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Abstract 

Opioid addiction in the United States has come to national attention as opioid overdose (OD) related deaths have 

risen at alarming rates. Combating opioid epidemic becomes a high priority for not only governments but also 

healthcare providers. This depends on critical knowledge to understand the risk of opioid overdose of patients. In this 

paper, we present our work on building machine learning based prediction models to predict opioid overdose of 

patients based on the history of patients’ electronic health records (EHR). We performed two studies using New York 

State claims data (SPARCS) with 440,000 patients and Cerner’s Health Facts database with 110,000 patients. Our 

experiments demonstrated that EHR based prediction can achieve best recall with random forest method (precision: 

95.3%, recall: 85.7%, F1 score: 90.3%), best precision with deep learning (precision: 99.2%, recall: 77.8%, F1 

score: 87.2%). We also discovered that clinical events are among critical features for the predictions. 

Introduction 

The United States is experiencing an epidemic of opioid related deaths due to the misuse and abuse of opioids, 

including both prescribed pain relievers and illegal drugs such as heroin and synthetic fentanyl. According to Han1, 

91.8 million (37.8%) civilian non-institutionalized adults in the US used prescription opioids in 2015. Among them, 

11.5 million (4.7%) misused them and 1.9 million (0.8%) had a use disorder. Between 2005 and 2014 OD-related 

hospitalizations and emergency room visits increased 64% and 99% respectively2. According to Scholl L3, drug 

overdoses resulted in 70,237 deaths during 2017, and 47,600 (67.8%) of them involved opioids.  

Improving current clinical practices can potentially reduce the risks of opioid misuse or overdose. For example, CDC4 

has provided recommendations for prescribing opioids for chronic pain care on opioid prescription for primary care 

clinicians. The joint commission also provided new and revised pain assessment and management standards for 

accredited hospitals. Clinical decision support systems (CDSS) can provide medical advice through integrating a 

patient’s EHR data for inference, which holds high potential for improving clinical decisions and clinical practices. 

For instance, using EHR data to help physicians provide better care in opioid use disorder is proposed5, which depends 

on understanding the past history of patients and using pre-defined rules for the decision support. It is particularly 

important to predict and identify patients at risk for opioid toxicity in time for optimal clinical interventions, such as 

reducing opioid dosage or suggesting alternative options for chronic pain management. 

CDSS is made possible with the adoption of EHR, which has increased dramatically with the introduction of the 

Health Information Technology for Economic and Clinical Health (HITECH) Act of 20096. Besides EHR data 

managed by healthcare providers, large scale EHR data are also made available through government open data 

initiatives, such as claims data from the New York State Statewide Planning and Research Cooperative System 

(SPARCS)7. In addition, commercial EHR vendors often provide large scale de-identified EHR data for research 

purposes; for example, Cerner’s Health Facts is a large multi-institutional de-identified database derived from EHRs 

and administrative systems.  

Traditional machine learning has been widely explored and discussed in previous work8,9,10,11. Recently, deep learning 

methods are gaining popularity in EHR based predictive modeling. For instance, Rajkomar et al. performed a large 

scale deep learning-based study with high prediction accuracy using EHR data in multiple medical events prediction12. 

Another study employed a fully connected deep neural network to suggest candidates for palliative care13. Recurrent 

neural networks (RNN) are also applied to take advantage of patient’s background information for prediction of 

clinical events12,14,15,16. For example, one study explored the application of RNN for chronic disease prediction using 

medical notes17. Our recent work has applied fully connected networks for predicting diseases and improving coding18, 

19. For opioid related application, Che20 followed a deep learning based method to classify opioid patients into opioid-
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dependent and long-term users. Ellis used machine learning classifiers to predict the likelihood of patients having 

substance dependence 21. 

In this paper, we built multiple prediction models for predicting the risk of opioid poisoning in the future using 

patients’ history from claims data and EHR data respectively, and examined most important features for such 

predictions. We leveraged large scale databases to identify features that are commonly associated with opioid 

poisoning, while minimizing irrelevant features. We used the medical records of a patient for the prediction, including 

demographic information and past medical history including diagnoses, laboratory results, medications and related 

clinical events. Both traditional machine learning algorithms and deep learning methods were studied in our research. 

Our results demonstrated that with comprehensive EHR data such as Health Facts, our models provided highly 

promising prediction results: we were able to generate a best recall using Random Forest based method (precision: 

95.3%, recall: 85.7%, F1: 90.3%, AUC: 95.1%), and best precision and Area Under the ROC Curve (AUC) with 

Neural Networks (precision: 99.2%, recall: 77.8%, F1: 87.2%, AUC: 95.4%). We also discovered that clinical event 

features play critical roles in the prediction. 

Methods 

Data Sources 

We extracted inpatient EHR data from two clinical databases, SPARCS and Health Facts, as our data sources. 

SPARCS Inpatient Data. We used hospital discharge data from New York State SPARCS7 database. New York State 

requires any New York State healthcare facility (Article 28 licensed) certified to provide inpatient services, ambulatory 

surgery services, emergency department services or outpatient services to submit data to SPARCS. The purpose of 

SPARCS is to create a statewide dataset for providing high quality medical care by serving as an information source. 

Cerner’s Health Facts Inpatient Data. We also utilized Cerner’s Health Facts as another data source for our studies. 

Health Facts includes de-identified EHR data from over 600 participating Cerner client hospitals and clinics in the 

United States. In addition to encounters, diagnoses, procedures and patients’ demographics that are typically available 

in claims data, Health Facts also includes medication dosage and administration information, vital signs, laboratory 

test orders and results, surgical case information, other clinical observations, and health systems attributes22. 

Diagnosis Codes for Data Extraction 

All patients were classified into two groups, namely opioid overdose patients and other patients. Opioid overdose 

patients are defined as those who received at least one opioid related diagnosis code in their medical records. For those 

patients who have not been diagnosed with those codes, we took them as negative (non-opioid poisoned) patients.  

The opioid poisoning related diagnosis codes are a collection of ICD-9 codes and ICD-10 codes (starting from October 

1, 2015) for poisonings by opiates, opium, heroin, methadone, and other related narcotics. According to Moore23, the 

selected ICD-9 codes include 965.0 (Poisoning; Opiates and Related Narcotics), 965.00 (Poisoning; Opium/alkaloids, 

unspecified), 965.01 (Poisoning; Heroin), 965.02 (Poisoning; Methadone), 965.09 (Poisoning; Other opiates and 

related narcotics), E85.00 (Accidental Poisoning; Heroin), E85.01 (Accidental Poisoning; Methadone), 97.01 

(Poisoning; Opiate antagonists) and E85.02 (Accidental Poisoning; Other Opiates and Related Narcotics), selected 

ICD-10 codes include T40.4 (Poisoning; other synthetic narcotics), T40.0 (Poisoning; opium), T40.1 (Poisoning; 

heroin), T40.2 (Poisoning; other opioids), T40.3 (Poisoning; methadone), T40.6 (Poisoning; narcotics), all of the codes 

and their descendant codes. 

Although we don’t know if those negative patients will get opioid overdose in the future, we can take their status of 

opioid poisoning in the last visit as the future we want to predict. We can say that they have low risk of opioid 

poisoning in near future. Then we can use all the information of visits before last one as features for prediction. 

Study Datasets 

We built two independent study datasets for SPARCS and Health Facts respectively. We extracted records from 

January 13, 2005 to December 25, 2016 from SPARCS. We selected patients with at least one historic encounter 

before first opioid poisoned related diagnosis. We randomly chose 40,000 positive (opioid poisoned) patients. As the 

dataset would be highly imbalanced by having all non-opioid related patients, we chose 400,000 negative patients 

without a history of opioid poisoning. 

For Health Facts database, we extracted records from January 8, 2000 to December 29, 2017. The selection of patients 

is similar to SPARCS data, but we further filtered patients and retained those who had at least one hospital visit with 

390



 

 

a clinical event record to help in evaluating the importance of clinical events. We used 110,000 patients from Health 

Facts, with 10,000 positive ones and 100,000 negative ones.  

Features. Information useful to predict future opioid overdose includes diagnosis codes, procedure codes, 

medications, clinical events and demographic information. Since SPARCS and Health Facts are very different 

datasets, the features from each dataset vary significantly.  

Diagnosis codes specify diseases, symptoms, poisoning for patients, and the history of diseases are critical information 

for predicting the future. Due to the large space of ICD codes, in order to prevent influence of too many unrelated or 

biased features, we filtered the diagnosis codes based on their frequency of co-occurrence with opioid poisoning, or 

their frequency appeared in the history of opioid poisoned patients. For reliability, we removed all opioid poisoning 

related diagnosis codes to prevent the model from directly getting results from the related codes. Diagnosis codes are 

used for both SPARCS and Health Facts datasets. 

Procedure codes are specific surgical, medical or diagnostic interventions received by patients. Procedure codes are 

extracted for both datasets. 

Medications are recorded by NDC codes, which is available in Health Facts dataset only. Preprocessing medication 

codes followed the same procedures as diagnosis codes and procedure codes. After filtering, only 10% of them are 

selected in the feature space. As dosage and duration of medications can be important, they are added to the features 

space using medication codes. For a specific medication, we measured the time period that the patient took it and the 

total dosage the patient took during the period, and had them added to the feature space. Quantity of dosage is measured 

in according unit in the database, to illustrate it, liquid dosage such as Toradol IV/VM (ketorolac) is measured in 

tubes, solid dosage such as Pepcid (famotidine) is measured in tablets, and duration is measured in minutes. 

Clinical events are related symptoms, procedures, and personal situations that are not formally classified into any 

codes above, which is available in Heath Facts dataset only. Some of them are identified as clinical events in Health 

Facts, for instance, the pain level of patients, smoke history, height, weight, and travel information. Since 79.21% of 

hospitals in Health Facts have clinical event records, they can be helpful for most hospitals for prediction.  

Demographic information such as age, gender and race are added to the feature space as well to improve the 

prediction24, the three features are included in both datasets. Sources of payments in SPARCS include payment type 

such as Self-Pay, Medicare, Medicaid, Insurance Company, among others. Since they are relevant to a patient’s social-

economic status, we included it in the feature space in SPARCS dataset. 

Feature Selection and Normalization 

While there is a large number of codes from diagnosis, procedures and medications, many of them are not useful for 

prediction. Gathering all codes would also create a gigantic feature space that would then result in very slow training 

process. Therefore, we filtered the features to compress the feature space. For each feature category, we ranked all 

codes by their frequencies of occurrence in the history of patients with opioid poisoning. We kept the top 10% features 

in each category in the feature space. Note that Health Facts has more comprehensive features than SPARCS. The 

numbers of features selected are summarized in Table 1. 

Table 1. Summary of selected features for prediction in study datasets. 

Datasets Category # of Features Description 

SPARCS 

Diagnosis 2000 ICD-9 and ICD-10 codes 

Procedure 2000 ICD and CPT codes 

Demographic information 4 Race, gender, age and payment method 

Health Facts 

Diagnosis 2000 ICD-9 and ICD-10 codes 

Procedure 1000 ICD and CPT codes 

Demographic information 3 Race, gender and age 

Clinical Events 900 500 events and numeric value for 400 of them 

Medication 4500 1500 NDC codes with does quantity and duration 
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For opioid poisoning patients, we used features from visits before they were diagnosed with opioid poisoning for the 

first time. We took advantage of all visits before the last one for non-opioid poisoning patients, features in all of those 

visits will be used for prediction. Their status of opioid poisoning in the last visit is the target we want to predict.  

For ages, we segmented them into multiple age groups according to the ages of last visit: the first age group is 0-5, 

followed by every 10 years. This can accelerate the training process with minimal impact on the performance. For 

categorical features, for example, race and payment methods, One-Hot encoding method was applied to encode those 

features. Figure 1 illustrates how One-Hot Encoding is implemented for sources of payments. For Patient 1, a code 

[1,1,0,0,0,0] will be generated.  

 

Figure 1. An Illustration of the One-Hot Encoding on Sources of Payment. 

We used a binary representation for diagnosis codes, procedure codes, medication codes and clinical events. If one of 

these features is detected from a patient’s history, the feature value is 1, otherwise the value is 0. Other features, such 

as medication dosage quantity and duration, clinical events of numeric values such as blood pressure, height, pain 

score, are assigned with numeric value and are measured in according units in the database, for instance, height 

measured in centimeters, blood pressure measured in mm[Hg]. The feature preprocessing is illustrated in Figure 2. 

 

Figure 2. Example of feature preprocessing or the prediction models. 

Prediction Methods 

The goal of this study is to predict opioid poisoning of patients in the future using existing EHR data. We built our 

prediction models with multiple machine learning methods. Traditional machine learning methods such as decision 

tree and random forest have been proved effective in many health data analytics applications. Recently, deep learning 

methods have been widely used due to the capability of handling large number of features. Since there are a large 

number of features in our studies, we decided to take advantage of deep learning methods as well and compared that 

with traditional methods.  

Traditional Machine Learning Methods. We utilized methods including random forest, decision tree and logistic 

regression in our work, which have proven effective for EHR data-based prediction tasks21, 25, 26. In the experiments, 
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we kept most settings and parameters with default values, and adjusted some of them to fit our tasks. In practice, for 

clinical decision support, identifying all patients with high opioid poisoning risk is desired, thus between high 

precision and recall rates, the high recall rate in the prediction model can be more critical. In logistic regression, we 

employed l2 regularization as the penalization and liblinear as the optimizing algorithm. Both random forest and 

decision tree models took Gini impurity as the criterion to split data in training, which will be further discussed for 

feature importance calculation below. Furthermore, there is no tree depth limit for either random forest or decision 

tree model. We assigned a 10 times higher weight to positive cases than negative cases for all three methods during 

the training phase in order to achieve a higher F1 score, which can potentially solve the problem that the dataset is 

imbalanced. 

Deep Learning Methods. Deep neural networks have been proven effective in many healthcare prediction 

applications13, 14, 16, 20, 27. We implemented a fully connected neural network based model. Our model is composed of 

three fully connected layers, two dropout layers and one output layer. First two fully connected layers are each 

followed by a dropout layer and then followed again by one more fully connected layer, which is connected to the 

output layer. We set the dimension of first two fully connected layers as 512 and third fully connected layer as 8. Since 

this is a binary classification task, the dimension of the last layer is one. A dropout layer follows a fully connected 

layer to prevent overfit - it will randomly drop out a portion of outputs from previous fully connected layer at each 

training epoch. We set the portion or namely dropout rate as 20%. The framework of our neural network is illustrated 

in Figure 3. 

 

Figure 3. The framework of the neural network designed for the prediction model. 

A rectified linear unit (ReLU) function is used as the non-linear transformation function for each hidden layer. We 

chose ReLU for preventing vanishing gradient and sparse activation problems, and improving computation 

efficiency28. A sigmoid function is applied in the last layer. We learned the parameters by optimizing binary cross-

entropy loss function. To minimize the loss function, Adam optimization algorithm was selected. Adam is an 

optimization algorithm can replace classical stochastic gradient descent procedure to update network weights iterative, 

it has advantages in computation efficiency and little memory requirement for it combines the best property of adaptive 

gradient algorithm and root mean square propagation29. 

Implementation. In our experiment, the implementation environment is the Python programming language (2.7). 

Traditional machine learning methods are implemented with Python scikit-learn package30. Deep learning is 

implemented with Python Tensorflow31 and Python Keras32. Other used libraries include Python Numpy and Python 

Pandas. The training was performed on an NVIDIA Tesla V100 (16GB RAM).  

Results 

Prediction Results Analysis 

In our experiments, for both SPARCS and Health Facts datasets, we randomly took 90% of positive and negative 

patients as training set and rest as test set. To be specific, 360,000 negative patients and 36,000 positive patients as 

training set, while 40,000 negative patients and 4,000 positive patients as test set, for SPARCS dataset. 90,000 negative 

patients and 9,000 positive patients as training set, while 10,000 negative patients and 1,000 positive patients as test 

set, for Health Facts dataset.  
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To comprehensively evaluate performance of models, we calculated all common metrics including accuracy, 

precision, recall, F1 score and AUC. As the dataset is imbalanced, accuracy and AUC can be misleading. As we stated 

in the previous section, recall is a critical factor for the prediction models. The F1 score is a measurement considering 

both precision and recall, so it is an aggregated assessment of the overall prediction performance. We compared 

traditional methods and deep learning method for two datasets respectively. The results are shown in Table 2. The 

best results for each metric category are highlighted in bold. 

Table 2. Experiment Results of different methods on SPARCS and Health Facts datasets. 

Dataset Prediction Model Accuracy Precision Recall F1 AUC 

SPARCS 

Random Forest 96.03% 88.96% 64.25% 74.61% 94.94% 

Decision Tree 95.35% 75.87% 71.68% 73.71% 84.62% 

Logistic Regression 96.44% 96.95% 62.85% 76.26% 81.33% 

Deep Learning 96.82% 97.07 % 67.00% 79.27% 94.22% 

Health Facts 

Random Forest 98.69% 95.34% 85.7% 90.30% 95.11% 

Decision Tree 97.38% 87.47% 83.10% 85.23% 93.38% 

Logistic Regression 95.73% 96.17% 55.20% 70.14% 74.32% 

Deep Learning 97.93% 99.23% 77.80% 87.22% 95.41% 

Results demonstrated our models are capable of classifying opioid poisoning very well. We can achieve an F1 score 

of 79.27% for SPARCS (by deep learning) and 90.30% for Health Facts (by random forest). For precision, the best 

performance we can achieve is through deep learning: 97.07% for SPARCS and 99.23% for Health Facts, indicating 

the ability of models to identify only opioid poisoned patients. For recall, we can achieve 71.68% for SPARCS and 

85.70% for Health Facts respectively for the best case, indicating the ability to find all the opioid poisoned patients in 

the dataset. The best AUC score we can achieve is 94.94% for SPARCS and 95.41% for Health Facts respectively. 

For the SPARCS dataset, which comes with a smaller number of features, deep learning generates the best F1 score 

and a comparable AUC score with random forest. For Health Facts, which has more comprehensive features, random 

forest has the best F1 score, and deep learning generates the best AUC score. 

Feature Analysis 

It is vital to understand the importance of different features in the models, to support researchers or clinicians to exploit 

potential causes or trajectories of diseases. Based on our best traditional method random forest, we generated top most 

important features for both datasets in Table 3 and 4 respectively. The rank and feature category are also shown in the 

tables. Random forest calculates the importance of each feature by using Gini importance33. It is defined as the total 

decrease in node Gini impurity index weighted by the probability of reaching that node averaged over all decision 

trees of the ensemble. Gini impurity index is defined as: 

𝐺 = ∑𝑖=1
𝑛𝑐𝑝𝑖(1 − 𝑝𝑖) 

where 𝑛𝑐 is the number of classes, 𝑝𝑖 is the ratio of this class, and G is the Gini impurity index. Random forest is an 

ensemble of decision trees. For every input sample, each decision tree will decide the path from root to leaf node for 

it, and the leaf will tell if the case is positive or negative. Then the model will ensemble the results of all decision trees 

to decide the final result. 

In every node of the decision tree, there is a feature to decide the path after the node. So for each node, samples left 

for each class are different, and the Gini impurity index will be different. Then we have Gini importance as: 

𝐼 = 𝐺𝑝𝑎𝑟𝑒𝑛𝑡 − 𝐺𝑠𝑝𝑙𝑖𝑡1 − 𝐺𝑠𝑝𝑙𝑖𝑡2 

𝐺𝑝𝑎𝑟𝑒𝑛𝑡 is the Gini impurity index of the parent node, 𝐺𝑠𝑝𝑙𝑖𝑡1 and 𝐺𝑠𝑝𝑙𝑖𝑡2 are the Gini impurity indexes for two child 

nodes. Finally, the weighted summation of Gini importance of all nodes for one feature in all decision trees will be 

the final importance of that feature.  

For New York State SPARCS data, most important features are diagnosis codes. The top feature is “Sedative, hypnotic 

or anxiolytic dependence, continuous” (ICD-9 code 304.11, approximately mapped to ICD-10 code F13.20 “Sedative, 
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hypnotic or anxiolytic dependence, uncomplicated”). These disorders result from the non-medical use of medications 

known as sedatives, hypnotics, and anxiolytics. The second top feature is relevant to Hepatitis C (ICD-9 code 070.70 

or ICD-10 code B19.20), which is commonly transmitted by needles shared among those who inject drugs non-

medically34. The third top feature “other alteration of consciousness”. Common underlying causes of decreased 

consciousness includes drugs, alcohol, substance abuse, certain medical conditions, epilepsy, low blood sugar, etc. 

Note that marijuana misuse (“cannabis abuse, unspecified”) ranks top 4. There are multiple top features relevant to 

chronic pain (“other chronic pain”, “chronic pain syndrome”, “lumbago”). Injury from car accidents or third-degree 

burn are also among the top 20 features.  

Table 3. Top 20 Important Features for Prediction on SPARCS Dataset. 

Category Description Rank Category Description Rank 

Diagnosis Sedative, hypnotic or anxiolytic 
dependence, continuous 

1 Diagnosis Altered mental status 11 

Diagnosis Unspecified viral hepatitis C without 

hepatic coma 

2 Diagnosis Other, mixed, or unspecified drug abuse, 

unspecified 

12 

Diagnosis Other alteration of consciousness 3 Diagnosis Chronic pain syndrome 13 

Diagnosis Cannabis abuse, unspecified 4 Diagnosis Acute respiratory failure 14 

Diagnosis Anxiety state, unspecified 5 Diagnosis Lumbago 15 

Diagnosis Unspecified drug dependence, unspecified 6 Diagnosis Poisoning by other specified central 

nervous system stimulants 

16 

Diagnosis Sedative, hypnotic or anxiolytic abuse, 

unspecified 

7 Diagnosis Depressive disorder, not elsewhere 

classified 

17 

Diagnosis Toxic effect of ethyl alcohol 8 Diagnosis Poisoning by benzodiazepine-based 
tranquilizers 

18 

Diagnosis Other chronic pain 9 Diagnosis Tobacco use disorder 19 

Diagnosis Pedestrian injured in collision with two- or 

three-wheeled motor vehicle 

10 Procedure Deep necrosis of underlying tissues 

[deep third degree] with loss of a body 

part, of multiple specified sites 

20 

Table 4. Top 20 Top Predicting Features in Health Facts Dataset. 

Category Description Rank Category Description Rank 

Clinical Event Pulse 1 Diagnosis Essential (primary) hypertension 11 

Clinical Event Heart Rate 2 Clinical Event Pain Scale Score 12 

Clinical Event Advanced Directive 3 Clinical Event Temperature (Route Not Specified) 13 

Procedure 
Under New or Established Patient 
Emergency Department Services. 

4 
Clinical Event Fall, History of 

14 

Clinical Event Pulse Posterior Tibial Right 5 Clinical Event Pain Symptom Date of Onset 15 

Clinical Event Tobacco Use (Number of Years) 6 Clinical Event BMI, Body Mass Index 16 

Medication Sodium Chloride 7 Clinical Event Pulse Dorsalis Pedis Left 17 

Clinical Event Respiratory Rate 
8 

Procedure 
Emergency department visit for the 
evaluation and management of a 

patient 

18 

Diagnosis 
Other, mixed, or unspecified drug abuse, 

unspecified 

9 
Diagnosis Tobacco use disorder 

19 

Clinical Event Triage Notes 10 Medication Acetaminophen 20 
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The Health Facts database has much richer features compared to SPARCS data. It includes many clinical events and 

medications in addition to diagnoses and procedures. Interestingly, basic measurements such as heart rate (Pulse, Heart 

Rate, Pulse Posterior Tibial Right, or Pulse Dorsalis Pedis Left) and respiratory rate are among top predicting features, 

as taking too much of opioid can lead to a slow heart rate and difficulty maintaining breathing35. Temperature, pain 

scale, history of fall, and BMI are also among the top 20 features. 

Table 5 summarizes the aggregated importance of each category of features on contributing to the prediction. For 

SPARCS, diagnosis dominates the contribution, and the procedure follows. Demographic information also contributes 

to the prediction. For Health Facts, the descending order of importance of the predictor categories is clinical events, 

diagnosis, medications, procedure and demographic information.  

Table 5. Importance for each feature category. 

SPARCS Health Facts 

Diagnosis Procedure Demographic Diagnosis Procedure Medications Clinical Events Demographic 

78.07% 15.27% 6.64% 25.14% 6.17% 13.81% 50.09% 4.79% 

 

Experiment on Using Primary Data only for the Prediction 

Since diagnosis codes are secondary data for billing purposes, we were interested in studying the performance with 

only primary data. We took the Health Facts dataset and removed all diagnosis codes and then built the same models. 

Table 6 shows the result before and after removing diagnosis features. By removing the diagnosis data, we could still 

achieve a good performance on prediction with similar results. Random Forest achieves slightly higher AUC without 

diagnosis codes.  

Table 6. Performance of models before and after removing diagnosis features on Health Facts.  

Methods Have Diagnosis Codes Accuracy Precision Recall F1 AUC 

Random Forest Yes 98.69% 95.34% 85.70% 90.30% 95.11% 

No 97.41% 96.25% 74.40% 85.56% 95.29% 

Decision Tree Yes 97.38% 87.47% 83.10% 85.23% 93.38% 

No 96.98% 93.15% 72.10% 81.29% 91.63% 

Logistic 

Regression 
Yes 95.73% 96.17% 55.20% 70.14% 74.32% 

No 95.73% 96.66% 55.00% 70.10% 75.69% 

Deep Learning Yes 97.93% 99.23% 77.80% 87.22% 95.41% 

No 97.35% 98.36% 72.00% 83.14% 94.97% 

 

Discussion 

Data and evidence based studies hold high potential for studying the problem of opioid epidemic in the U.S. With the 

wide availability of Electronic Health Records, predictive modeling provides a powerful approach to automatically 

predict the risks of opioid overdoses. Compared to previous related work, for example Che20 try to classify opioid 

overdose patients into short and long term users, our work is to identify potential opioid overdose patients among all 

patients. To our best knowledge, this is the first work on machine learning based opioid overdose prediction with large 

scale EHR data. Instead of limiting the method to a specific model, we proposed multiple models and compared their 

performance.  
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While claims data such as SPARCS has limited information, our experiments demonstrate that they can still achieve 

reasonable prediction results. More comprehensive EHR data such as Health Facts has richer information and thus 

can achieve very promising results. Our methods can achieve best recall with the random forest method (precision: 

95.3%, recall: 85.7%, F1 score: 90.3% and AUC: 95.11%), and best precision with deep learning (precision: 99.2%, 

recall: 77.8%, F1 score: 87.2% and AUC: 95.41%).  

The analysis of features also provides interesting findings. For example, in SPARCS-based claims data, Hepatitis C 

is an indicator of potential non-medical opioid use, as Hepatitis C infection is frequently infected due to the sharing 

of needles and syringes for drug use. Marijuana misuse, tobacco use and alcohol are also linked to opioid overdose. 

Chronic pain management and treatment of acute pain can lead to opioid overdose. With more comprehensive EHR 

data, we find many clinical events such as measurements of heart beat, respiratory rate and pain scale that can help 

the prediction, and the clinical events dominates the contribution for prediction. By removing secondary data such as 

diagnosis codes, we find that our model can still achieve comparable performance. Our study also demonstrates that 

demographic information and sources of payments are helpful factors for the prediction.  

One important information source that could enhance our models is clinical notes, which are missing from datasets in 

this study. In our future work, we will include clinical notes by applying natural language processing technologies. 

Another limitation of our method is that we did not employ any specific imputation method to deal with the missing 

value problem. To include more features with many missing values, we will employ different imputation methods. 

Besides, for convenience in this work, we took all patients that has not been diagnosed as opioid overdose as negative 

patients, but actually we don’t know about their future, we will try to apply more reasonable way to identify positive 

and negative patients. For the deep learning models, we currently have a relatively simpler architecture which does 

not take advantage of the temporal factors of the data and visits. We will explore RNN method and combine both 

outpatient and inpatient visits for future studies. 

Conclusion 

The opioid epidemic has become a national emergency for public health in the United States. Identifying patients of 

high risk of opioid overdose can provide smarter and safer clinical decisions for treatment, and potentially improve 

current clinical practices for pain management. Our studies on machine learning based predictive models for opioid 

overdose prediction show promising results with both claims data and comprehensive EHR data. It demonstrates that 

an AI based approach, if implemented at clinical side, can achieve automated prediction with high accuracy, and 

provide an opportunity for AI assisted prediction to support healthcare providers to combat opioid crisis. 
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