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Thymus regenerative therapy implementation is severely obstructed by the limited number and expansion capacity in vitro of
tissue-specific thymic epithelial stem cells (TESC). Current solutions are mostly based on growth factors that can drive differ-
entiation of pluripotent stem cells toward tissue-specific TESC. Target-specific small chemical compounds represent an alterna-
tive solution that could induce and support the clonal expansion of TESC and reversibly block their differentiation into mature
cells. These compounds could be used both in the composition of culture media designed for TESC expansion in vitro, and in
drugs development for thymic regeneration in vivo. It should allow reaching the ultimate objective - autologous thymic tissue
regeneration in paediatric patients who had their thymus removed in the course of cardiac surgery.
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Thymus Importance

Thymus is an essential organ of the immune system since it is
the main site of T lymphocyte production and the place of
adaptive immunity regulation. The thymus significance for
development and function of the immune system is the centre
of hot discussions since the 1961, when thymus function was
first discovered by Jacques Miller [1]. Nowadays it is known
that impaired thymus function may have a number of conse-
quences for the immune system as an increased predisposition
to infection and autoimmunity, reduced response to vaccines
with age and possible risk of cancer development. Patients
subjected to complete thymectomy as neonates are more like-
ly to suffer from atherosclerosis, autoimmune or neurodegen-
erative diseases, as well as they have a higher predisposition to
develop rashes, eczema, or contact allergies and show stable
disbalance of naive T cells in the periphery, especially if thy-
mectomy happened at the age below one year [2-7].
According to other data, thymectomy has no critical clinical
effects, if performed in the post-infant period [8]. However,
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most data were collected in a short follow up time after thy-
mectomy and therefore not considering the time for the onset
of age-related diseases in the thymectomised group. Also, the
inclusion of individuals with residual thymic tissue might
cause an underestimation of the impact of thymectomy.

Current epidemiological data indicate that almost 1 in 100
children is born with a congenital heart defect [6], and they are
potential patients for heart surgery and partial or total thymec-
tomy. Since thymectomy is a part of standard surgical proce-
dure for congenital heart diseases, thymus becomes a medical
waste, and in these cases, it may serve as an essential alterna-
tive source of autologous tissue-specific stem cells for person-
alized treatment of thymectomised infants, who are a high-risk
cohort for many age-related diseases. In this relation, the col-
lection and long-term storage of primary infant thymic tissue,
as well as, the preparation and expansion of thymic epithelial
stem cells (TESC) are very important issues that are discussed
in this paper.

Thymus Cell Architecture and Thymic
Epithelial Cells

The thymus has a highly complex structure comprised of the
thymic stroma and developing thymocytes (Fig. 1). The thy-
mic stroma contains dendritic cells, macrophages, epithelial,
mesenchymal and vascular elements [9—14]. In this multicel-
lular structure with different cell types and functions several
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Fig. 1. Human thymus cell architecture. The human thymus is located
in the upper anterior part of the chest behind the sternum between lungs
and lies on top of the heart along the trachea. The thymus reaches its
maximum weight (about 28 gram) during puberty. This pinkish-gray
organ consists of two lobes parted into lobules by connective tissue
strands (trabeculae). Each thymic lobule has a cortex and medulla.
Hematopoietic precursor cells (HPC) enters the thymus through
postcapillary venules located at the corticomedullary junction (CMJ)
and migrate to the capsule, committed CD4-CDS8- T precursor cells
(TPC) located in the subcapsular region, and immature CD4+CD8+ cor-
tical thymocytes migrate through the cortex and CMJ to the medullar
zone. The medulla contains CD4+ and CD8+ naive thymocytes that will
migrate to the periphery. The stromal-epithelial compartment of the thy-
mus is represented by minor populations of EpCam+(CD326+)Foxnl+

minor stem cell populations can be found, in particular thymic
epithelial progenitor cells/thymic epithelial stem cells
(TEPC/TESC) [15, 16¢], mesenchymal stem cells (MSC)
[17, 18] and lymphoid progenitor cells (LPC) [12, 19-24].
Of these, thymic epithelial cells (TEC) provide most of the
specialist functions of the organ [25, 26]. As the thymus is
organized into two regions, the cortex and the medulla, also
TEC are defined according to their localization as cortical (c)
and medullar (m) TEC. They are morphologically and func-
tionally distinct, and they mediate different aspects of T cell
development. The cTEC are required for commitment of early
thymocyte precursors to the T cell lineage through provision
of the Notch ligand DI114 [13, 27] and to drive expansion of
thymocytes at several stages of development through delivery
of growth factors and cytokines [10, 25, 28¢¢]. They also reg-
ulate positive selection of T cells through a unique set of
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bipotent thymic epithelial precursor cells/thymic epithelial stem cells
(TEPC/TESC) and mesenchymal stem cells (MSC) located probably in
the thymic parenchyma close to the CMJ region, as well as EpCam+
CD205+ cortical thymic epithelial cells (¢cTEC) located in the cortex
and EpCam+Air+ medullary thymic epithelial cells (mTEC) located in
the medulla. Moreover, the cortex and the medulla contain also macro-
phages, fibroblasts and dendritic cells (DC) that together with cTEC and
mTEC participate in the differentiation, maturation, positive and negative
selection of thymocytes. HPC generate all thymocyte populations and
alternatively may generate macrophages and DC; TEPC/TESC generate
c¢TEC and mTEC lineages depending on local microenvironment and
cross-talk with cortical or medullary thymocytes; MSC generate thymic
fibroblasts and adipocytes. BV: Blood vessel; DT: Dead thymocyte; HC:
Hassall’s corpuscle.

peptides generated by a thymus-specific proteasome subunit,
35t [29]. The mTEC regulate migration of positively selected
thymocytes from the cortex into the medulla, via expression of
chemokines CCL19 and CCL21, and they also regulate the
accumulation and positioning of dendritic cells in the medulla
via secretion of the chemokine XCL1 [30]. Both pathways are
also regulated by thymus resident dendritic cells, which are
critical hematopoietic components of the thymus microenvi-
ronment [9, 12, 31]. An important role for the thymic tissue
maintenance, differentiation and regeneration plays also the
intrathymic radio-resistant LPC [19, 32-35], which probably
relates to the stem cell population. Thus, production of a func-
tional, self-tolerant T cell repertoire requires interactions be-
tween developing thymocytes and a variety of cortical and
medullar TEC types derived from TEPC/TESC. Analysis of
thymus development has established that cTEC and mTEC
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can originate from a common TEPC type in both, the fetal and
postnatal mouse thymus, and their transplantation is sufficient
to the functional establishment of the entire thymus [16, 36,
37]. In mice, these TEPC/TESC comprise 1-2% of total TEC
and are located in the thymic parenchyma at the cortico-
medullary junction. In mice they express Pletl, Ly51, and
EpCAM (CD326) surface proteins [38<¢]. CD326 is also
expressed in the fetal human thymus, and therefore, in com-
bination with Foxnl expression could be used to identify the
human TEPC/TESC population(s) [26, 39]. Recently, in the
course of the ThymiStem project funded by European Union,
Prof. Antica’s research group has detected epithelial precur-
sors also from human thymus by using the stem cell ability to
form spheres when cultured in non-adherent conditions
in vitro (manuscript in preparation). This approach may be-
come an alternative for the expansion of human functional
Foxnl* EpCAM* TESC in vitro. In the mouse model
thymospheres described by Ucar et al. were defined as formed
from Foxnl thymic precursors [15]. However, according to
more recent data, the thymospheres are formed by Foxnl™
EpCAM  mesenchymal cells with the potential to generate
only adipocytes, but no epithelial cells [40+¢].These mesen-
chymal cells might be important to the maintenance of the
thymic microenvironment since it is already known that mes-
enchymal fibroblasts deliver growth factors to the developing
TEC and cytokines to lymphocyte precursors. Therefore,
thymospheres might be a stem cell population that maintains
the non-epithelial microenvironment in the thymus. Since the
data described are of mouse origin it is important to investi-
gate more carefully also the human thymus model in vitro and
in humanized mice.

Thymus Reconstitution Strategies

The perspective for development of an effective thymus re-
generative strategy is supported by the successful research on
transplantation of in vitro cultured autologous thymic gland
residues to DiGeorge syndrome patients [41, 42], generation
of functional thymic epithelium from human embryonic stem
cells (ESC) supporting host T cell development [43, 44], trans-
plantation of mouse FOXN1-induced TEC [45], transplanta-
tion of mouse thymic pluripotent stem cells (PSC) [16], recon-
stitution of functional thymus organ culture in vitro [46] and
transplantation of in vitro generated human artificial thymic
organoids to humanized immunocompromised mice [47¢].
Thus, current strategies for enhancing/restoring of the thymic
function in patients arise mainly from studies on mouse ex-
perimental models and are based on i) enhancing the endoge-
nous thymus regeneration [48]; ii) transplantation of thymic
tissue [42]; iii) transplantation of pluripotent TESC/TEPC that
generate thymic microenvironment in vivo or even may fully
restore functional thymi [16, 45, 49]; iv) transplantation of

thymic organoids grown in vitro that partially recapitulate
thymus function [46] and v) transplantation of an artificial
thymus created on a synthetic matrix [47¢].

Thymus bioengineering is still at its early stage of develop-
ment and more studies focusing on clinical-grade experimental
conditions are needed to further advance the technology for
medical applications. However, preclinical studies on mouse
models have clearly proven that this is an effective approach
for restoring and rejuvenating the function of the adaptive im-
mune system by achieving the immunosuppression-free tissue/
organ replacement [46, 47¢]. Some preclinical and clinical stud-
ies aimed at the recovery of thymus function in vivo with the
help of a variety of hormonal or cytokine treatments are already
in progress [34]. Moreover several of these approaches have
been tested in phase I or phase I/II clinical trials [25, 48-50]. In
general, while current data suggest that some improvement in T
cell numbers may result from these hormonal or cytokine-based
therapies, major obstacles are high toxicity, low effectiveness
and specificity, or significant negative side effects, and therefore
currently a stable and effective reconstitution of the human
thymus function is still elusive. Although, thymus transplanta-
tion studies demonstrated the utility of this procedure for restor-
ing thymus function in patients, successful transplantations
have only been established by using neonatal human thymus
as autologous donor tissue [41, 42]. One study has shown that a
microenvironment capable of supporting the early stages of T
cell development can be generated by the introduction of four
genes (D114, CCL25, KitL, and CXCL12) into F oxnl™ mouse
thymic primordium [51]. This suggests the possibility of engi-
neering a synthetic thymus based on the delivery of key mole-
cules required for TEC to support T cell development in an
artificial scaffold. Though, in our opinion, TESC-based cell
transplantation approaches might be more appropriate for
near-medium clinical goals, at least for the partially
thymectomised infants (Fig. 2).

Tissue-Specific TESC Versus iPSC and ESC

The potential of tissue-specific stem cells for treating incur-
able diseases and conditions is widely recognized through
their capacity to restore tissue function by either cell transplan-
tation or regenerative therapies. Stem cells underpin a number
of modern therapies; however, all rely on transplantation of
cells harvested ex vivo. The limited capacity to achieve a
robust expansion of tissue-specific stem cells in vitro is rec-
ognized as a basic limitation for the development of new stem
cell-based therapies. Furthermore, some human tissues, in-
cluding the thymus, are not amenable to harvesting stem cells
for autologous therapy either on grounds of tissue accessibility
or the number of stem cells. Cell number in the thymus for
instance may be limited by the size of the organ, or by age-
related factors resulting in diminished cell numbers in adult
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Fig. 2. TESC/SCC-based strategy for thymus regenerative therapy in
partially thymectomized infants. Thymic epithelial stem cell/Small chem-
ical compound (TESC/SCC)-based strategy for autologous thymus re-
generative therapy in infants could include the development of clinical
grade protocols for collection, preparation and cryopreservation of prima-
ry infant thymic tissue and TESCenriched samples. These TESC could be
used further to screen SCC for regulation, differentiation and proliferation
of human TESC. The selected compounds would be tested for clonal
expansion of TESC in vitro and for the reconstitution of thymic function
in vivo in terms of maturation, differentiation and tolerance of autologous

and elderly patients. Strategies for clinical use of human
TESC depend on the ability to generate or propagate undiffer-
entiated TESC 1n vitro, and to control their differentiation in
order to produce transplantable functional organoids or to
support thymus regeneration in vivo for a complete recapitu-
lation of sustained thymus function. They further require
strong medical-grade procedures for thymic epithelial cell
lines and cultures derivation, including protocols for cryopres-
ervation of cultured cells and ex vivo tissue. Finally, they
depend on the capacity to translate these issues from mouse
models to human.

In spite of the current wide interest in human iPSC and ESC,
and successful attempts to drive their differentiation in vitro
towards mature tissue-specific cells [16, 43, 44], the conditions
that are created in vitro are not fully equivalent to the in vivo
conditions that are critically important for the final tissue-
specific differentiation of such iPSC or ESC. Moreover, the
use of ESC, as well as, their iPSC analogous cannot solve the
transplantation challenges properly because of high risks of
tumorigenicity and graft rejection, as well as regulatory, ethical
and legal restrictions in most developed countries for the use of
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T cells as well as for supporting thymus tissue growth. Finally, full phar-
macological evaluation of the properly selected and optimised com-
pounds would be performed for high efficacy and low toxicity and further
drug development. An actual challenge is the optimization of thymecto-
my procedure in infants to preserve a thymic fragment for consequent
postsurgical thymus regenerative therapy. An additional impact on the
efficacy of the post-surgical rehabilitation may provide the quality life
monitoring of thymectomized patients in relation to their resistance to
infections, allergies, autoimmune, oncological and other diseases associ-
ated with the impaired thymic function.

ESC in human transplantation/regenerative medicine. Taking
into consideration these obstacles, postnatal tissue-specific stem
cells, in particular, TESC are the preferable source for therapeu-
tic purposes. Development of new approaches for their clonal
expansion is an extremely relevant and important challenge that
should be resolved in the nearest future.

Expansion of Stem Cells In Vitro

One of the key challenges for stem cell biology is to develop the
conditions that permit the expansion of functionally validated
stem cells in vitro via self-renewal. Several strategies have been
used to propagate defined tissue-specific stem cell types, but
successful long-term cultures have been produced only for a
very few tissue types, in particular, epithelial stem cells derived
from skin and a variety of other organs are most effectively
maintained as mixed cultures containing both stem cells and
their differentiated progeny, using the specific murine feeder
cell line 3 T3/J and keratinocyte stem cell conditions [52, 53].
The same protocol has been used to grow epithelial stem cells
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from a variety of tissues including the limbus/cornea [53, 54].
Intestinal epithelial stem cells can be maintained in long-term
culture as organoids that contain both, the stem cells and their
differentiated progenies [55]. In contrast, neural stem cells can
be maintained under a variety of conditions as a near homoge-
neous stem cell population in a completely defined culture me-
dium [56]. Recently, it was also described a chemically defined
and growth-factor-free culture medium for the expansion and
production of human PSC that contains just three small chem-
ical compounds (SCC) with a much lower number of recombi-
nant proteins than used in commercially available media [57¢].
The long-term cell growth of non-transformed cell culture from
adult mouse thymus was supported in vitro for about two years
in the regular culture conditions in the presence of an autocrine
thymocyte growth factor (THGF). These cells showed the prop-
erties of pluripotency, self-renewal, and tendency to form thy-
mic organoids (thymospheres) in vitro, and were highly resis-
tant to cortisol and gamma-irradiation [19, 32]. In vivo stem
cells are maintained by a specific cellular microenvironment
called the stem cell niche [58, 59]. Current understanding sug-
gests that the self-renewal property of stem cells in vivo is
determined by the proximity of the niche [60]. The goal of
supporting the proliferation of self-renewing stem cells
in vitro in long-term cultures essentially requires recreation of
this niche in vitro, such that stem cells receive appropriate sig-
nals for proliferation in the absence of differentiation.
Accumulated knowledge from many years of investigation
led to the creation of completely defined conditions for growing
mouse ESC [61] and human PSC [57¢]. The basis of this pro-
tocol is that the major intracellular signaling pathway that nor-
mally promotes differentiation of PSC is blocked using a chem-
ical inhibitor of MEK (mitogen-activated protein kinase) sig-
naling while proliferation is maintained via the action of a gly-
cogen synthase kinase (GSK) inhibitor. Moreover, the cells are
maintained in a minimal essential medium containing N2B27,
insulin, and transferrin [62]. These conditions preserve PSC in
the pluripotent state and can also be used to grow iPSC. This
approach, which combines blocking differentiation while pro-
moting proliferation, should in principle be applicable to any
stem cell population once the relevant signaling pathways are
defined.

Thymic Epithelial Cell Lines

For many years various laboratories have tried to grow func-
tional TEC lines from primary mature TEC [63, 64]. However,
such lines typically lose their functional capacity after only a
short-term culture, rendering them useless for clinical aims.
Furthermore, it is now clear that two types of mature TEC
subpopulations (nTEC and cTEC) are required to fully support
T cell development, and therefore growth of a single mature
TEC sub-type will not be sufficient to develop thymus function

[10, 25, 65]. Collectively, this indicates that TEC-based ap-
proaches must involve undifferentiated TEPC/TESC capable
to produce all TEC subtypes of the mature organ. This estab-
lishes the rationale for developing protocols permitting in vitro
expansion of functionally validated undifferentiated human
TESC. Such cell lines would provide the optimum basis for
thymic organoids, in which controlled differentiation of TESC
results in production of all specific TEC populations required
for full thymus regeneration. They could then be transplanted
into patients to enhance the thymus function in vivo. However,
the occurrence of a small number of TESC in human thymus,
difficulties in their isolation, purification and especially expan-
sion in vitro in undifferentiated and functional state as well as
the preferential growth of fibroblasts in long-term cultures
in vitro, still represent the major challenges for the study and
possible application of the recovered tissue-specific stem cells
[32, 47, 65, 66]. These problems yet remain unresolved.
Current approaches that are exploring how to reach a substan-
tial TESC growth in vitro include the use of serum-free culture
media with TESC- supporting growth factors and other supple-
ments which can inhibit the growth of other cell types [58, 67]
as well as the use of low/non-adhesive materials and matrixes
for 3D cultures [47, 60]. Human long-term TEPC/TESC cul-
tures could be achieved using the 3 T3/J feeder-based
keratinocyte stem cell conditions that were applied for stem cell
cultures from many types of epithelial tissues including thymic
tissue [52, 53]. While cells grown under these conditions can
contribute to epithelial networks, they do so at low efficiency
and further optimization for an increase of the functional stem
cell frequency is required to develop clinically useful lines.
Functional cultures of thymic stromal-epithelial stem cells can
be derived also in low-adhesive conditions as cultures of
thymospheres [15, 40] or in adhesive conditions as cultures of
thymic explants and monolayer cultures [39, 65, 66]. These
thymus-derived cell cultures contain both TESC and their dif-
ferentiated progenies as well as MSC and fibroblasts.
Importantly, some of the cultured cells also retain the capacity
to contribute to thymic stromal-epithelial networks where they
exhibit a normal thymic function in terms of T cell differentia-
tion from CD34+ hematopoietic stem cells [39, 66] and Antica,
unpublished data. Thus, the current culture conditions, which
are optimized for epithelial stem cells can be used as a starting
point to define optimal conditions for an effective support of the
human TESC growth. The current goal is to establish fully
defined feeder-free culture conditions, in particular by using
chemical compounds as signaling pathway inhibitors.

TESC-Specific Small Chemical Compounds
(SCC)

A promising approach is the use of SCC that could block or
enhance the signalling mediated by specific protein-kinases
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and thus regulate differentiation and clonal expansion of stem
cells or even reprogram fibroblasts into ESC [57¢, 68, 69¢¢]. A
number of such target-specific compounds were already
screened and tested using high throughput screening (HTS)
assays with human ESC or iPSC, as well as HSC and MSC
isolated from bone marrow or cord blood [69ee, 70ee, 71e°].
These studies provided highly promising results validating the
use of SCC in regenerative medicine both, for tissue engineer-
ing in vitro and for boosting regenerative potential of stem
cells in vivo. However, optimal compounds for TESC have
yet to be identified and structurally optimized to achieve ade-
quate efficiency and low toxicity in vitro and in vivo, and
other benefits for the patients and the industry. Finding and
optimization of new effective compounds will allow to ex-
pand primary isolated single human TESC or even to reverse
mature mTEC or/and ¢TEC to their common stem cell precur-
sor. Therefore, this goal is highly attractive, because it pro-
vides new high relevant approaches for further compound-
based development of TESC-specific drugs that should be
non-toxic in vivo, inexpensive and convenient be used by
the patients. These advantages are in contrast with traditional
biological tool applications, such as growth factors, which are
expensive, easily degradable, and have a number of side ef-
fects in vivo at their therapeutically relevant concentrations.
Furthermore, these compounds can be highly attractive as
supplements to culture media specifically designed for
TESC attempted for clinical use. Finding new TESC-
specific compounds will allow the replacement of expensive
and unstable growth factors in culture media or at least the
reduction of their concentrations. A similar compound-based
cytokine-free culture medium composition has already been
described for human PSC [57¢]. Once the TESC-specific com-
pounds are developed and primary TESC expanded, they
could be extensively used for further cryopreservation studies,
development of thymic organoids and pre-clinical transplan-
tation studies.

The general strategy for the discovery of new target-
specific SCC candidates for drug development is well
established [72—75]. It is a long and complicated multi-stage
process that requires large efforts and capital investments. In
recent years the use of HTS technologies for large and struc-
turally diverse chemical libraries led to the fast progress in the
identification of lead compounds with therapeutic activities
against a multitude of molecular targets and pathways [76,
77]. However, while several key target molecules that are
critically important for human thymus development and func-
tion have been described, we are not aware of any specific
research involving human TESC/thymic tissue models for
screening TESC-specific compounds. We believe that prom-
ising molecular stem cell targets for such HTS assays are the
retinoblastoma (Rb) protein family (pRb1/105, p107, and
pRb2/p130). It is known that a homeostatic level of Rb activ-
ity is essential for self-renewal and survival of human
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embryonic stem cells (ESC) [78]. Rb inactivation prevents
thymus involution and promotes thymic function by a direct
control of FOXN1 gene expression [79]. FOXNI is dynami-
cally regulated in TEC during embryogenesis and at the onset
of thymic involution; in particular it is highly expressed in
TESC and is not expressed in non-functional TEC [26].
Thus, FOXNI plays a critical role in thymus development,
function, maintenance, and regeneration, which characterises
it as a master regulator of TEC differentiation [80]. Efficient
commitment of human ESC to the thymic epithelial precursor
lineage can be achieved by precisely regulating the activities
of tumour growth factor 3 (TGFf3), BMP4, retinoic acid
(RA), Wnt, Sonic Hedgehog (Shh), and FGF signalling
throughout differentiation [43, 81]. Thus, at least some of
these targets can be used for the identification of new com-
pounds that may efficiently regulate the proliferation and dif-
ferentiation of human TESC in vitro and/or stimulate the re-
generation of human thymus in vivo.

While the vast majority of compound screens related to
human stem cells were performed using ESC and iPSC or
HSC, mainly due to the restricted access to tissue-specific
stem cells and a significant challenge in expanding them
in vitro, a well-established access both, to the paediatric thy-
mic tissue as a tissue-specific source of human TESC, and
access to the vast and diverse SCC libraries will define the
further progress in the discovery of TESC-specific com-
pounds and development of drugs for thymus regenerative
therapy (Fig. 2).

Thymic Tissue Cryopreservation

The aim of effective TESC cryopreservation is in line with
common cryopreservation problems for human stem cells de-
rived from different sources, and it is in the process of conse-
quent solving by research groups both, from academy and
industry. While bone marrow and cord blood are the primary
sources of HSC and MSC, and protocols for cryopreservation
of these cell types are well established [82—85], there are only
few reports for the human thymic tissue cryopreservation [65,
86, 87]. Currently, various freezing media designed specifical-
ly for cryopreservation of stem cells are available from differ-
ent manufacturers, and some of these were applied for the
cryopreservation and the long-term storage of the human thy-
mic tissue in liquid nitrogen [65, 87]. A specific investigation
concerning cryopreservation of postnatal thymic tissue in a
wide range of cryoprotective conditions has been implement-
ed by Prof. Shichkin’s research group during the ThymiStem
project [39, 65]. In this study, the influence of a number of
cryoprotective media with either penetrating (DMSO, glycer-
ol) or non-penetrating (dextran-40, sucrose, hydroxyethyl
starch) components was evaluated, and compared to the com-
mercial GMP manufactured cryoprotective medium Stem-
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CellBanker (AMS Biotechnology, UK). Stem-CellBanker is
serum-free and DMSO-containing medium, and it was created
specifically for stem cell storage. This study indicated that for
either cell suspensions or thymic fragments, the best combi-
nation for long-term storage was DMSO and dextran-40
(CPM-7) as judged by the CD326" epithelial cells’ viability
and formation of a stromal-epithelial cell monolayer after
thawing [39, 65]. This cryoprotective medium could be fur-
ther optimized specifically for human TESC in comparison
with the set of available commercial media. Further, a favor-
able component for cryopreservation experiments involving
human TESC is the Rho-associated protein kinase (ROCK)
inhibitor, which greatly increases cell viability [88]. However,
there is a great need for further optimization of cryopreserva-
tion protocols specifically for human TESC in accordance
with the clinical requirements (Fig. 2).

Gender Issues

Sex analysis in the context of human diseases and drugs dis-
covery research has revealed clinically significant differences
in pathophysiology between women and men. Female sex and
age comprise two important risk factors for altered drug ex-
posure and response [89]. Evaluation of the sex as a factor of a
biological variable in basic biomedical and preclinical/clinical
research is considered as an important methodological com-
ponent of study design [90-93]. At this, researchers should
consider both the sex of the patient/animal experimental
groups for study in vivo and the sex of tissue/cells for study
in vitro [91, 94]. Since these sex and gender differences exist,
a special attention should be paid to thymic tissue collection
from infants with congenital heart diseases and considering
the appropriate balance between male and female representa-
tives as part of the study to analyze sexual differences in
TESC response to SCC action in vitro. Further, the influence
of culture conditions on proliferation and differentiation of
male and female human TESC should be considered. The
gender and sex aspects will impact on the research design
and a common strategy of the thymus-specific compound se-
lection and further pharmacological studies in vivo with the
use of small rodents. For testing the ADME/T (absorption,
distribution, metabolism, excretion, and toxicity) properties
the selected SCC in vitro with the use of tissue/cell models
should be also taken into account to achieve the highest ben-
efit and lowest risk for the patients (Fig. 2).

Ethics and Framework Conditions

Cell therapy is one of the major prospects in current scientific
and medical development. However, elements or products of
the human body are normally considered in a number of

countries as being protected from any form of
commercialisation. Thus, there’s a number of possible prob-
lems involving human cells from donors, the nature and limits
of adequate exploitation, obtaining informed consent on their
use, and a possible conflict of interest between patients, stake-
holders, scientists and society. In agreement with recommen-
dations of Regulatory agencies such as the US Food and Drug
Administration (FDA) [95] and also the European Medicines
Agency (EMA) [96] donors of human tissue or cells ought to
be tested and screened for infections, the informed consent of
patients or their legal guardians should be received before
tissue/cell donation, and the entire technological process
ought to be achieved in compliance with good laboratory
practice (GLP) or good manufacturing practice (GMP) [97].

In case of allogeneic use of the cells, the donor should give
a written and legally valid informed consent that covers pos-
sible research and therapeutic findings and commercial appli-
cation. It should be ensured that the patients or their legal
guardians sufficiently comprehend the stem cell-specific as-
pects of their participation in the research. Donors should be
screened for infectious diseases and other risk factors, as it is
recommended for blood and solid organ donation, and also for
genetic diseases if appropriate. GLP and regulatory guidelines
related to human tissues and cells should always be followed
(Fig. 2). In preclinical studies appropriate in vitro and/or ani-
mal models ought to provide evidence of product safety in
agreement with the Declaration of Helsinki and the
Nuremberg Code. Also, in compliance with the Animal
Welfare Recommendation, in vitro procedures should replace
animals whenever possible. Since clinical research is indis-
pensable for the final efficacy assessment of the cell-based
treatment, it is important to protect human rights and welfare
during this process and rigorous review pathways should
make sure that stem cell-based products adapt to the best stan-
dards of evidence-based drugs, consistent with legal require-
ments for evidence-based medicine.

Outputs from ThymiStem

Additionally to the discussion above, the main advances
resulting from the ThymiStem project funded under FP7
Health for 2013-2017 (Project ID: 602587) lay the founda-
tions necessary to recover thymus formation using stem cell-
based bioengineering. ThymiStem was the European
Consortium for “Development of Stem Cell-Based Therapy
for Thymic Regeneration” comprised by 8 research teams
from 6 countries (Great Britain, Spain, Czech Republic,
Croatia, Ukraine and USA) coordinated by Prof. Clare
Blackburn (The University of Edinburgh, UK). The more
detailed description is provided in the Final Report
Summary [98].
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Future Perspectives

The primary mission of the subsequent research should be ad-
dressed to further develop and advance the methodology for
regenerating thymic function in patients who were subjected
to partial or total thymectomy. At these, the main focus should
be on infants at age range up to 12 months for whom the
thymus regenerative therapy is fully justified, and the prove-
of-concept is provided. Suitable solutions for clonal expansion
and long-term cryopreservation of human thymus and TESC as
well as the detection of new TESC-specific compounds and a
subsequent development of thymus-specific drugs based on
these compounds are extremely important steps to reach the
final objective - immunorehabilitation of thymectomised pa-
tients in the course of the postsurgical therapy. This aim is fully
realistic and achievable within the near future (Fig. 2).
Moreover, thymus regenerative technology can be expanded
further for a larger group of patients, including elderly people
with age-related thymic involution and decreased thymic func-
tion, or chemotherapy-treated patients and, in some cases, for
patients with removed thymoma and thymus-associated auto-
immune diseases. Thus, delivering this technology to the end-
users can significantly reduce medical costs and improve post-
surgical rehabilitation therapy of recently thymectomised in-
fants as well as improve their life quality in a long-term.
Furthermore, this technology may provide sufficient impact
on the life quality in elderly populations with deficiency of
thymic functions and finally stimulate the creation of first thy-
mus biobanks to provide support for personalised autologous
thymus regenerative therapy.

Executive Summary
Thymus Importance

+ Patients undergoing complete thymectomy at the age be-
low one year may have a number of pathological conse-
quences for the immune system, and they are more likely
to suffer from age-related diseases.

* The thymus may serve as a source of autologous tissue-
specific stem cells for thymectomised infants.

Thymus Cell Architecture and Thymic Epithelial Cells

* Cortical and medullary thymic epithelial cells can origi-
nate from a common thymic epithelial precursor/stem
cells (TEPC/TESC), which are sufficient to the direct es-
tablishment of the entire thymus microenvironment for T
cell development.

@ Springer

Thymus Reconstitution Strategies

* Enhancing of the endogenous thymus regeneration or trans-
plantation of thymic tissue, pluripotent TEPC/TESC, thy-
mic organoids and artificial thymuses are current thymus
reconstitution strategies.

+ TEPC/TESC-based cell transplantation approaches are
more appropriate for partially thymectomised infants.

Tissue-Specific TESC Versus iPSC and ESC

* Autologous tissue-specific stem cells are a preferable
source for stem-cell-based regenerative therapy.

Expansion of Stem Cells In Vitro

* Invivo stem cell self-renewal is determined by proximity
to the specific cellular microenvironment called the stem
cell niche.

» Recreation of the stem cell niche in vitro is a perspective
goal for supporting the proliferation of the self-renewing
stem cells in culture.

Thymic Epithelial Cell Lines

* The current goal is to establish fully defined feeder-free
culture conditions for human TESC using chemical com-
pounds as signalling pathway inhibitors.

TESC-Specific Small Chemical Compounds

*  Optimal TESC-specific compounds have yet to be identi-
fied and structurally optimized to achieve adequate effi-
ciency and low toxicity for the expansion of human TESC
in vitro and the thymic regeneration in vivo.

Thymic Tissue Cryopreservation

* Protocols for cryopreservation and quality evaluation of
human thymic tissue/TESC should be optimized in accor-
dance with the clinical requirements.

Gender Issues

» Evaluation of the sex as a factor of the biological variable

is an important methodological component of the study
design.



Stem Cell Rev and Rep (2020) 16:239-250

247

* Both sexes of patient/animal experimental groups for
study in vivo and the sex of tissue/cells for study in vitro
should be considered.

Ethics and Framework Conditions

* A complex of ethical problems includes the nature and
limits of acceptable commercialization of paediatric thy-
mic tissue/TESC and a conflict of interest between pa-
tients, investors, donors, researchers, and society.

Outputs from ThymiStem

*  ThymiStem demonstrated sufficient progress toward thy-
mus regenerative therapy on molecular, cellular and bio-
engineering levels.

Future Perspectives

* Further methodology development for thymic function
regeneration in thymectomised patients should be ad-
dressed in forthcoming research projects.

*  Thymus regenerative therapy is fully justified for infants
thymectomised during heart corrective surgery and it
should be the main focus of future research.
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