Skip to main content
. 2020 Apr 10;54:102710. doi: 10.1016/j.ebiom.2020.102710

Table 3.

Calibration and discrimination tests of six machine learning models by both internal and external validations.

Validation Algorithm Calibration Discrimination tests
Slope (95% CI) Intercept (95% CI) AUROC (95% CI) Prec. (95% CI) *
Internal LR 1.08 (1.08, 1.09) −0.04 (−0.04, −0.03) 0.70 (0.69, 0.70) 0.78 (0.78, 0.78)
DT 0.99 (0.99, 1.00) 0.01 (0.01, 0.01) 0.66 (0.66, 0.67) 0.73 (0.72, 0.74)
ANN 0.64 (0.63, 0.64) 0.14 (0.14, 0.15) 0.65 (0.64, 0.67) 0.74 (0.73, 0.75)
RF 1.54 (1.54, 1.54) −0.27 (−0.27, −0.26) 0.86 (0.85, 0.86) 0.86 (0.85, 0.86)
SVM 2.68 (2.66, 2.70) −0.89 (−0.90, −0.88) 0.68 (0.67, 0.68) 0.78 (0.76, 0.79)
Ens. 1.21 (1.21, 1.22) −0.13 (−0.13, −0.12) 0.70 (0.70, 0.71) 0.78 (0.77, 0.78)
External, geographical split LR 1.80 (1.76, 1.83) −0.34 (−0.35, −0.32) 0.74 (0.73, 0.76) 0.68 (0.67, 0.70)
DT 0.69 (0.67, 0.71) 0.15 (0.14, 0.16) 0.60 (0.59, 0.61) 0.80 (0.79, 0.81)
ANN 0.75 (0.73, 0.77) 0.08 (0.07, 0.09) 0.67 (0.64, 0.70) 0.55 (0.52, 0.58)
RF 1.47 (1.45, 1.50) −0.19 (−0.21, −0.18) 0.76 (0.76, 0.77) 0.82 (0.81, 0.83)
SVM 3.12 (3.02, 3.21) −1.07 (−1.12, −1.02) 0.62 (0.61, 0.62) 0.54 (0.52, 0.57)
Ens. 1.52 (1.49, 1.55) −0.28 (−0.30, −0.26) 0.72 (0.71, 0.73) 0.70 (0.68, 0.72)
External, temporal split LR 0.74 (0.72, 0.76) 0.16 (0.15, 0.17) 0.62 (0.62, 0.63) 0.77 (0.76, 0.77)
DT 0.92 (0.90, 0.93) 0.08 (0.08, 0.09) 0.63 (0.62, 0.63) 0.69 (0.68, 0.70)
ANN 0.30 (0.29, 0.31) 0.34 (0.33, 0.35) 0.58 (0.58, 0.59) 0.71 (0.70, 0.72)
RF 1.09 (1.08, 1.11) 0.02 (0.02, 0.03) 0.70 (0.70, 0.70) 0.78 (0.78, 0.79)
SVM 2.25 (2.20, 2.30) −0.65 (−0.67, −0.62) 0.63 (0.63, 0.63) 0.72 (0.71, 0.73)
Ens. 0.74 (0.72, 0.76) 0.15 (0.14, 0.16) 0.61 (0.61, 0.62) 0.74 (0.73, 0.74)

AUROC, area under the receiver operating characteristic curve; LR, machine learning-optimized logistic regression; DT, decision tree; ANN, artificial neural network; RF, random forest; SVM, support vector machine; Ens., ensemble algorithm.

For a specificity of ∼90%.