and represent the case of the 
application of gating measures. In this way, it is able to estimate the 

Fig. 9. Treemap depicting the extent of infection for each continent in the cases; a) Scenario 1 without monitoring strategies; b) Scenario 1 with monitoring strategies 
only in critical airports; c) Scenario 1 with monitoring strategies in the countries with critical airports. 
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effectiveness of gating measures in airports for preventing disease 
spreading. The last implementation tested the capability of airports’ 
gating and passengers’ monitoring strategies and their effects on the 
restriction of a possible disease spreading. Therefore, knowing the 
critical nodes in the airports’ network and the origin of the disease that 
will affect the European region, it is important to test strategic measures 
(e.g. passengers monitoring, disease gating scenarios, technological 
measures for identifying and setting into quarantine infected passen-
gers). In particular, two cases were developed, one for setting barriers 
directly to the most critical airports and the other one by applying gating 
strategies in the countries that the critical airports are located. A more 
obvious picture of the significant decrease of infected individuals can be 
seen from Figs. 9–11. As it can be seen from Fig. 9 in the no-measures 
hypothesis the most affected countries from the disease outbreak are 
Germany, United Kingdom, France, Spain, Italy and Poland. As for the 
control measures applied in the critical airports, it seems that Germany 
still remains a highly affected European country with Spain, United 
Kingdom, France, Italy and Poland following. Finally, when the mea-
sures were applied in the countries where the critical airports are located 

it appeared that the numbers of infections are well decreased, however 
the most affected countries in Europe are again United Kingdom, France, 
Italy and Spain. 

In Fig. 10 the number of infections per day (and 1000 individuals) 
and the cumulative number of infections over the year are presented. As 
it can be seen from Fig. 10, when the disease started from Africa and 
there were no control measures in Europe the highest number of in-
fections in a day that are expecting to record in Europe is approximately 
82.000/1000 individuals and the total number of infection in a year are 
expected to be almost 1 million individuals. As for the case where 
measures will be set only in the critical airports the highest of infections 
in one day will decrease. However, the total number of infections will 
again be high enough to characterize the disease as a pandemic. In the 
case where Europe will set measures in the countries were the critical 
airports are located the total number of infections will decline drasti-
cally to 50% of the original worst-case scenario. 

In Fig. 11, the European cities that were either affected by flight or by 
commuting or even not invaded at all are presented. As can be seen in 
the worst-case scenario all the cities of Europe were invaded by both 

Fig. 10. Diagrams of the distribution of infections and cumulative numbers of infections for a) Scenario 1 without monitoring strategies; b) Scenario 1 with 
monitoring strategies only in critical airports; c). Scenario 1 with monitoring strategies in the countries with critical airports. 
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modes of transport. However, in the case where the measures were set 
only in critical airports the cities that are recorded with no invasions 
stands for the Greek cities. As for the case where gating measures are 
taken in the European countries the cities that were not invaded are 
mostly the Greek cities or northern cities of Norway and Finland. 

Note: Green Points: not invaded cities; Red Points: cities invaded by 
flights; Blue Points: cities invaded by commuting. 

From the above figures it is resulted that the monitoring of infected 
passengers followed by gating policies are able to change the dynamics 
of disease spreading within the European region. Additionally, when the 
policies applied on regions of the transportation network (i.e. countries) 
and not only on individual airports, then the strategies of gating are 
much more efficient and as so they are recommended especially in cases 
of aggressive infectious diseases. 

In Fig. 12 the daily distribution of infections in the European coun-
tries are presented for the cases when strategies of gating are not applied 
(Fig. 12a), where strategic measure were set in the critical airports 
(Fig. 12b) and in the case where gating measures were set in the coun-
tries where the critical airports are located (Fig. 12c). For the first case, 
where no measures were set, Italy appeared to record the highest 
number of infections per day (approximately 200,000 infected in-
dividuals). For the second case of setting gating strategies in critical 
airports, the 5 countries who suffered the highest numbers of infections 

are Italy, Austria, Estonia, Ireland and Finland. As for the third case 
when measures were set in European countries the 5 countries who 
suffered the highest number of infections are United Kingdom, France, 
Luxembourg, Netherlands and Austria. The black dotted line represent 
the European number of infections’ and as it can be assumed when 
Europe sets control in the air transportation access either in countries or 
only in airports the peak of the highest number of the daily infections 
drops almost by 50% compared to the no-control strategy. 

In the following section, a dedicated analysis is performed focusing 
in the time of network gating actions, highlighting the criticality of the 
time factor on when such control measures should be taken. 

4.2. Disease outbreak starting from Asia: focusing in a particular country 

This section has been devoted on investigating the dynamics of a 
disease outbreak starting from Asia and affecting Europe in a condition 
of no-control as well as when control measures are applied. This case- 
study resembles that of the COVID-19 pandemic and Italy is selected 
to be tested, a country dramatically affected by this event. The analysis 
concern numbers of infections, that could be translated to number of 
deaths using a mortality rate, but these calculations are not included in 
the scope of this paper. In Fig. 13 the no-control and control cases are 
presented, where control actions are taken in different time instances. As 

Fig. 11. Diagrams of the distribution of infections and cumulative numbers of infections for a) Scenario 1 without monitoring strategies; b) Scenario 1 with 
monitoring strategies only in critical airports; c) Scenario 1 with monitoring strategies in the countries with critical airports. 
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can be observed in the no-control case (Fig. 13a), Italy was suffering 
from infection throughout the country while virus is spread to almost all 
of its cities in a matter of days. In Fig. 13b,c&d, the case of gating 
(effectively, closing the service) in the air transportation network in days 
31, 39 and 47 respectively are presented. As can be observed, the earlier 
gating actions are taken the more effective the disease spreading control 
become. Also, if gating actions are not applied early enough then 
spreading become out of control and gating actions may not be helpful 
any more. This element, although expected in general, highlights the 
importance of the time in closure/control measures applied in large 

regions like countries, since few days of delay may result in wide spread 
of viruses in the general population of a region. Though, even in the case 
that control measures are applied the most populated cities in Italy 
(particularly Milan, Rome, Bologna, and Venice) were also affected. 

In order to further understand the effect of countermeasures on the 
disease outbreak in Italy epidemic dynamics for the above scenarios are 
provided in Fig. 14a–d. In detail, in the left-hand side diagrams the 
evolution of the daily infections in Italy for each scenario is provided 
accompanied with the right-hand side diagrams where the cumulative 
infections are presented (all scaled per 1000 individuals). As can be seen 

Fig. 12. Distribution of infections in the European countries for: a) the case where there are no gating strategies; b) the case where gating strategies were set for 
critical airports; c) the case where gating strategies were set for countries; d) gating policies in Europe when it records approximately 30.000 infections and d’ 
focusing on the scale of the countries; e) gating policies in Europe when it records approximately 100.000 infections and e’ focusing on the scale of the countries. 

P. Nikolaou and L. Dimitriou                                                                                                                                                                                                                 



Journal of Air Transport Management 85 (2020) 101819

13

from Fig. 14a, if no restrictions in the air transportation nodes/airports 
are applied, a peak in new infections occurs in few days (left-side of 
Fig. 14a), while the total population may be infected in a matter of less 
than 25 days (right-side of Fig. 14a). Though, if closure actions are taken 
in the day 31 (on month after the disease outbreak), then, as presented in 
Fig. 14b the peak of the daily new infections is limited to the half (50 
compared to 110 per 1000 individuals), while only 1/3 of the total 
population will be infected (305, compared to 1000 per 1000 in-
dividuals). The importance of the time factor is further highlighted in 
Fig. 14c, where airports are closed in day 39 (8 days later than in 
Fig. 14b). As it can be seen, this delay of 8 days result in the dramatic rise 
in daily infection rate (from 50 to 110 per 1000 individuals), while the 
total infections are also rise to 800 per 1000 individuals (compared to 
305). Finally, in case that gating actions in airports are applied in day 47 
(Fig. 14d), then the measures are obsolete the epidemics resembles that 
of the no-control case. 

Another way that time is measured in cases of epidemics is based on 
the total number of infected individuals. As so, in Fig. 15, the effects of 
gating actions in three cases are provided. In detail, in Fig. 15a, gating 
actions in Italy are applied immediately after the emergence of the 
epidemic (day 0), in Fig. 15b when the number of infected individuals 
reached almost 600 individuals (day 17) and in Fig. 15c when the rate of 
infected individuals reached 5450 per 1000 individuals (day 26). 

As can be observed in Fig. 15, when gating actions are taken in such 
early stages, the virus spread is controlled, limited in large cities where 
the population density is high. As far as the epidemic dynamics is con-
cerned, in Fig. 16a the case control measures in Italy are applied from 
the beginning of the epidemic, in Fig. 16b gating actions are applied 
when Italy records 617 total infections and in Fig. 16c gating actions are 

applied when the total number of infections in Italy reached 5456 (per 
1000) infections. 

In these cases, when gating actions are taken early enough these have 
an immediate and drastical effect, limiting the overall number of 
infected individuals and widening the period that the epidemic occurs 
into almost 100 days, compared to the no-control case where large 
number of the population is infected in few weeks. It should be noted 
that as indicated in Fig. 16c, in cases where a number of individuals are 
infected in a country even strict control measures (like gating) are not 
sufficient to immediately stop the epidemic and rebound effects may 
occur until the epidemic clears. 

Finally, as observed in the above test-cases and as realized from the 
actual COVID-19 epidemic incident, highly transmitted infective viruses 
may be spread globally in a high rate and can reach the stage of 
pandemic in a matter of few weeks. Although the characteristics of the 
virus used for showcasing the dynamics of spread through the airlines’ 
network can be regarded as extreme and aggressive, it can be used for 
understanding that the time and the extent of restrictions in the air 
transportation network is of critical importance. Difficult decisions are 
sought to be taken, restricting large regions (e.g. countries) at an early 
stage when infection risk may not be visible to the general public. 
Though, such actions are necessary for controlling the outbreak of a 
global or regional severe epidemic. 

5. Conclusions 

In this paper, a step-by-step procedure is provided for analyzing the 
dynamics of different severity of disease spreading phenomena. In 
detail, the structure of the paper was developed in a way for 

Fig. 13. Map of Italy depicting the conditions were a disease starts to form Asia and there are: a) no control/restrictions applied in Italy; b) when gating measures are 
taken in Italy in after 31 days of the outbreak; c) when gating measures are taken in Italy in after 39 days of the outbreak; d) when gating measures are taken in Italy 
in after 47 days of the outbreak. 
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investigating the disease spreading phenomena over the globe by 
examining the complexity of the air transportation network, imple-
menting several stress-tests (scenarios) able to give a clear picture of the 
phenomenon and setting barriers for possible future disease spreads 
within the European region. The interest of this analysis was the 

observation of critical airports and the scenarios that will denote the 
highest impact inside the European region. The objective of this paper 
was to highlight possible disease spreading in the European region and 
to advocate the enhancement of Europe’s control measures in order to 
prevent a disease spreading inside the region. 

Fig. 14. Epidemic dynamics in the case of Italy depicting the conditions were a disease starts to form Asia and there are: a) no control/restrictions applied in Italy; b) 
when gating measures are taken in Italy in after 31 days of the outbreak; c) when gating measures are taken in Italy in after 39 days of the outbreak; d) when gating 
measures are taken in Italy in after 47 days of the outbreak. 
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The integration of a basic but valid epidemiological model with 
realistic airline operations and the existing land transportation system, 
form a detailed dynamic simulation able to reproduce the outbreaks of 
infectious diseases as these emerge almost in yearly fashion. This 
controlled simulation framework is able to identify critical nodes in the 
airline system (i.e. airports with a high possibility to transfer and spread 
the infectious disease among distant locations), an element of immense 
importance in policy-making for controlling such phenomena. The re-
sults from extensive stress-test focusing in the European continent, 
suggests that Europe indeed plays a central role in controlling 

epidemics, but also, it is proven robust in such cases if immediate actions 
are taken in the first steps of the epidemic phenomenon. In the following 
research steps, the disease spreading dynamics of the pandemic COVID- 
19 will be investigated on a global analysis. 
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Appendix 

Table 1 
Degree Centrality of the Airports  

Airport Name City Country Degree Centrality 

Frankfurt am Main Airport Frankfurt Germany 990 
Munich Airport Munich Germany 728 
Manchester Airport Manchester United Kingdom 627 
Brussels Airport Brussels Belgium 622 

(continued on next page) 

Fig. 15. Map of Italy depicting the conditions were a disease starts to form Asia and there are: a) there are health and safety measures in Italy; b) gating when Italy 
records 617 total infections; c) when gating strategies are taken when the total number of infections in Italy reached 5456 (per 1000) infections. 
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Table 1 (continued ) 

Airport Name City Country Degree Centrality 

Düsseldorf Airport Dusseldorf Germany 570 
Berlin-Tegel Airport Berlin Germany 418 
Hamburg Airport Hamburg Germany 321 
Helsinki Vantaa Airport Helsinki Finland 320 
Stuttgart Airport Stuttgart Germany 273 
Cologne Bonn Airport Cologne Germany 265 
Birmingham International Airport Birmingham United Kingdom 264 
London Luton Airport London United Kingdom 214 
Bristol Airport Bristol United Kingdom 200 
Brussels South Charleroi Airport Charleroi Belgium 168 
Berlin-Sch€onefeld Airport Berlin Germany 165 
Hannover Airport Hannover Germany 152 
Liverpool John Lennon Airport Liverpool United Kingdom 116 
Bremen Airport Bremen Germany 100 
Nuremberg Airport Nuremberg Germany 95 
Frankfurt-Hahn Airport Hahn Germany 94   

Fig. 16. Epidemic dynamics of Italy depicting the conditions were a disease starts to form Asia and there are: a) gating actions in Italy are applied immediately after 
the emergence of the epidemic; b) gating when Italy records 617 total infections; c) gating when the total number of infections in Italy reached 5456 (per 
1000) infections. 
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Table 2 
Betweenness Centrality of the Airports  

Airport Name City Country Betweenness Centrality 

Helsinki Vantaa Airport Helsinki Finland 7550.035 
Westerland Sylt Airport Westerland Germany 7515.706 
Kassel-Calden Airport Kassel Germany 7483.706 
Tampere-Pirkkala Airport Tampere Finland 7464.706 
Friedrichshafen Airport Friedrichshafen Germany 7445.039 
Turku Airport Turku Finland 7443.706 
Dortmund Airport Dortmund Germany 7420.706 
Paderborn Lippstadt Airport Paderborn Germany 7395.706 
Belfast International Airport Belfast United Kingdom 7370.206 
George Best Belfast City Airport Belfast United Kingdom 7368.706 
Birmingham International Airport Birmingham United Kingdom 7339.706 
Frankfurt-Hahn Airport Hahn Germany 7275.706 
Manchester Airport Manchester United Kingdom 7242.206 
Bremen Airport Bremen Germany 7203.706 
Hannover Airport Hannover Germany 7203.706 
Cardiff International Airport Cardiff United Kingdom 7164.706 
Bristol Airport Bristol United Kingdom 7123.706 
Liverpool John Lennon Airport Liverpool United Kingdom 7080.706 
Lappeenranta Airport Lappeenranta Finland 7035.706 
Kokkola-Pietarsaari Airport Kruunupyy Finland 5717.919   

Table 3 
Closeness Centrality of the Airports  

Airport Name City Country Closeness Centrality 

Jyvaskyla Airport Jyvaskyla Finland 0.005263 
Kokkola-Pietarsaari Airport Kruunupyy Finland 0.005263 
Kemi-Tornio Airport Kemi Finland 0.005263 
Helsinki Vantaa Airport Helsinki Finland 0.005263 
Lappeenranta Airport Lappeenranta Finland 0.005291 
Kuusamo Airport Kuusamo Finland 0.005291 
Kajaani Airport Kajaani Finland 0.005291 
Sandefjord Airport, Torp Sandefjord Norway 0.005291 
Kuopio Airport Kuopio Finland 0.005291 
Kittil~A¤ Airport Kittila Finland 0.005291 
Mariehamn Airport Mariehamn Finland 0.005291 
Oulu Airport Oulu Finland 0.005291 
Pori Airport Pori Finland 0.005291 
Ivalo Airport Ivalo Finland 0.005291 
Westerland Sylt Airport Westerland Germany 0.005291 
Savonlinna Airport Savonlinna Finland 0.005291 
Tartu Airport Tartu Estonia 0.005291 
Tampere-Pirkkala Airport Tampere Finland 0.005291 
Kuressaare Airport Kuressaare Estonia 0.005291 
Kassel-Calden Airport Kassel Germany 0.005291  
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