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a b s t r a c t 

The measurement of online sentiment is a developing field in social science and big data research. The 

methodology from this study provides an analysis of online sentiment using a unique combination of NLP and 

human validation techniques in order to create net sentiment scores and categorise topics of online conversation. 

The study focused on measuring the online sentiment of South Africa’s major banks (covering almost the entire 

retail banking industry) over a 12-month period. Through this methodology, firms are able to track shifts in 

online sentiment (including extreme firestorms) as well as to monitor relevant conversation topics. To date, no 

published methodology combines the use of big data NLP and human validation in such a structured way. 

• Microsampling for manual validation of sentiment analysis (both qualitative and quantitative approaches in order 

to obtain the most accurate results) 
• Sentiment measurement 
• Sentiment map 
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Specifications Table 

Subject Area: Online behaviour 

More-specific subject area: Social media sentiment 

Method name: Online sentiment analysis with human validation 

Method details 

The nature of the study set out was rather complex and relatively new, based on prior research

examined; thus, specific considerations were taken into account in order to design the methodology. 

Collaboration from an external company, BrandsEye, was required in order to help analyse mass data

from the banking industry [3] . A predominant number of the consumer research studies found are

reliant on backwards-looking indicators, such as questionnaires or focus groups [23,26,14] . For this

study, however, social data were examined and allowed for unsolicited and non-coercive responses 

that captured the lived experiences of consumers within the banking industry [29] . 

In more recent years, content analysis has been a means by which social media has been analysed

[13,21,25] . Content analysis is usually done by means of a mixed-method approach of both qualitative

and quantitative methods [4] . The qualitative approach is mainly inductive, exploring the underlying 

meaning of messages as well as drawing inferences from the data (comments/posts), whereas 

quantitative content analysis is deductive, using probabilistic approaches to test hypotheses generated 

from either theories or previous empirical studies performed [30] . Typical sentiment analysis utilises

NLP (natural language processing) only approaches, which in the absence of human assistance often is

unable to accurately evaluate the nuances of human conversation [17] . In this study, NLP was used for

initial relevancy determination in order to help ensure that all mentions harvested were relevant to

the research question(s). The process then combined a human validation (or crowdsourcing) in order 

to increase the precision of the data [17] . Hence, this study used a combination of both qualitative

(using human validation through topic analysis) and quantitative (using a combined process of 

sentiment analysis and topic analysis) approaches in order to obtain the most accurate results. 

Data collection and sampling 

The first step was to mine and analyse social media posts from the selected social media platforms

(Facebook, Instagram, YouTube, LinkedIn and Twitter). Conversations surrounding the retail banks 

were accessed via an application programming interface (API), by which a filter was used to collect

the relevant posts mentioning any of South Africa’s top five retail banks over the designated period of

a year (1 September 2017 to 31 August 2018). GNIP (a social media API aggregation company) collects

social media data from various platforms and subsequently normalises the data [28] to be sent to

clients. GNIP provided this study access to data in order to conduct the necessary research. Through

this, a relative analysis of online consumer sentiment regarding selected conversations was acquired 

[28] . A major advantage of using the GNIP platform is gaining an accurate, real-time market opinion of

the relationship between consumers and the retail banks in question. From here, a machine learning

algorithm, discussed below, was used to evaluate each of the posts and their sentiments towards each

bank [2] . 

Through this process, algorithms sifted through millions of posts and retrieved 1 720 810 posts

containing mentions of the retail banks in question from the selected social media networks. These 1

720 810 posts made up the study’s sampling population. These posts have come from a randomly

selected group of individuals who have publicly posted on social media, mentioning any of the

relevant topics regarding South Africa’s top five retail banks (Absa, Capitec, FNB, Nedbank and

Standard Bank). Geocoding was not analysed. The high use and continuous escalation of major social

media platforms by both consumers and brands [11] , as well as the limited number of studies

which extensively focus on multiple social media platforms, corroborate the appropriateness of using 

multiple social media platforms for this study [32] . A non-probability technique was adapted through

using quota sampling, whereby individuals were chosen by their social media posts retaining relevant

topics. 
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easuring sentiment 

Sentiment analysis is a computer process developed to identify and categorise consumers’ opinions

nline in order to determine their sentiment towards a particular issue (a specific bank in this case)

12] . The sample of social media posts that were collected then underwent a sentiment analysis. This

nvolved categorising the text in each post as either positive or negative sentiment, posts with neutral

entiment being disregarded [1] . All enterprise posts were excluded from the analysis in order to

revent bias and maintain a focus on the consumer segment. Traditionally when analysing sentiment,

here are two approaches (machine learning algorithms and a lexicon approach) that can be adopted

o measure and scale the contents within each post. While both approaches are seen to have similar

ccuracy in analysing sentiment applied to consumer-generated content [7] , this research made use

f the machine learning algorithm approach, following other researchers in the field [16,27,33] . Due

o the nuances of human conversation, certain entries could not be accurately processed by artificial

ntelligence; thus human insight was required in order to ensure accuracy [8,24] . Entries were tagged

ith their sentiment, finding whether positive or negative emotions evoked from it ( [2,1,22] .) This

rocess of including human involvement is the process of manual validation, whereby a sub-sample of

he data was analysed by verified human contributors (micro-sampling for manual validation), which

ill be further discussed in the next section. 

icro-sampling for manual validation 

Micro-sampling via manual validation can also be considered as a reliability assessment ( [20] ).

ithin this process, a sub-sample of 521 326 randomly selected posts from the various platforms

ere selected and individually analysed by human ‘raters’ (or human contributors). These qualified

ontributors rate the data for relevancy, sentiment and topics. Each mention is sent to multiple raters’

or verification and is based on a consensus model that accounts for conflicting ratings. Inter-rater

eliability is measured through challenges, appeals and judgements on mentions that are processed.

pproximately 0.02% of mentions were challenged or appealed, suggesting a high degree of inter-

ater reliability. Contributors were pre-trained in the process and also required to have locally relevant

nowledge on the topic of conversation and a thorough understanding of the English language. The

ontributors were remunerated in micropayments for executing these micro jobs. 

The use of human validation was critical to this study due to the fact that the complex and emotive

ature of conversations (using social nuances, such as slang or sarcasm) are less easily picked up

n analyses by algorithm-based systems [12,31] . Thus, by using manual validation with the team of

uman contributors, this research study was able to examine the nuances and meaning behind a

ignificant number of posts, ensuring that the data were correctly categorised. This has ensured that

ll major themes and sentiments driving consumers opinions have been uncovered, even when they

ave not been clearly stated or implied. The table below ( Table 1 ) illustrates the sampling rates of

ata collected across the various social media platforms during the sampling period, providing specific

nferences to the number of posts that went through the human validation process as well as the topic

nalysis process. 

In Table 1 , the topic analysis column refers to the sample of sentiment-verified mentions that were

ent for assignment to topics. The margin of error column refers to how many percentage points this

alculation’s result will differ from the real population value. For example, a 95% confidence interval
Table 1 

Sampling Rates. 

Bank Volume of mentions Crowd verification Topic analysis Margin of error 

Absa 417 500 108 179 24 569 0.26% 

Capitec 326 825 98 473 38 504 0.26% 

FNB 493 885 147 097 54 302 0.21% 

Nedbank 238 240 89 208 21,183 0.26% 

Standard Bank 244 630 78 369 21 264 0.28% 
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with a 4% margin of error means that the statistic will be within 4 percentage points of the real

population value 95% of the time. In the case of the banking data that was verified for sentiment,

the margin of error for each bank ranged from 0.21% to 0.28% for the margin of error. The combined

process of the machine learning algorithm and manual validation has created a confidence level of

95% and an overall 0.1% margin of error. Through the presented methodology, this shows the reliability

and validity of the data. 

Topic analysis 

In order to determine which topics and specific issues were driving consumer sentiment in the

study, a topic analysis was conducted. Topic analysis enables a more in-depth understanding of 

the themes which drive consumer sentiment, and enables researchers to categorise these drivers 

in order to draw specific inferences from large collections of data [15] . The topic analysis was

conducted utilising a natural language processing (NLP) technique (whereby non-verbal conversations 

can be understood). Here, keywords or related topics were generated by the human contributors or

programmer, which allowed for any relevant posts to be selected for the sample population [15] . In

the NLP process the study made use of Mallet (McCullum, 2002), which is maximum entropy classifier

trained on labelled data (from the topic analysis) to classify mentions according to relevance to the

brand/organisation. This has allowed researchers to understand not only how consumers feel, but also 

the key issues that are driving consumers to feel a certain way [3] . 

Seventy defined banking topics were chosen prior to the data analysis, through extracting all the

different topics conversed about amongst both positive and negative social media posts. The topics 

were then categorised by human contributors and machine learning algorithms into seven umbrella 

topics (themes). The predefined themes were general themes that were derived from reading through 

the literature on the banking industry, professional definitions, local common-sense constructs and 

human contributors’ own values and prior experiences. This method is supported in prior studies, as

by the time that these themes can be applied to the text, a great deal of interpretive analysis has

been done [18,5,6] . 

These themes were generated through having analysed a sub-sample of 159 822 posts, whereby

the content was grouped by a thematic analysis based on the topic at hand, and were subsequently

grouped into broad thematic clusters. This form of topic analysis develops more precise outcomes 

when compared to other topic-analysis methods, such as topic modelling [10] . A closer look at the

themes and topics can be seen in Fig. 1 . 

Analysis procedure 

The analysis procedure was conducted in two fundamental components: analysing the individual 

banks, followed by analysing the industry as a whole. This unique process was necessary due to the

complex nature of this study. 

Within the first component of the analysis procedure, each individual bank’s sentiment was 

investigated throughout the study period to get a measure of net sentiment. Net sentiment was

calculated by deducting negative sentiment from positive sentiment. Weighted net sentiment was 

calculated by multiplying net sentiment by the total conversation volume. Specific focus was made 

to inferences of spikes in negative sentiment which indicated the presence of online firestorms. The

term, ‘online firestorm’ is defined by Pfeffer, Zorbach and Carley in 2014 as “the sudden discharge

of large quantities of messages containing negative WOM and complaint behaviour against a person, 

company, or group in social media networks” [34] . The analysis paid particular attention to which

factors (identified themes and topics) caused a downturn in sentiment, as well as taking note of when

negative sentiment climaxed during a firestorm. The fact that the net sentiment could be calculated

over the year period allowed a view of sentiment over time. When a downward curve was detected

in the sentiment score (a firestorm), a deeper analysis was possible into the specific factors that drove

the change. Specifically, when a specific company’s net sentiment would deviate from the aggregated 

industry net sentiment, causes could be identified. This was done while monitoring the duration of

the decline from its starting point to any form of resolution or dissolution of negative sentiment.
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Fig. 1. Topic wheel illustrating the 7 broad themes and 70 banking topics. 
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inally, the brands content performance was analysed, focusing on volume, engagement and average

ngagement per post over the period. The volume refers to brand content (whilst excluding enterprise

eshares, direct messages and replies and automated brand posts), effectively being the number of

osts made by the individual bank within the duration period. The engagement score was limited to

onsumer engagement with the brand, this being the number of times consumers engaged with any

ost within the volume. 

The overall analysis of the banks focused on three parts. Within the first part, it investigated a

opic analysis. The topic analysis explored broad conversation themes identified within the banking

ndustry, as well as the overall sentiment within those themes. The main negative themes for each

ank were also analysed. Following this, a response analysis was conducted. This focused on looking

t response rates on the social media platform Twitter, average brand response times and finally the

verall sentiment of final interactions with the individual banks. These data consisted of posts from

onsumers who expressed dissatisfaction with verified negative posts, inclusive of the specific bank’s

ame. The final part of the analysis investigated and compared the net sentiment across all of the
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banks. This section explored the share of voice across the banks, providing a visual comparison of the

volume of social media interaction achieved by these five banks and finally analysed net sentiment

and how the trends changed after time. 

Ethical considerations 

This research has used a covert approach, as the respondents were not aware that their posts were

being recorded for research purposes. This can propose ethical implications due to the fact that it

infringes on people’s awareness of how their online content can be used. Disclosed in the terms and

conditions of social media, public posts made by individuals grant the world a non-exclusive licence

to use, process and display content, effectively legalising the use of shared social media posts ( [9] ).

All data from privatised accounts are considered restricted and were not used (Pak & Parouki, 2010).

No direct messages between consumers and company handles were used in the analysis. Within the

human validation process, any data indicating that the user would not wish to share their opinions

were considered and the data were not used. All respondents made use of within the study remain

completely anonymous. 

Methodological contribution 

The methodology explained in this article is an early contributor to the combined use of both

computer and human analysis of social media sentiment analysis for a study spanning a full year.

Through the ability to accurately analyse unsolicited consumer sentiment data, insights have been 

found into how consumers feel about their bank (the subject of this particular study). The value of

this longitudinal source of unsolicited human feedback can assist in making improvements in a person

or organisation’s reputation, risk, market conduct and service. Sentiment analysis provides researchers 

with the ability to gather unsolicited, reliable and cheaper data than those of surveys and polls [19] .

The accuracy and reliability are due to sentiment analysis’s access to vast social networking services,

giving researchers further access to a larger sample. The population generalisability, while hard to 

quantify in the social sciences, would be far greater using this scale of research when compared to

traditional survey data. 
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