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Abstract: Great consideration is placed on the choice of capping agents’ base on the proposed
application, in order to cater to the particular surface, size, geometry, and functional group. Change
in any of the above can influence the characteristics properties of the nanomaterials. The adoption of
hexadecylamine (HDA) as a capping agent in single source precursor approach offers better quantum
dots (QDs) sensitizer materials with good quantum efficiency photoluminescence and desirable
particles size. Structural, morphological, and electrochemical instruments were used to evaluate
the characterization and efficiency of the sensitizers. The cyclic voltammetry (CV) results display
both reduction and oxidation peaks for both materials. XRD for SnS/HDA and SnS photosensitizers
displays eleven peaks within the values of 27.02◦ to 66.05◦ for SnS/HDA and 26.03◦ to 66.04◦ for
SnS in correlation to the orthorhombic structure. Current density–voltage (I–V) results for SnS/HDA
exhibited a better performance compared to SnS sensitizers. Bode plot results indicate electrons
lifetime (τ) for SnS/HDA photosensitizer have superiority to the SnS photosensitizer. The results
connote that SnS/HDA exhibited a better performance compared to SnS sensitizers due to the presence
of HDA capping agent.
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1. Introduction

Quantum dots sensitized solar cells (QDSSCs) are emerging innovations for photovoltaic cells as a
replacement for the ideal dye-sensitized solar cells (DSSCs). The maximum efficiency of 13.4% obtained
from inorganic sensitizer [1] has led many scientists to the research on fabricating better photosensitizes.
That can portray a good generation of multiple excitons [2,3], panchromatic characteristics [4],
and photostability [5] that will deal with the shortfall of molecular dyes in the traditional DSSCs.
The fabrication of quantum dots (QDs) sensitizer materials to enhance this kind of solar cells has
gained ground due to their diversity [6,7], tunable band-gap, cost-friendliness, and easy fabrication.
QDs size can be controlled to obtain optimum band gap, as well as incorporate other semiconductor
QDs materials as co-sensitized to enhance their photospectral properties and increase the conversion
efficiency of QDSSCs (as seen in Figure 1) [8–10]. Moreover, the challenges involving metal-oxide
surface and the absorbers poor contact due to the inabilities of photoinduced charge separation to
directly penetrate each other served as a major restriction [11].
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Figure 1. Schematic illustration of quantum dot solar cells (QDSCs) working procedure involving, 
quantum dots (QDs) photosensitizer, counter electrode, photoanode, and electrolyte [12]. 

Other limitation like electrons diffusion length and the electrode nanoporous oxide geometry 
[12], hinder the surface area optimum adsorption capacity of molecule dye. To increase the cell 
spectral properties by adopting various photosensitizers will lead to poor optical density [13]. This 
implies that the amount of solar radiation absorbed by the cells are linked directly to the nanoporous 
surface area of the electrodes. To solve this shortfall, nanoporous oxide can be separated from 
absorbers by injection of electrons to improve better overlap with the solar spectrum and higher 
optical density without destroying the electron absorption performance [14–16]. 

This can be achieved with synthetic process, which is divided into nucleation and growth. The 
depth knowledge about both steps has resulted in new nanosynthesis route. Giving a better uniform 
surface morphology, size and monodispersity materials by enabling optimum control on the 
synthesis process. Factors, such as solvent, reducing agent, and capping agent, are of very great 
importance in monodisperse nanoparticles synthesis. The use of capping agents in stabilization and 
colloidal synthesis of nanoparticles is known to control materials size, surface passivation and 
particle morphology. The adoption of energy-saving and less or non-toxic capping agents will 
promote green synthetic route of nanoparticle fabrication of large scale commercialization [17–19]. 
Great consideration is placed on the choice of capping agents’ base on the proposed application, in 
other to cater for the particular surface, size, geometry and functional group. Change in any of the 
above mention can influence the characteristics properties of the materials. Capping agents, such as 
trioctylphophine oxide (TOPO), trioctylphophine (TOP), and hexadecylamine (HDA), etc., offer 
excellent stability with organic solvents for nanoparticles [20,21]. The injection of HDA capping 
agent could offer desirable particles size and better QDs sensitizer materials with good quantum 
efficiency. Therefore, enhancing the assembly patterns of the fabricated cells [22]. In the present 
study, the main objective is exploring the beneficial effects of both HDA capped and uncapped 
materials on surface treatments. Therefore, leading to improving electrochemical performance of 
quantum dots sensitizers’ absorber in photovoltaic cells. 

2. Materials and Methods  

2.1. Material  

All materials were purchased and used without modification. The complete test kits containing 
fluorine-doped tin oxide (FTO) as glass substrate of TiO2, platinum FTO, HI-30 electrolyte iodide, 
masks, gaskets, chenodeoxycholic acid (CDC) and hot seal were purchased from Solaronix 

Figure 1. Schematic illustration of quantum dot solar cells (QDSCs) working procedure involving,
quantum dots (QDs) photosensitizer, counter electrode, photoanode, and electrolyte [12].

Other limitation like electrons diffusion length and the electrode nanoporous oxide geometry [12],
hinder the surface area optimum adsorption capacity of molecule dye. To increase the cell spectral
properties by adopting various photosensitizers will lead to poor optical density [13]. This implies
that the amount of solar radiation absorbed by the cells are linked directly to the nanoporous surface
area of the electrodes. To solve this shortfall, nanoporous oxide can be separated from absorbers by
injection of electrons to improve better overlap with the solar spectrum and higher optical density
without destroying the electron absorption performance [14–16].

This can be achieved with synthetic process, which is divided into nucleation and growth.
The depth knowledge about both steps has resulted in new nanosynthesis route. Giving a better
uniform surface morphology, size and monodispersity materials by enabling optimum control on
the synthesis process. Factors, such as solvent, reducing agent, and capping agent, are of very great
importance in monodisperse nanoparticles synthesis. The use of capping agents in stabilization and
colloidal synthesis of nanoparticles is known to control materials size, surface passivation and particle
morphology. The adoption of energy-saving and less or non-toxic capping agents will promote green
synthetic route of nanoparticle fabrication of large scale commercialization [17–19]. Great consideration
is placed on the choice of capping agents’ base on the proposed application, in other to cater for the
particular surface, size, geometry and functional group. Change in any of the above mention can
influence the characteristics properties of the materials. Capping agents, such as trioctylphophine
oxide (TOPO), trioctylphophine (TOP), and hexadecylamine (HDA), etc., offer excellent stability
with organic solvents for nanoparticles [20,21]. The injection of HDA capping agent could offer
desirable particles size and better QDs sensitizer materials with good quantum efficiency. Therefore,
enhancing the assembly patterns of the fabricated cells [22]. In the present study, the main objective is
exploring the beneficial effects of both HDA capped and uncapped materials on surface treatments.
Therefore, leading to improving electrochemical performance of quantum dots sensitizers’ absorber in
photovoltaic cells.

2. Materials and Methods

2.1. Material

All materials were purchased and used without modification. The complete test kits containing
fluorine-doped tin oxide (FTO) as glass substrate of TiO2, platinum FTO, HI-30 electrolyte iodide,
masks, gaskets, chenodeoxycholic acid (CDC) and hot seal were purchased from Solaronix Company
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(Aubonne, Switzerland). Water, Oleic acid (OA), methanol, HDA, SnS/had, and SnS nanoparticles from
bis (N-1,4-Phenyl-N-Morhpo-dithiocarbamato) Sn(II) complexes.

2.2. Synthesis of SnS Nanoparticles with HDA Capping Agent

Nanoparticles were fabricated according to the literature method [23] 0.20 g of bis
(N-1,4-Phenyl-N-Morhpo-dithiocarbamato) tin(II) complex (as seen in Figure 2), was added to 4 mL
oleic acid (OA) and were injected into hot HDA of 3 g at 360 ◦C for surface passivation and particle
morphology. 20–30 ◦C initial temperature was attained for the mixture. The reaction was stabilized
at 360 ◦C and the process lasted for 1 h. The process was allowed to drop to 70 ◦C signifying the
completion of the process and about 50 mL methanol were used the remover of excess OA and HDA.
Centrifugation was used to separate the flocculent precipitate and re-dispersed with toluene. Low air
pressure was used to remove solvent giving rise to metals sulfides of SnS/HDA nanoparticles.
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of bis (N-1,4-Phenyl-N-Morhpo-dithiocarbamato) tin(II) complex using Perkin Elmer TGA 4000 
ThermoGravimetric Analyser (TGA) (San Jose, CA, USA). About 25 mg of the complex was loaded 
into an alumina pan and weight changes were recorded as a function of temperature for a 10 °C 
min−1 temperature gradient between 30–900 °C. A purge gas of flowing nitrogen at a rate of 20 mL 
min−1 was used. At temperatures between 360 and 900 °C, the complex end product was converted 
into residue, which was expected for the formation of SnS nanocrystals from the residue obtained 
from the TGA.  

2.4. Fabrication and Assembling of Solar Cells 

QDSSC were prepared with 2 × 2 cm2 FTO-glass plates of platinum and TiO2 electrodes were 
purchase from Solaronix (Aubonne, Switzerland) with 6 × 6 mmp active areas of TiO2 screen coated. 
Dye loading for sensitization was done using 10 mL of warm water with MO-SnS/HDA and 
MO-SnS. Co-adsorbents were added (Co-adsorbent/dye) of chenodeoxycholic acid (CDC) were 
used. The mediating solution was the commercial HI-30 electrolyte solution (Solaronix), with 
content of iodide species at 0.05 M. The TiO2 thin film was soaked into a solution of 
photosensitizers for 24 h. The two substrates, one coated with TiO2 loaded with photosensitizers 
and the other with platinum, were held together using polyethylene and soldering iron. The 
syringe was used to inject the HI-30 electrolyte (iodide).  

Characterization and solar cell conversion efficiency (%) measurements were done using 
Equation (1)–(4) mentioned below.  

Figure 2. Schematic reaction of nanoparticles.

2.3. Synthesis of SnS Nanoparticles Without HDA Capping Agent

Synthesis of SnS nanocrystals was obtained through high-temperature thermal decomposition
of bis (N-1,4-Phenyl-N-Morhpo-dithiocarbamato) tin(II) complex using Perkin Elmer TGA 4000
ThermoGravimetric Analyser (TGA) (San Jose, CA, USA). About 25 mg of the complex was loaded
into an alumina pan and weight changes were recorded as a function of temperature for a 10 ◦C min−1

temperature gradient between 30–900 ◦C. A purge gas of flowing nitrogen at a rate of 20 mL min−1 was
used. At temperatures between 360 and 900 ◦C, the complex end product was converted into residue,
which was expected for the formation of SnS nanocrystals from the residue obtained from the TGA.

2.4. Fabrication and Assembling of Solar Cells

QDSSC were prepared with 2 × 2 cm2 FTO-glass plates of platinum and TiO2 electrodes
were purchase from Solaronix (Aubonne, Switzerland) with 6 × 6 mmp active areas of TiO2 screen
coated. Dye loading for sensitization was done using 10 mL of warm water with MO-SnS/HDA and
MO-SnS. Co-adsorbents were added (Co-adsorbent/dye) of chenodeoxycholic acid (CDC) were used.
The mediating solution was the commercial HI-30 electrolyte solution (Solaronix), with content of
iodide species at 0.05 M. The TiO2 thin film was soaked into a solution of photosensitizers for 24 h.
The two substrates, one coated with TiO2 loaded with photosensitizers and the other with platinum,
were held together using polyethylene and soldering iron. The syringe was used to inject the HI-30
electrolyte (iodide).

Characterization and solar cell conversion efficiency (%) measurements were done using
Equations (1)–(4) mentioned below.
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All substitutions would be done following Equations (1)–(4).

Jsc = (Isc (mA))/(A(cm2)) (1)

FF = (VMAX × JMAX)/(VOC × JSC) (2)

Where FF is fill factor, and VOC is an open circuit voltage; JSC is a short circuit current density.

η (%) = (VMAX × JMAX)/Pin. (3)

The above equation was adopted where Pin is a light intensity of 100 mW cm−2.

η (%) = (VOC × JSC × FF)/Pin × 100%. (4)

The final equation for overall conversion efficiency was derived from the following equation.

2.5. Physical Measurements

Electrochemical studies were carried out using Metrohm 85695 Autolab with Nova 1.10 software
(Metrohm South Africa (Pty) Ltd., Sandton, South Africa). A platinum electrode was adopted as
a counter electrode, with TiO2 as the anode, while HI-30 iodode electrode was used as a reference
electrode. Cyclic voltammetry (CV) was performed at scan rates from 0.05 to 0.35 V s−1 with an
increment of 0.05 V s−1. All the experiments were performed at room temperature. Electrochemical
impedance spectroscopy (EIS) was carried out in the frequency range of 100 kHz to 100 mHz. Current
density–voltage (I–V) parameters were collected through a Keithley 2401 source meter and a Thorax
light power meter. Lumixo AM1.5 light simulator (RS Components (SA), Midrand, South Africa)
was employed, and the lamp was fixed at 50 cm high to avoid illumination outside of the working
area. To avoid cells degradation, temperature was kept below 60 ◦C and the light power density at
100 mW cm−2 (AM1.0). X-ray diffractometer (XRD) were employed to evaluate the structural pattern
of the samples, and the diffraction structure was obtained between 10 and 90◦ at the interval of 0.05◦.
The surface roughness of the SnS/HDA and SnS FTO substrates were identified through the use of
atomic force microscopy (AFM) (JPK NanoWizard II AFM, JPK Instruments, Berlin, Germany) at a scan
rate of 0.8 Hz in contact mode. JEOL JEM 2100 High-Resolution Transmission Electron Microscope
(JEOL Inc., Pleasanton, CA, USA) (HRTEM) operating at 200 KV with selected area electron diffraction
(SAED) patterns was used.

3. Results and Discussion

SnS/HDA and SnS sensitizers were employed to investigate the optimized electrochemical
performance of both materials. Figure 3 shows comparative CV curves of two the materials at fix
applied amplitude of 50 mV s−1. The measurement shows precise redox peaks at the voltage of 0.0 and
0.6 V, confirming the charge storage by redox reactions. The kinetic irreversibility of both displaced
materials has asymmetry, i.e., reduction and oxidation of the CV curves [24,25]. SnS sensitizer exhibited
a higher area than SnS/HDA, which is preferred for higher performance abilities.
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Based on the EIS results of SnS/HDA and SnS photosensitizer, shown in Figure 4, the charge
transfer resistance (Rct) of the SnS sensitizer film decreases compare to the SnS/HDA sensitizer with
lower charge transfer resistivity. These will enhance fast electron transfer, lower charge recombination,
and better conductivity compared to SnS/HDA photosensitizer. This connotes improved contact
between the redox couple with SnS sensitizer and a better degree of electron growth [26,27]. By this,
we concluded that SnS sensitizer offers preferable efficient electron transfer.
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The appropriate instrument to investigate structural phase unit cell dimension and lattice
parameters of SnS/HDA and SnS photosensitizer films is X-ray diffraction (XRD) analysis. Figure 5
reveals the XRD configurations. Their peaks of 2θ range between 27–82◦ that correlated to orthorhombic
SnS crystals (JCPDS 039-0354). Furthermore, both materials display no traces of other impurities as
observed in the XRD patterns. The purity and quality of the crystalline are displayed by the strong and
sharp diffraction peaks observed in both samples. The improvement in crystalline quality could be
linked to nucleation control, which promotes the growth process of SnS [28]. In addition, there is no
change in the preferential orientation along (201), (210), (111), (301), (311), (511), (610), and (512) for
both samples, which confirms successful fabrication of SnS and SnS/HDA into the lattice of TiO2 [29].
The preferential orientation of SnS/HDA is linked to the nucleation control of the growth process due
to excess HDA used during the synthesis [30]. The presence of lower intensities and minor phases are
usually linked to defect chemistry, thermodynamics of solid, and thermal gradient.
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Table 1 and Figure 6 display I–V parameters of SnS/HDA and SnS photosensitizers quantum dot
solar cells (QDSCs). TiO2 photoanode sensitized with the fabricated dye, and Pt counter electrode and
redox couple HI-30 electrolyte was used. In order to evaluate the efficiency of the photosensitized
materials, these materials were fabricated with the same test conditions. The SnS/HDA and SnS JSC is
observed at 10.99 mA cm−2 and 1.802 mA cm−2, producing conversion efficiency at 1.25% and 0.42%.
Their photovoltaic characteristics of QDSSCs films based for VOC are 0.423 V and 0.375 V. The lower
conversion efficiency of SnS compared to SnS/HDA could be linked to the low electrocatalytic activity,
which reduce HI-30 iodide and low electrical conductivity. These hinder electron transport from
recombining with holes because of redox couple [31].

Table 1. I–V characteristics of SnS/HDA and SnS nanoparticles.

Dye Photoanode Electrolyte CEs JSC (mA/cm2) VOC (mV) FF η (%)

SnS/HDA TiO2 HI-30 Pt 10.99 0.423 0.27 1.25

SnS TiO2 HI-30 Pt 1.802 0.375 0.63 0.42
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Figure 6. I–V curve characteristics of SnS/HDA and SnS nanoparticles.

The Bode plot, as seen in Figure 7, exhibits the phase angle shift and frequency response
magnitude. According to Bode plot, the phase angle of SnS photosensitizer is higher compared to
SnS/HDA photosensitizer. This depicts that SnS has a porous nature (confirmed by surface area analysis
and AFM image) and lower charge transfer resistance. Furthermore, this enhances the injection and
flow of electrolyte in the cell [32].
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Figure 7. Bode plot spectra of SnS/HDA and SnS nanoparticles.

The topographical analysis was carried out using atomic force microscope (AFM). The evaluated
particles size varied in the range of 0.11–1.18 um for SnS/HDA and 0.054–0.54 um for SnS films grown
at 360 ◦C with size height of 16.8% and 8.4%, respectively, as seen in Figure 8. These images revealed
little significant changes in the particles size of both samples fabricated at the same temperature.
The ad-atoms move over the surface brings bonding togetherness with an enlarged form of sub-particles.
This emanated to formation good compactness and larger particles size. When the film surface is
smooth, it resulted to lower roughness due to high surface diffusion [33]. This can be attributed to
better particle size and good power conversion efficiency in QDSSCs, which depends solely on the low
roughness of the photoelectrodes.Nanomaterials 2020, 10, x FOR PEER REVIEW 7 of 10 
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Figure 8. Height profile (a,d), 2D (b,e), and 3D (c) atomic force microscopy (AFM) images of SnS (a–c)
and SnS/HDA (d–f) nanoparticles.

The measurements and morphology of the synthesized SnS/HDA and SnS were examined by
HRTEM; Figure 9 reveals, that the products are spherical, clustered, and agglomerated, with crystallite
sizes within the range 14.96–44.39 nm for SnS and 9.5–23.19 nm for SnS/HDA [34]. Their lattice fringes
revealed polycrystalline nanoparticles comprising numerous crystal grains d-spacing of 3.549–3.623
nm, affirming their polycrystalline nature, which is in concurrence with the report from Reference [35].
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SAED obtained reveals the spot pattern shaping of the diffraction rings, which indicates that both
materials have high crystalline nature [36].
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Figure 9. High-Resolution Transmission Electron Microscope (HRTEM) images of (a) SnS/HDA and (b)
SnS nanoparticles.

4. Conclusions

In the CV curve of SnS/HDA and SnS sensitizers, the spectra displaced both reduction and oxidation
peaks for both materials. The diffusion of SnS/HDA and SnS photosensitizer in HI-30 electrolyte
connote Warburg’s constant (W) as a result of the straight line. The SnS/HDA sensitizer displaced
lower impedance compare to SnS sensitizer. XRD results for SnS/HDA and SnS photosensitizers
displaced eleven peaks within the values of 27.02◦ to 66.05◦ for SnS/HDA and 26.03◦ to 66.04◦ for
SnS in correlation to orthorhombic structure. The I–V efficiency obtained indicates that the SnS/HDA
exhibited a better performance compared to SnS and Sn(II) sensitizers due to the presence of HDA
capping agent. Bode plot results indicate that the electrons lifetime (τ) for SnS/HDA photosensitizer
displaced superiority to the SnS photosensitizer, owning to their ability to enhanced electron lifetime
and reduced electron recombination. The AFM results show the particle size distribution in SnS value
at 357 nm with a smooth surface and good compactness on the substrate. However, the value for
SnS/HDA is 122 nm displaced shape and size of non-symmetrical particles. The lattice fringes revealed
polycrystalline nanoparticles comprising numerous crystal grains for both samples.
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