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Summary
The plant pathogen, Pseudomonas syringae (Ps), together with related Ps species, infects and

attacks a wide range of agronomically important crops, including tomato, kiwifruit, pepper, olive

and soybean, causing economic losses. Currently, chemicals and introduced resistance genes are

used to protect plants against these pathogens but have limited success and may have adverse

environmental impacts. Consequently, there is a pressing need to develop alternative strategies

to combat bacterial disease in crops. One such strategy involves using narrow-spectrum protein

antibiotics (so-called bacteriocins), which diverse bacteria use to compete against closely related

species. Here, we demonstrate that one bacteriocin, putidacin L1 (PL1), can be expressed in an

active form at high levels in Arabidopsis and in Nicotiana benthamiana in planta to provide

effective resistance against diverse pathovars of Ps. Furthermore, we find that Ps strains that

mutate to acquire tolerance to PL1 lose their O-antigen, exhibit reduced motility and still cannot

induce disease symptoms in PL1-transgenic Arabidopsis. Our results provide proof-of-principle

that the transgene-mediated expression of a bacteriocin in planta can provide effective disease

resistance to bacterial pathogens. Thus, the expression of bacteriocins in crops might offer an

effective strategy for managing bacterial disease, in the same way that the genetic modification

of crops to express insecticidal proteins has proven to be an extremely successful strategy for pest

management. Crucially, nearly all genera of bacteria, including many plant pathogenic species,

produce bacteriocins, providing an extensive source of these antimicrobial agents.

Introduction

Pseudomonas syringae (Ps) is a Gram-negative bacterial plant

pathogen. The Ps species complex consists of over 50 known

pathovars (pv.), which are responsible for a variety of different

diseases, such as spot and blight disease and bacterial speck, in a

wide range of agronomically important crops, including tomato,

beans and tobacco (O’Brien et al., 2011; Lamichhane et al., 2014;

Lamichhane et al., 2015). Once a plant pathogen is introduced

into a crop, it can spread rapidly because of the lack of genetic

diversity in commercial crop varieties (Esquinas-Alc�azar, 2005).

A recent example of this is the pandemic caused by Ps pv.

actinidiae (Psa), which is currently causing great damage to the

global kiwifruit industry (Vanneste, 2017). The emergence of

canker disease on commercial kiwifruit (Actinidia spp.) varieties

has been well documented since the early years of A. deliciosa

domestication in Japan in 1984 (Serizawa et al., 1989) and has

subsequently spread worldwide (Takikawa et al., 1989; Scorti-

chini, 1994), and the emergence of hypervirulent strains of Psa

has exacerbated the problem (Balestra et al., 2009; Everett et al.,

2011). For example, Psa was detected in 37% of New Zealand’s

kiwifruit orchards, with the total cost to the industry perhaps

exceeding $1.33 billion (Vanneste, 2017).

Currently, chemicals (e.g. copper salts or antibiotics) are used

to protect crops from these bacterial pathogens, often with

limited success. They also may have adverse environmental

impacts because of off-target activity and can encourage the

evolution of resistance among bacterial populations (Damalas and

Eleftherohorinos, 2011; Sundin and Bender, 1993). The intro-

duction of resistance genes, such as EFR in tobacco and tomato,

has been successful in providing resistance against Ps (Lacombe

et al., 2010). However, there is a distinct lack of diversity of

suitable natural resistance genes that can be introduced into

commercial crops. There is therefore a pressing need to develop

new technologies to introduce disease resistance into econom-

ically important crops to protect them from plant pathogens like

Ps.

The large Ps species complex means that individual Ps species

are under intense selective pressure to evolve mechanisms to

eliminate inter- and intra-species competition in their environ-

mental niche. One mechanism used to eliminate competitor

strains is the production of bacteriocins, which are narrow-

spectrum, proteinaceous antibiotics that target and kill related

bacterial species. The highly targeted, antibiotic activity of

bacteriocins could potentially be exploited to provide crops with

protection against specific bacterial pathogens with minimal
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impact on the wider microbial community (Riley and Wertz,

2002).

Various prospective bacteriocins have been identified in Pseu-

domonas spp., including putidacin L1 (PL1), a 30 kDa lectin-like

bacteriocin that is highly potent against Ps pv. syringae, lachry-

mans and morsprunorum (Parret et al., 2003; Parret et al., 2005).

The lectin-like bacteriocins bind to D-rhamnose-containing

oligosaccharides that are incorporated into lipopolysaccharide

(LPS) on the bacterial surface (Ghequire et al., 2013; McCaughey

et al., 2014). This binding facilitates the docking of PL1 on the cell

surface and its interaction with the outer membrane insertase

BamA, leading to the death of the cell via an unknown

mechanism (Ghequire et al., 2018). We are not aware of any

prior reports of attempts to express bacteriocins in planta as a

strategy to confer resistance against plant pathogenic bacteria.

Bacteriocins with activities against E. coli, Salmonella and Pseu-

domonas aeruginosa have been expressed in plants but with the

objective of using these as a means of treating bacterial infections

in humans (Schulz et al., 2015; Pa�skevi�cius et al., 2017; Schneider

et al., 2018). The resulting successful demonstration that active

bacteriocins can be expressed in planta suggests that PL1 could

also be expressed in planta in an active form to protect plants

against Ps infection.

The use of novel peptides such as antimicrobial peptides

(AMPs) for defence against pathogens in agriculture is not a novel

concept and there are a number of reports of AMPs being tested

as a strategy for conferring pathogen resistance (De Souza

Cândido et al., 2014; Holaskova et al., 2014; Ageitos et al.,

2017). Interestingly, AMP activity is not always mirrored in planta

compared with activity in vitro. This is mainly attributable to

factors such as salt concentration, protease-based degradation

and inhibition by phenolic compounds (Zeitler et al., 2013).

Furthermore, AMPs have been shown to be sensitive to divalent

cations common in the apoplastic fluid-like Ca2+ and Mg2+, which

can drastically reduce their efficacy (De Bolle et al., 1996; G€uell

et al., 2011). Therefore, bacteriocins exhibit significant potential

advantages over more generalized antimicrobials because of their

highly targeted activity at low concentrations.

In this study, we explore this possibility and demonstrate that

active PL1 can be efficiently expressed in both Nicotiana

benthamiana and Arabidopsis. We show that the transient

expression of PL1 in N. benthamiana and its stable expression

in Arabidopsis provides quantitative and qualitative disease

resistance against PL1-sensitive strains of Ps. Furthermore, we

show that mutations associated with PL1-insensitivity/tolerance

are linked to the LPS biosynthesis machinery and that Ps mutants

with increased tolerance to PL1 are still unable to induce disease

symptoms in transgenic plants. We conclude from our results that

the transgenic expression of a bacteriocin in planta can provide

robust disease resistance against the bacterial phytopathogen Ps.

Results

PL1 has a narrow killing spectrum

To determine the killing spectrum of PL1 against Ps pathovars,

recombinant PL1-His6 was purified from E. coli. The killing activity

of the purified protein was then assessed against a panel of 22

diverse Ps pathovars, including pathogens of kiwifruit, locust

bean, oat, soybean, cucumber, cabbage, cherry, plum, olive,

pear, maize, lilac and tomato. Of the 22 strains tested, 10 (from 6

different Ps pathovars) were sensitive to PL1 (Table 1 and

Figure S1), including all three members of the syringae group.

Minimum inhibitory concentrations of PL1 ranged from 0.85 nM

to 1.8 µM, with several of the pathovars showing sensitivity at

nanomolar concentrations. All 4 members of the tomato group

were resistant to PL1. We conclude that PL1 has a very specific

killing spectrum making it an ideal candidate for expression in

plants.

Table 1 The range of P. syringae pathovars

that are susceptible to PL1
Pathovar Strain ID

Sensitive to

10 µM PL1? MIC (nM) Origin Host

actinidae NCPPB 3738 Yes 125 Japan Actinidiae delici

actinidae NCPPB 3739 Yes 125 Japan Actinidiae delici

ciccaronei NCPPB 2355 No – Italy Ceratonia siliqua

coronafaciens LMG 5060 No – UK Avena sativa

glycinea NCPPB 2070 Yes 1070 USA Glycine max

glycinea NCPPB 1245 Yes 1070 Canada Glycine max

glycinea NCPPB 2895 No – Australia Glycine max

glycinea NCPPB 3643 No – Brazil Glycine max

lachrymans LMG 5456 Yes 22.9 UK Cucumis sativus

maculicola LMG 2208 No – UK Brassica oleraccea

morsprunorum LMG 2222 Yes 0.85 UK Prunus avium

persicae NCPPB 3687 No – New Zealand Prunus salicina

persicae NCPPB 2254 No – France Prunus salicina

savastoni NCPPB 1506 Yes 325 Italy Olea europaea

savastoni NCPPB 2327 No – Italy Olea europaea

syringae LMG 5084 Yes 5.6 UK Pyrus communis

syringae LMG 5082 Yes 8.3 UK Zea Mays

syringae LMG 1247 Yes 1850 UK Syringa vulgaris

tomato NCPPB 3160 No – UK Solanum lycopersicum

tomato NCPPB 2563 No – UK Solanum lycopersicum

tomato NCPPB 1107 No – UK Solanum lycopersicum

tomato DC3000 No – USA Solanum lycopersicum
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Expression of PL1 in N. benthamiana provides robust
resistance against Ps pv. syringae LMG5084

Previously, bacteriocins that are active against human pathogens

have been expressed in N. benthamiana leaves and in leafy green

vegetables (Schulz et al., 2015; Pa�skevi�cius et al., 2017; Schneider

et al., 2018). To express PL1 in planta, a construct that encodes

PL1 with an N-terminal 4 9 c-Myc tag was cloned into a Ti binary

vector and transiently expressed in leaves of N. benthamiana

using agroinfiltration. By 3-days post-infiltration, leaf extracts

showed high levels of PL1 in western blots and high killing activity

against PL1-sensitive strains in spot tests. We estimated the

quantities of PL1 within the infiltrated leaves by comparing in spot

tests the killing activity of leaf extracts with PL1 standards

produced in E. coli. When correlated with killing activity, PL1

levels in planta were equivalent to 0.35% of total plant protein

(~5 µM), demonstrating that active PL1 can be produced effi-

ciently in N. benthamiana leaves (Figure 1a,b).

After establishing that PL1 can be expressed transiently at high

levels in leaves, we challenged these leaves with Ps to establish

whether PL1 expression produced a qualitative difference in

disease symptoms. Three days post-agroinfiltration (now denoted

as day 0), leaves were inoculated with Ps LMG5084 (a pathovar

that is highly sensitive to PL1, see Table 1) or with Pst DC3000 (a

PL1-insensitive strain). Over the next 3 days, leaves were observed

for symptom development and bacterial growth was measured.

The infiltration of leaves with Agrobacterium has been shown to

induce immune responses that inhibit the growth of Ps in

subsequent inoculation (Zipfel et al., 2006; Rico et al., 2010; Love

et al., 2012). We therefore compared the growth of Ps in leaves

that transiently express PL1 following agroinfiltration with that in

leaves that transiently express green fluorescent protein (GFP), a

non-bactericidal protein. In PL1-expressing leaves inoculated with

Ps LMG5084, we observed a striking reduction in symptom

severity (mild chlorosis only) compared with GFP-expressing

controls inoculated with Ps LMG5084, which exhibited black

mottling and extensive necrosis by 7 days post-infection (dpi)

(Figure 1c).

When we measured bacterial load in Ps LMG5084-inoculated

leaves that express PL1, Ps titres were 5-log units lower than in

non-agroinfiltrated control leaves; crucially, they were also 3-log

units lower than in leaves expressing GFP (Figure S3a). The

process of syringe infiltration with buffer did not affect the

growth of Ps; neither did GFP expression compared with the

empty vector control (Figure S2). In PL1-expressing leaves

inoculated with the PL1-resistant strain Pst DC3000, Ps titres

were the same as in leaves expressing GFP (Figure S3b). However,

titres of Ps LMG5084 (but not of Pst DC3000) that we recovered

from leaves immediately following their inoculation (i.e. 0 dpi)

were unexpectedly ~2-log units lower in PL1-expressing relative

to GFP-expressing leaves and non-infiltrated controls (Figure S3a,

b). Since all leaves were inoculated from a common bacterial

suspension, the numbers of bacteria introduced into each leaf

should have been the same for all samples. We suspected that the

much lower titres recovered from PL1-expressing leaves at 0 dpi

(immediately after infiltration) were because bacteria were being

killed post-extraction as a result of the release of PL1 from cells

during leaf grinding. We confirmed this by mixing leaf extracts

from uninfected PL1-expressing leaves with leaf extracts from

infected non-expressing leaves; here, we observed a reduction in

Ps titres of ~2 log units with Ps LMG5084 (Figure S4a,b). To

develop an alternative assay for bacterial titres in planta, we

initially attempted to adapt the bioluminescence assay of Fan

et al. (2008) to measure bacterial titres in leaves. However, in our

hands Ps LMG5084, a field isolate, proved much more difficult to

transform with the luxCDABE plasmid than did Pst DC3000. We

therefore developed an alternative assay for bacterial load by

using qPCR to measure the quantity of bacterial genomic DNA

relative to plant DNA in leaf extracts (Ross and Somssich, 2016).

A standard curve showed a relationship between bacterial

titres (colony forming units, CFU) and bacterial DNA recovered in

planta that was near linear (Figure S5). This demonstrates that

DNA levels provide a good proxy for measuring bacterial load.

Therefore, we infected PL1- and GFP-expressing leaves with Ps

LMG5084 and Pst DC3000 and quantitated bacterial DNA using

qPCR. By 3 dpi, we observed significantly reduced levels

(P value = 0.031 by one-way ANOVA) in PL1- compared with

GFP-expressing leaves following inoculation with Ps LMG5084 but

not with Pst DC3000, consistent with the direct measure of

bacterial titres (Figure 1d,e). Moreover, using DNA levels as a proxy

for bacterial load does not distinguish between living and dead

bacteria; therefore, this approach will inevitably overestimate the

titres of living bacteria within the leaf and the genuine differences

in bacterial load are likely to be even greater. In conclusion, we

show that PL1 can be expressed to a high level in N. benthamiana

leaves and that its expression correlates with both qualitative and

quantitative disease resistance against the PL1-sensitive strain Ps

LMG5084 but not against the PL1-insensitive strain, Pst DC3000.

Expressing PL1 in Arabidopsis provides robust resistance
against P. syringae pv. syringae LMG5084

To better understand the efficacy of PL1-mediated resistance,

non-transgenic (NT) Arabidopsis plants were transformed to

express c-myc PL1 and homozygous PL1-expressing transgenic

lines were selected. We characterized 3 independent lines, PL1(1-

2), PL1(2-1) and PL1(6-1), which exhibited levels of PL1 expres-

sion, varying from 0.13 to 0.67% of total protein (1.5�8.5 µM;

Figure 2a,b). Over their lifespan, we observed no visible differ-

ences between any of the three transgenic lines and non-

transgenic (NT) plants with respect to size, general appearance,

leaf morphology and flowering. PL1-expressing transgenic lines

were infected by spraying them with a suspension of the PL1-

susceptible pathovar, Ps LMG5084. As a control, the PL1-resistant

strain Pst DC3000 was used. Bacterial titres were then measured

over 3 days. Titres of Ps LMG5084 were significantly lower in PL1

(1-2) and PL1(2-1) (P < 0.001 and P < 0.004, respectively, by

one-way ANOVA) relative to NT controls. The greatest reduction

in growth was observed in PL1(1-2), the line with the highest

levels of PL1 (Figure S6a). We observed no differences in the titres

of Pst DC3000 between NT plants and any of the transgenic lines

(Figure S6b).

As with N. benthamiana, although a common bacterial

suspension was used to inoculate all plants, titres of bacteria

recovered from PL1-expressing lines immediately following inoc-

ulation with Ps LMG5084 were lower than expected on the basis

of titre of the original inoculum (Figure S4). Again, we assume

that live bacteria, recovered from plants at 0 dpi, were being

killed by PL1 released from cells during grinding. We therefore

measured bacterial growth by quantifying DNA levels by qPCR as

previously used with N. benthamiana (Figure S7). Here, we

carried out infections on 14-day-old seedlings grown on agar

plates because disease phenotypes are more pronounced in

younger plants (Zipfel et al., 2004; Ishiga et al., 2011). We

observed striking differences in symptom severity between NT
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and all three PL1-expressing transgenic lines. By 3 dpi, NT

seedlings infected with either Ps LMG5084 or Pst DC3000

exhibited severe disease symptoms with most of the seedlings

dead or dying (Figure 2c). In contrast, in all three PL1-expressing

lines, nearly all the Ps LMG5084-infected seedlings appeared to

be green and healthy (Figures 2c, S8), whereas Pst DC3000-

infected seedlings showed severe symptoms similar to those in NT

plants (Figures 2c, S9). To quantify disease resistance, NT

Arabidopsis and the 3 PL1-expressing transgenic lines were

infected by flooding plates with a suspension of bacteria and

samples were taken at 0 and 3 dpi. At 3 dpi, the quantity of Ps

LMG5084 DNA in the PL1-expressing lines was ~1.5-log units

lower than in the NT control (Figure 2d); p values for PL1(1-2), PL1

(2-1) and PL1(6-1) were 0.002; 0.006; 0.006, respectively,

showing that the differences are highly significant. Bacterial

DNA levels in PL1(1-2) seedlings infected with the PL1-insensitive

line Pst DC3000 were identical to levels in NT seedlings (Figure 2e).

In conclusion, PL1 was able to provide strong qualitative and

quantitative disease resistance to the PL1-sensitive strain Ps

LMG5084 but not to the PL1-insensitive strain, Pst DC3000.

PL1-mediated resistance is not specific to P. syringae pv.
syringae LMG5084

To demonstrate that the disease resistance mediated by PL1

expression in planta is not specific to a single Ps strain, we tested

two additional PL1-susceptible pathovars. We first established

which of the remaining nine PL1-sensitive strains could establish a

compatible infection with Arabidopsis by flood-infecting NT

seedlings and screening them for characteristic Ps disease

symptoms. From this test, we identified Ps pv. syringae

LMG5082 and pv. lachrymans LMG5456 as suitable candidates.

Both strains produced much less severe symptoms in PL1-

transgenic Arabidopsis compared with NT plants (Figure 3a,c;

Figures S10 and S11). Also, relative to NT plants, bacterial DNA
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levels in transgenic lines were 0.8-log units lower for Ps LMG5082

and 1.3-log units lower for Ps LMG5456 (Figure 3b,d). Therefore,

PL1-mediated resistance is not confined to a single strain (Ps

LMG5084) nor to Ps. pv. syringae pathovars.

P. syringae mutants insensitive to PL1 lack LPS and show
reduced virulence in PL1 transgenic Arabidopsis

In our experiments, high levels of PL1 are produced in planta,

which we predict will create a strong evolutionary pressure on Ps

to acquire mutations conferring decreased sensitivity to PL1.

Previous work has shown that LPS constitutes the primary

receptor for the lectin-like bacteriocins and that mutations in

the LPS synthesis machinery can cause resistance to this class of

protein antibiotics (Ghequire et al., 2013, 2018; McCaughey

et al., 2014). To assess the robustness of protection against Ps

that is provided by the in planta production of PL1, we first

generated spontaneously arising PL1-insensitive (Pi) mutants by

growing Ps LMG5084 in liquid culture in rich media supple-

mented with 10 µM PL1. Surviving colonies were subcultured and

eight independently arising Ps mutants that were highly tolerant

to PL1 were selected for characterization. These mutants

displayed only hazy zones of clearing at >10 µM PL1 in a spot

test (Table S1). Whole-genome sequencing was then performed

to identify mutations that might be responsible for PL1 tolerance.

All of the PL1-tolerant lines carried mutations in genes that

encode enzymes reported to be involved in LPS biosynthesis

(Table S1). To investigate potential defects in LPS production, we

purified and analysed LPS profiles isolated from Ps LMG5084 and

from eight of the PL1-tolerant mutant lines. Analysis by SDS-

PAGE and silver stain showed that each of these mutants lacks
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the outer membrane O-antigen that is produced by the parental

Ps LMG5084 strain (WT; Figure 4a). In addition, each of these

mutants showed defects in motility, as measured in swimming

assays and increased sensitivity to reactive oxygen species, as

determined by exposure to 1% H2O2 (Figure 4b,c; Figures S12

and S13). Interestingly, when inoculated with the PL1-tolerant

mutants, NT Arabidopsis plants still developed severe symptoms

similar to WT Ps LMG5084, but the transgenic PL1-producing

lines retained a healthy appearance suggesting that the latter

retain effective resistance even to PL1-tolerant Ps mutants

(Figure 4d; Figure S14).

Discussion

In this study, we set out to investigate whether the expression of

bacteriocins in planta could be used as a strategy to confer

resistance against bacterial infection. Here, we have established a

proof-of-principle for bacteriocin-mediated resistance against a

key genus of plant pathogenic bacteria in two different model

plant species. We are therefore optimistic that the concept of

bacteriocin-mediated crop protection is viable. Encouragingly,

where bacteriocins have previously been assessed by the US FDA

for safety as antibacterials for use in humans, they have been

classified as ‘Generally Regarded as Safe’ (Schulz et al., 2015).

Furthermore, bacteriocins are narrow-spectrum antimicrobial

agents and they should therefore selectively target only specific

plant pathogenic bacterial species and not affect the many

commensal/mutually beneficial bacteria that persist in the plant

rhizosphere; however, this requires further investigation (Mendes

et al., 2013). The combination of highly specific target range and

negligible impact on benign species has been a crucial factor in

the extensive worldwide adoption of BT-insecticidal GM crops

(Koch et al., 2015) and we see parallels with the use of

bacteriocins for protection against bacterial infections.

The use of novel peptides for defence against pathogens in

agriculture is not a novel concept. Over 900 synthetic and natural

AMPs have been characterized in the literature with a broad

spectrum of effects including defence against pathogens, and

there are several reports of transgene-mediated overexpression

being tested as strategy for conferring resistance to infection by

plant pathogenic bacteria (De Souza Cândido et al., 2014;

Holaskova et al., 2014; Ageitos et al., 2017). For example, Hao

et al. (2017) reported that expression of the AMP D2A21

conferred resistance against Ps pv. tabaci in transgenic tobacco,

as evidenced by disease symptoms, although importantly the

bacterial titres were not significantly reduced (Hao et al., 2017).

Transgenic expression of Bombinin (Zakharchenko et al., 2018)

and LfChimera (Chahardoli et al., 2018) also conferred a degree

of broad-spectrum resistance against bacterial pathogens, but

again, this was based primarily on symptom expression rather
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than a reduction in bacterial growth in planta. In contrast, the

resistance conferred by expression of PL1 appears to be more

robust and crucially more targeted against a narrow spectrum of

specific bacterial pathovars. Moreover, the impact of AMPs on

the root microbiome is still poorly understood; thus, the trans-

genic expression of biological agents like bacteriocins is advan-

tageous because of their narrow target spectrum. Currently,

there has been one study (involving wild tobacco plants express-

ing Mc-AMP1 from Mesembryanthemum crystallinum) that

suggested that expression of the peptide had a marginal effect

on the root-associated microbiota (Weinhold et al., 2018).

To future-proof the use of bacteriocins in agriculture, the

expression of heterologous cocktails of bacteriocin proteins

would help to overcome the development of bacteriocin insen-

sitivity and ensure the eradication of plant pathogenic bacteria

(Wulff et al., 2011). In this study, we show that lectin-like

bacteriocins represent promising candidates for transgenic

expression. However, genome mining has identified additional

classifications of bacteriocins in plant pathogenic bacteria,

including tailocins, colicin-M like bacteriocins and nuclease

bacteriocins (Grinter et al., 2012a). An important consideration

when expressing bacteriocins in planta is the effect they might

have on plant growth and development. Although we did not

observe any obvious phenotypic effects of PL1-expression, we will

need to address this more thoroughly in the future. However,

from our initial observations, we see no phenotypic differences

between the transgenic and the NT plants used in this study. A

key question for future studies to address is therefore whether

the expression of PL1, or of other bacteriocins, negatively affects

crop yield/quality.

A further consideration is the natural selection of bacterial

populations that develop insensitivity to a bacteriocin; however,

this can come with a fitness cost. For example, non-pathogenic

strains of Agrobacterium that express agrocin 84 can suppress the

formation of crown gall by pathogenic strains in the field (Kerr

and Htay, 1974; Ellis et al., 1979). Our results suggest that for the

PL1-tolerant mutants tested here, which were isolated in vitro,

the levels of PL1 exposure in the transgenic lines remained

sufficient to offer robust resistance to infection, although perhaps

surprisingly, these mutant lines retained virulence in NT plants.

Possibly, the high bacterial titres in the flood inoculation method

used in these experiments (much greater than titres that would

normally be encountered in natural infections) are masking any

fitness costs of a rough LPS phenotype such as the ability to

survive out with the plant (epiphytic fitness) or infect in a

biologically relevant manner. For example, mutations resulting in

the loss of o-antigen in Ps pv. syringae 61 cause a reduction in

virulence in bean pods when inoculated with a toothpick (Deng

et al., 2010). Moreover, although LPS mutations associated with

PL1 tolerance should diminish the ability of PL1 to dock to the

bacterial cells, they will not affect the interaction with BamA

which is the primary biological target. This could explain why the

transgenic plants retain resistance to the PL1 tolerant mutants,

particularly given the high levels of bacteriocin present.
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Bacteriocin production is not exclusive to the genus Pseu-

domonas and so this strategy should in principle be applicable to

a wide variety of important phytopathogens, such as Xan-

thomonas spp. (which causes the greening and blight of rice and

banana; Pham et al., 2004; Ghequire et al., 2012); Ralstonia

solanacearum (which causes potato brown rot and bacterial wilt

of tomato; Huerta et al., 2015) and Pectobacterium and Dickeya

spp. (which cause potato soft rot and blackleg; Roh et al., 2010;

Chan et al., 2011; Grinter et al., 2012b; Czajkowski et al., 2013).

We propose that bacteriocin-mediated resistance in plants

represents a technology that can be utilized to control bacterial

pathogens in agronomically important crops. Critically, plant-

bacterial ecosystems are dynamic and complex, therefore, we

expect that their great genomic diversity will promote bacteriocin

evolution and hence provide a very large, exploitable resource for

future applications.

Experimental procedures

Bacterial strains

Ps isolates (Table 1) were obtained from the National Collection of

Plant Pathogenic Bacteria and the Belgian Coordinated Collec-

tions of Microorganisms (LMG). Ps strains were cultured at 28°C
in Kings broth B (KB) media, 20 g/L peptone, 1.5 g/L K2PO4,

1.5 g/L MgSO4 and 10 mL/L glycerol (pH 7.5).

Motility experiments

For the motility swimming assay, an overnight liquid culture of Ps

was stabbed into 0.3 % hrp-derepressing minimal media (10 mM

sucrose, 50 mM potassium phosphate buffer, 7.6 mM (NH4)2SO4,

1.7 mM MgCl2, 1.7 mM NaCl, pH 5.7) agar and incubated at 28°C
for 4 days (Huynh et al., 1989; Deng et al., 2010).

LPS extraction

A 2 mL bacterial culture with an OD600 = 1 was pelleted by

centrifugation and washed in 10 mM MgCl2 (to remove any

trailing media). LPS was then extracted using an LPS extraction kit

(iNtRON Biotechnology, Gyeonggi, South Korea). The LPS pellet

was resuspended in 50 µL of 10 mM Tris, pH 8. To ensure

complete solubilization of the LPS pellet, the sample was boiled at

95 °C for 2 min and was further treated with 3 µg/µL of

proteinase K at 50 °C for 30 min to obtain highly pure LPS from

bacterial cells.

Plant growth conditions

Nicotiana benthamiana plants were grown using long-day con-

ditions, consisting of 16 h light/8 h dark (at 26 and 18 °C,
respectively) at 60% humidity and at a light level of 80 lmol/m2/s.

Arabidopsis plants were grown in short-day conditions at light

level of 80 µmol/m2/s, consisting of 9 h light/15 h dark (at 22 and

18 °C, respectively) at 60/70% humidity.

Gene cloning

To express PL1 in E. coli, the PL1-encoding sequence (with no

stop codon) was amplified using standard PCR reactions, a high

fidelity Phusion Taq polymerase enzyme (New England Biolabs,

Hitchin, UK) and appropriate templates, followed by cloning into

NdeI-XhoI sites in the pET21 vector (McCaughey et al., 2014). For

constitutive transgene-mediated expression in planta, the PL1

coding sequence was fused to an N-terminal 4xMyc tag and

cloned into the KpnI site of pJO530, a derivative of pBIN19

(Cecchini et al., 1997). A Ti plasmid vector that expresses GFP

(Haseloff et al., 1997) was used as a control for transient assays in

N. benthamiana (Cecchini et al., 1997). These plasmids are

denoted pJOPL1 and p35S-GFP, respectively. Plasmids used in this

study were linearized by digestion using the appropriate restric-

tion enzymes (New England Biolabs, Hitchin, UK). All DNA

constructs were verified by sequencing (Source Bioscience,

Oxford, UK).

Expression and purification of PL1

Expression and purification were carried out according to

McCaughey et al. (2014). Briefly, the pET21 plasmid containing

PL1 was transformed into BL21 DE3 pLyS cells (Agilent, Edin-

burgh, UK). PL1 expression was induced at mid-log phase by

supplementing the media with 0.3 mM isopropyl b-D-1-thiogalac-
topyranoside (IPTG), and the cells were grown at 22 °C for 20 h

and harvested by centrifugation. The cells were lysed using an

MSE Soniprep 150 (Wolf Laboratories, York, UK) and the cell-free

lysate was applied to a 5 mL HisTrap HP column (GE Healthcare,

Amersham, UK), and PL1 was eluted using a 5–500 mM imidazole

gradient. The remaining contaminants were removed by gel

filtration chromatography on a Superdex S75 26/600 column (GE

Healthcare, Amersham, UK). PL1 was concentrated using a

centrifugal concentrator (Vivaspin 20, Epsom, UK) with a 5 kDa

molecular weight cut-off and stored at �80 °C.

Soft agar overlay susceptibility assays

Soft agar overlay spot assays were performed using the method

of Fyfe et al. (1984). Fifty microlitres of test strain culture at mid-

log was inoculated in 0.8 % soft agar and poured over a KB agar

plate, as appropriate. 5 µL of undiluted and serially diluted

bacteriocin solution/plant protein extract was spotted onto the

plates and incubated for 20 h at 28 °C, after which time the

plates were inspected for zones of bacterial growth inhibition.

Transgene expression in planta

Transgene expression of the T-DNA constructs in planta was

achieved by transforming the constructs into Agrobacterium

tumefaciens (strain GV3101). N. benthamiana leaves were infil-

trated with GV3101 containing the appropriate vector (Kapila

et al., 1997). For Arabidopsis transformations, plants were floral

dipped according to Zhang et al. (2006). PL1 expression was

detected using western blots. Protein was extracted by macerat-

ing frozen leaf tissue in 20 mM Tris-HCl, 200 mM NaCl, pH 7.5,

supplemented with cOmpleteTM, EDTA-free Protease Inhibitor

Cocktail (Roche, West Sussex, UK), and the protein concentration

of the supernatant was determined by Bradford assay (BioRad,

Perth, UK). Ten micrograms of protein extract was separated on

16% SDS-PAGE and transferred onto a PVDF membrane. Proteins

were detected using an anti-c-myc monoclonal antibody (sc-40;

Santa Cruz Biotech, Texas) and an anti-mouse HRP conjugate

antibody (W4021; Promega, Southampton, UK).

Infection assays in planta

For infection studies in N. benthamiana, 1 9 105 CFU/mL of Ps

was syringe-infiltrated into selected leaves of 4-6-week-old

plants, according to Hann and Rathjen (2007). For Arabidopsis,

a suspension of 1 9 108 CFU/mL of Ps supplemented with

0.025% Silwet L-77 (Lehle Seeds, Texas) was sprayed onto the

leaves of 6-week-old plants until they were visibly wet (Ishiga

et al., 2011). For the flood inoculation method, agar plates

containing 14-day-old Arabidopsis seedlings were flooded for

1 min with a bacterial suspension comprising 1 9 106 CFU/mL of
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bacteria supplemented with 0.025% Silwet L-77 (Lehle Seeds,

Texas). Plates containing transgenic seedlings were supplemented

with 15 µg/mL of hygromycin B (Sigma-Aldrich, Gillingham, UK).

Bacterial titre assay using qPCR

DNA was extracted from infected N. benthamiana leaves using a

DNAzol kit (Thermo Fisher Scientific, Paisley, UK) according to the

manufacturer’s protocol. To extract DNA from infected Ara-

bidopsis seedlings, plant tissue was frozen in liquid nitrogen and

the DNA was extracted using FastDNATM SPIN Kit for Soil (MP

Biomedicals, California). Bacterial and plant DNA levels were

quantified using qPCR, essentially as described by Love et al.

(2007). qPCR was performed in an Applied Biosystems StepOne-

Plus Real-Time PCR System (Thermo Fisher Scientific, Paisley, UK),

using Fast SYBRTM Master Mix (Thermo Fisher Scientific, Paisley,

UK) and 0.16 lM of primers. Bacterial DNA levels in planta were

determined using primers specific for the Ps oprF gene (Ross and

Somssich, 2016) and were normalized against the ACT2

(AT3G18780) gene in Arabidopsis or the 18S rRNA genes in

N. benthamiana (Love et al., 2007). A list of the PCR primers used

in this study is provided in Table S2.

Isolation and whole-genome sequencing and analysis of
PL1-insensitive Ps strains

Fifty microlitre aliquiots of a Ps LMG5084 overnight culture were

pelleted at 3000 g for 10 min and re-suspended in 1 mL of 10 µM

PL1. The bacteria were then incubated at 28 °C for 4 h, plated

out on KB plates, and incubated overnight. DNA was extracted

from wild type Ps LMG5084 and its PL1-insensitive mutants using

the GenElute Bacterial Genomic DNA Kit (Sigma-Aldrich).

Libraries were prepared with the NEBNext Ultra II library kit,

according to the manufacturer’s instructions, and sequenced on

the Illumina HiSeq 9 platform to obtain 150 bp paired-end reads

with an average depth of 40-fold. Raw sequences from this study

have been deposited in the European Nucleotide Archive (ENA)

under the accession numbers detailed in Table S3. Ps LMG5084

wild type was assembled using Velvet v 1.2 with multiple

assemblies generated using VelvetOptimser v 2.2.5 (Zerbino and

Birney, 2008; Zerbino, 2010; Page et al., 2016). The assembly

with the best N50 was subjected to assembly improvement.

Contigs were ordered using Mauve v 2.4.0, scaffolded with

SPPACE v 2.0-1 and gaps filled with GapFiller v 1.11-1 (Rissman

et al., 2009; Boetzer et al., 2011; Boetzer and Pirovano, 2012).

The assembly was then annotated using Prokka v 1.5 and Roary v

3.11.2 based on the reference Ps B728a accession no.

NC_007005.1 (Seemann, 2014; Page et al., 2015). This reference

genome was chosen according to the top species hit from Kraken

(Wood and Salzberg, 2014). For Ps LMG5084 PL1-insensitive

mutants, sequence reads were mapped to Ps LMG5084 wild type

using BWA v 0.7.17. SNPs were called and filtered using

SAMtools mpileup and BCFtools v 0.1.19 (Li, 2011). Variant calls

were then filtered and retained if the depth was greater than 5,

quality greater than 50, mapping quality greater than 20, and the

depth of reference (forward and reverse) reads was greater than

the depth of alternative reads. Variant effects were predicted

using SnpEff v 4.3T (Cingolani et al., 2012).

Statistical analysis

Statistical analysis used in this study was performed with Minitab

17 statistical software using one-way ANOVA followed by Tukey’s

multiple comparison test or a Dunnett’s test.
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Accession Numbers

Sanger ID Sample ENA accession number

4526STDY7070045 Ps LMG 5084 Wild type SAMEA104233059

4526STDY7070060 Ps LMG 5084 Pi1 SAMEA104233065

4526STDY7070076 Ps LMG 5084 Pi2 SAMEA104233071

4526STDY7070084 Ps LMG 5084 Pi3 SAMEA104233074

4526STDY7070092 Ps LMG 5084 Pi4 SAMEA104233077

4526STDY7070100 Ps LMG 5084 Pi5 SAMEA104233080

4526STDY7070108 Ps LMG 5084 Pi6 SAMEA104233083

4526STDY7070116 Ps LMG 5084 Pi7 SAMEA104233086

4526STDY7070037 Ps LMG 5084 Pi8 SAMEA104233055

ENA accession numbers for sequenced samples
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