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Abstract

Using electronic health data to predict adverse drug reaction (ADR) incurs practical challenges, such as lack of ade-
quate data from any single site for rare ADR detection, resource constraints on integrating data from multiple sources,
and privacy concerns with creating a centralized database from person-specific, sensitive data. We introduce a fed-
erated learning framework that can learn a global ADR prediction model from distributed health data held locally
at different sites. We propose two novel methods of local model aggregation to improve the predictive capability of
the global model. Through comprehensive experimental evaluation using real-world health data from 1 million pa-
tients, we demonstrate the effectiveness of our proposed approach in achieving comparable performance to centralized
learning and outperforming localized learning models for two types of ADRs. We also demonstrate that, for varying
data distributions, our aggregation methods outperform state-of-the-art techniques, in terms of precision, recall, and
accuracy.

1 Introduction

Adverse Drug Reactions (ADRs) are a major concern for medical practictioners, healthcare system, and pharmaceuti-
cal industry. As patients can experience expected and sometimes unexpected negative outcomes from taking any drug,
delayed detection of ADRs can pose life-threatening risks to patients; posing considerable legal, financial, and social
repercussions to the manufacturing companies and regulatory agencies. The use of medical data, such as claims and
electronic health records (EHR), has become common in providing rich insights on health services and supporting
ADR investigation1. Advancements in machine learning and artificial intelligence have produced a number of analytic
methods that can be applied to such high-dimensional data for the purpose of predicting adverse reactions2. However,
making timely and accurate predictions remains a challenge. Due to the distributed nature of healthcare data, obtaining
a sufficiently large dataset to detect rare events requires merging data from different data silos. Analyses generated
from different data sources can be conflicting or imprecise3, necessitating methods to appropriately aggregate results.

Prior work to resolve these issues often have limitations in their approach. The Food and Drug Administration (FDA)’s
self-report Adverse Event Reporting System (FAERS)4, collects ADR data into a traditional, centralized database. A
single database approach is the most straightforward way to explore ADRs, but information owned by different entities
is seldom shared due to significant privacy concerns. Moreover, creating and maintaining such a large data repository
incurs resource and system-level constraints, including high latency and single points of vulnerability (failure, breach).
To avoid such overhead and risks, the FDA created the Sentinel system to monitor the safety of its regulated products,
using a distributed data network5, 6. The network comprises multiple stakeholders, each maintaining a large claims
database. Despite the distributed framework and large-scale data amassed from active participation of data partners,
Sentinel has limited analytic capabilities. Limitations of other state-of-the-art systems include access to potentially
small-scale, sparse, and low-quality hospital records7. In addition, current claims-based frameworks experience a time
lag between ADR instance, claim submission, adjudication, and consolidation of the claim into a database. EHR data,
collected in near real-time, is therefore a promising alternative, but comes with the aforementioned quality concerns.
Hence, there is an unmet need for accurate, scalable, and efficient solutions for predicting ADRs using distributed
health data, that also protects the privacy of patients.

To address this challenge, we present a federated learning-based framework that permits health data to be distributed
across multiple sites. Federated learning8 has brought a paradigm shift in the construction of machine learning models
from distributed data sources maintained by various organizations. Under such a decentralized, collaborative learning
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setting, each site contributes to the computation of a global model while simultaneously shielding its own data from
leakage to distrusted third parties. Our framework allows us to train a global model based on each site’s local data,
without ever moving the raw data from their respective sites. To the best of our knowledge, this is the first imple-
mentation of federated machine learning algorithms that leverages distributed electronic health data for predicting
ADRs. ADR prediction itself brings significant challenges for federated learning due to the huge imbalance between
the majority class of individuals who do not suffer from ADRs, and the minority class of individuals with severe
ADRs. To address this issue, we propose two novel methods of aggregating model updates from the sites and compare
their performance with that of the state-of-the-art alternative. To show the effectiveness of our proposed approach,
we consider two use cases: (i) prediction of chronic opioid usage for patients taking opioid drugs, and (ii) predic-
tion of extrapyramidal symptoms for patients taking antipsychotic drugs. We conduct a comprehensive experimental
evaluation using real-world patient data.

The key contributions of our work include: (1) implementing federated models for ADR prediction based on three
supervised learning algorithms; (2) proposing and implementing two novel methods of aggregating local model up-
dates in a federated setup; (3) demonstrating the effectiveness of our approach in analyzing sensitive, distributed, and
highly imbalanced real-world electronic health data; (4) conducting a comparative analysis to evaluate our approach
against state-of-the-art alternatives; and (5) demonstrating scalability of our approach for varying number of sites, data
size, and data distribution.

2 Background

Figure 1: System design of federated learning for ADR
prediction. Each site maintains electronic health records
for a number of patients. Once a global model is shared
with each site, it is trained on the site’s local data. Updates
to the local models’ parameters are aggregated to improve
the global model. This process is repeated until a conver-
gence criterion for the global model is satisfied.

The sensitive and distributed nature of electronic
health information in real-world scenarios motivate
the need for a mechanism that can learn from data re-
siding in silos, while accounting for data privacy. This
compels us to explore the potential and value of fed-
erated learning for ADR prediction. Federated learn-
ing enables training a global model from distributed
data, without having the sites exchanging any raw sen-
sitive data. The global model is distributed to each
site, where an instance is trained locally. The updates
from locally trained instances are then aggregated to
improve the global model, which is shared again with
the sites for another round of training. This iterative
process, illustrated in Figure 1, terminates when a per-
formance criterion is met.

Initial implementations of federated learning were in-
tended for image classification and language modeling
on mobile devices8, 9. Existing literature aims to im-
prove the performance of deep networks in a federated
setting10–13. There is currently very limited research focusing on the application of federated learning in healthcare.
Recent work noted the effectiveness of federated models in predicting hospital admissions using EHR data14. How-
ever, the potential of federated learning in healthcare applications that make use of claims or EHR data for ADR
prediction is yet to be explored. Moreover, the existing method of aggregating updates from local models8 relies on
the size, rather than the inherent characteristics, of the data. This approach may not work well in healthcare applica-
tions, which often deal with skewed, sparse, and imbalanced datasets. Hence, exploring the underlying characteristics
of distributed data to improve the predictive capability of the global model is also an important research direction.

Unlike the methods that focus on surveillance of all potential ADRs for a given drug, specific prediction typically em-
ploys supervised learning algorithms15–17. Commonly used algorithms are logistic regression, random forest, decision
trees, Support Vector Machine (SVM), and neural networks. Prior works on ADR prediction with machine learn-
ing methods are largely limited to centralized models, where all data are available to the researcher in a centralized
data store. A majority of these works also lack evaluation on real-world datasets. For instance, distributed logistic
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regression based on multi-party computation, was studied using simulated data18.

In this paper, we implement federated models based on three supervised classification algorithms: SVM, single-layer
perceptron, and logistic regression, using stochastic gradient descent (SGD)-based optimization, which provides a
generic approach for the algorithms to learn local models and aggregate their parameters to improve the global model
and is the method currently supported by federated learning.

3 Methods
3.1 Data and cohort selection

To evaluate our approach, we used the Limited IBM MarketScan Explorys Claims-EMR Data Set (LCED). The data
is procured from administrative claims and EHR data of over 1 million commercially insured patients over 5 years
(2012-2017), each varying in lengths of medical activity. LCED contains patient-level features, such as demographics,
diagnostic codes, outpatient prescription fills, laboratory results, and inpatient admission records. From this dataset,
we defined our cohort based on the occurrences of two drug-ADR pairs during a 5 year period. Our selection was
based on multiple factors: the number of patients taking the drugs of interest, the prevalence of the specific ADR of
interest, and the feasibility of reliably detecting the ADR incidents using the LCED data.

Use case I: The first use case regards predicting chronic opioid usage (potential opioid use disorder) among patients
who receive an opioid drug. Opioid abuse is currently one of the most pressing public health issues in the United
States. The first exposure to opioids, for many who develop an abuse disorder, is a physician’s prescription to alleviate
symptoms of another condition. We closely follow Zhang et al19 to construct the opioid user cohort by first identifying
all patients who had one or more opioid prescriptions. We define opioid discontinuation as having 180 or more
opioid-free days during one year (365 days) after the initial prescription, and chronic users of opioid as those who
did not discontinue during the same period. Opioid-free day is calculated by subtracting from 365 days the sum of
all subsequent opioid prescriptions’ days-supply during the year following initiation. We excluded patients who had a
diagnosis of opioid use disorder, cancer, or received hospice service in the year prior to the initiation, as their chronic
opioid usage was expected. After identifying a number of risk factors for chronic opioid use from the literature, we
hand-generate them from the data as predictive features. Examples include age, gender, smoking and alcohol habits,
diagnoses of different types of pain (spinal injury, arthritis, etc.), surgical procedures, use of psychotropic drugs, and
the morphine milligram equivalent (MME) of the initial opioid prescription normalized by its days-supply.

Use case II: The second use case regards predicting incidents of extra-pyramidal symptoms (EPS), a type of motor
dysfunction, from the use of antipsychotic drugs. Broad off-label use of antipsychotics is well known despite the
risk for developing ADRs like EPS. Similar to the opioid cohort, we start from identifying patients who had one
or more prescription for an antipsychotic. We define the incidence of EPS following antipsychotic initiation using
International Classification of Diseases (ICD) Ninth and Tenth Revision diagnosis codes. Examples of patient level
predictive features identified from the literature include age, gender, smoking and alcohol habits, type of the first
antipsychotic (first vs. second generation), other drug use (other psychotropic drugs, drugs related to Parkinson’s
Disease, etc.), comorbid diagnoses (dementia, psychiatric diagnoses, epilepsy, Parkinson’s Disease, etc.), and number
of prior hospital admissions. We generate these features using the data from the one-year period prior to the initiation
of antipsychotic for each patient.

Cohort # Patients Mean Age (SD) Female (%) # Patients with ADR Class ratio
Opioid 1,161,048 48.6 (18.2) 57.8 69,863 1:15.6
Antipsychotic 86,674 50.1 (21.7) 60.5 1,314 1:65

Table 1: Summary of the two drug-ADR pair cohorts. SD: Standard deviation

Table 1 provides summary statistics of the two cohorts. The imbalance between the majority (non-ADR) and minority
(ADR) classes was consistent with our expectation, since severe ADRs are rare with most of the drugs available on
the market. Our primary analyses focus on the opioid cohort, where a better balance is achieved with a larger sample
size. We examine the antipsychotic cohort as an example of small, highly imbalanced data that one can encounter
frequently in the healthcare domain. The implication of severe class imbalance is discussed in the following sections.
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3.2 ADR prediction model

Consider a general binary classification problem, where features, denoted by xk (for the kth feature), are drawn from
a feature space X. The corresponding labels yk are drawn from the label space Y := {−1, 1}. Let the features
corresponding to positive labels be denoted by X+ and those corresponding to negative labels by X−, that is

X+ = {xk ∈ X : yk = +1} and X− = {xk ∈ X : yk = −1}.

For any x+k ∈ X+ and x−k ∈ X−, the objective of binary classification is to construct a function f : X→ Y such that

f(x+k ) = +1 and f(x−k ) = −1.

In this paper, we denote cases of ADR as labels yk = +1 , and cases of non-ADR as yk = −1.

3.2.1 Cost-sensitive learning

Class imbalance is intrinsic to ADR prediction. Since most classification algorithms assume balanced class distribu-
tions or equal misclassification costs, they fail to represent the characteristics of imbalanced data and are more likely to
classify new observations to the majority class20. For ADR prediction, the cost of a false negative classification should
be much higher than that of a false positive classification. Recent work on imbalanced learning can be categorized into
sampling methods21, cost-sensitive methods22, and active learning methods23. As discussed in24, sampling methods,
such as undersampling the majority class or oversampling the minority class, either discard potentially useful data
or can lead to overfitting. Since our dataset does not comprise unlabeled samples, active learning is not applicable.
Hence, to mitigate the challenge of skewed data distribution, we incorporate cost-sensitive learning, wherein we in-
crease the cost associated with misclassifying a minority class sample. Specifically, if CFN and CFP denote the cost
of false negative and false positive in a cost matrix, respectively, then we set CFN > CFP. The magnitude of cost
depends on the problem at hand and we determine their values using grid search.

3.2.2 Centralized model

For the purpose of binary classification of samples into ADR and non-ADR cases, we consider three supervised
classification methods: SVM, single-layer perceptron, and logistic regression . We implemented these algorithms
using scikit-learn version 0.20.2. To establish benchmark results, we first evaluate the performance of the classifiers
in a centralized learning approach. This represents the scenario of gathering data from multiple sites for training a
machine learning model. For each cohort, we split its entire dataset into two parts: 70% for training, and 30% for
testing, where Xtrain and Ytrain denote the feature and label sets for training, and Xtest and Ytest denote the feature
and label sets for testing. As the splits are stratified, the proportion of positive and negative cases in each split is the
same as the entire dataset. After standardizing the features, we use 5-fold cross-validation to train the models on Xtrain

and Ytrain, and test them on Xtest. To incorporate cost-sensitive learning, we update the class_weight parameter in
scikit-learn based on class frequencies.

3.2.3 Localized model

Since healthcare and biomedical data is rife with sensitive information, sharing such data across sites or transferring it
to a centralized database is often restricted. In such cases, a site has to rely on its own data for predictive analytics. We
consider this scenario while designing localized models for ADR prediction. We train each classifier on a site’s data,
without leveraging data from other sites. Let us suppose there are N sites, representing hospitals or data owners. We
use horizontal partitioning to split the training data intoN disjoint subsets. We partition Xtrain into {Xi

train}Ni=1, where
∪Ni=1Xi

train = Xtrain and Xi
train ∩ Xj

train = ∅,∀i, j ∈ {1, ..., N}, for i 6= j. We follow the same logic to partition the
corresponding label set Ytrain into {Yi

train}Ni=1. In the case of localized learning, the classifiers are trained on a single
site’s data {Xi

train}Ni=1 and {Yi
train}Ni=1, and tested on Xtest. The limited availability of data may fail to account for

detection of rare events25. We consider the results obtained from the localized models for benchmark analysis with
federated and centralized learning models.
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3.2.4 Federated model

In this paper, we focus on classification models that can be trained using gradient descent optimization, as currently
supported by federated learning. Similarly to the scenario of localized model, for N sites, we randomly partition
the training data into N disjoint subsets of feature set {Xi

train}Ni=1 and corresponding label set {Yi
train}Ni=1. Let T

denote the rounds of aggregating local model updates. For stochastic gradient descent, let η, E, and Batch denote
the learning rate, number of epochs, and batch based on a given batch size B, respectively. Let Fi(w) be the local
loss function of the ith site with respect to its model parameter w. As described in Section 2, a global model is
shared with each site, which trains the model on its local data. During local model training, based on given η, E,
and Batch, at each site, we compute average gradient (OFi(w)) with respect to its current model parameter w. We
then compute weighted average to aggregate the parameter updates from the local models. The process is repeated
until a convergence criterion, such as minimization of loss function, is satisfied. The process of training the global
model only relies on updates from the local models, rather than raw data residing at the sites. Algorithm 1 presents the
core algorithm of federated learning, where the weight wi

D, used to compute weighted average, depends on the model
aggregation method used. We first implement and evaluate the performance of the state-of-the-art model averaging
approach, known as federated averaging9. It computes a weighted average based on the fraction of data residing at
each site. For this case, the weight wi

D is equal to |Di|
|D| , where |Di| and |D| denote the size of data at the ith site and

the entire dataset, respectively. Such an approach may fail to consider the inherent characteristics of data distribution
at the sites. For the use case of ADR prediction, federated averaging would not account for imbalanced data and the
varying distribution of ADR cases across sites. Since such scenarios are common when dealing with real-world health
data, particularly in predicting rare events, it is important to explore other aggregation approaches.

3.2.5 Aggregation of local model updates

In this paper, we propose two novel methods of aggregating local model updates. The first method is particularly
designed for training data with imbalanced classes. For each site, we estimate the class ratio of its training data to
assign a corresponding weight, as denoted by wi

D. This would imply that sites with cases of rare events, would have
higher impact when improving the global model. For the second approach, we consider loss per sample, the change
in the loss function during local model training. Since a gradient descent-based method attempts to minimize the loss
function, we determine its rate of convergence. This is measured by the metric epoch, which is the maximum number
of passes over the training data until convergence. Based on each site’s epoch and training data size, we assign a
weight, corresponding to wi

D, for future aggregation. Using this approach, sites which require less training samples to
reach convergence faster, will be assigned a higher weight during aggregation.

To evaluate these methods, we create a separate partition of the training data, based on the opioid cohort, to represent
unequal distribution of class labels, as shown in Table 2. We do not conduct the same experiment with the antipsychotic
cohort due to the limited number of minority class labels (ADR).

Site # 1 2 3 4 5 6 7 8 9 10
# ADR 5,000 5,000 5,000 5,000 5,000 5,000 5,000 5,000 5,000 5,000

# Non-ADR 5,000 5,000 5,000 100,000 150,000 200,000 250,000 16,258 16,258 16,258
Class Ratio 1:1 1:1 1:1 1:20 1:30 1:40 1:50 1:3.2 1:3.2 1:4.1

Table 2: Partitioning of the opioid cohort training data with varying class ratio.

4 Experimental Evaluation

In this section, we present experimental results to evaluate our proposed approach. We discuss the evaluation metrics
we used in this study, followed by a comparative analysis to demonstrate the effectiveness of the proposed system.

4.1 Evaluation metrics

To measure the predictive capability of the centralized, localized, and federated learning models, we compute preci-
sion, recall, and accuracy scores. As noted in prior work21, 26, precision and recall are better indicators for models
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dealing with imbalanced data. We also report the runtime incurred in training the models for each setup. All experi-
ments were run on an Intel(R) Xeon(R) E5-2683 v4 2.10 GHz CPU equipped with 16 cores and 64 GB of RAM.

Algorithm 1 Federated Learning Model for ADR Prediction

1: function UPDATEGLOBALMODEL
2: initialize w0

3: for t = 1 to T do
4: for i = 1 to N do
5: wi

t+1 = UPDATELOCALMODEL(i, wt)

6: wt+1 =
∑N

i=1 w
i
D ∗ wi

t+1

7: function UPDATELOCALMODEL(i, w)
8: for e = 1 to E do
9: for b ∈ Batch do

10: w = w − ηOFi(w)

11: return w

For the set of experiments comparing central-
ized, localized, and federated learning models,
we examine the observed differences in perfor-
mance metrics in two ways: (a) by calculat-
ing the % relative error of federated learning
and localized learning with respect to central-
ized learning when using federated averaging9,
and (b) by testing the statistical significance of
the difference using the Wilcoxon signed-rank
test at 0.05 significance level.

4.2 Comparative analysis

We compare precision, recall, and accuracy of
the federated learning (FL) model with two
benchmark models: centralized learning (CL)
and localized learning (LL). We execute the ex-

periments 10 times for each setup. Figures 2, 3, and 4 report these metrics for the two datasets. As seen in Figure 2,
SVM and perceptron yield similar scores and perform better than logistic regression. For all classifiers and datasets,
federated learning exhibits comparable performance with respect to centralized learning. At the same time, due to the
lack of sufficient training data, localized models do not perform well. It must be noted that the precision score for
the antipsychotic data is higher than that for the opioid data. This is due to having a lower number of false positives,
possibly because the former dataset is severely imbalanced with a class ratio of 1 : 65.

Figure 3 presents the recall scores of the models for the two datasets. Perceptron generated the highest recall score,
followed by SVM and logistic regression. Federated learning performed as good as centralized learning, and outper-
formed the localized learning models. Since the implementation of cost-sensitive learning reduced the cases of false
negative, even with such imbalanced data, centralized and federated learning models for SVM and perceptron achieved
high recall.

Figure 4 compares the accuracy score of the three models for the given dataset. Similarly to previous observations,
Perceptron and SVM perform better than logistic regression. Our federated learning approach achieves comparable
and better accuracy than centralized and localized learning models, respectively.

We observe that the % relative error values from federated learning are smaller than those from localized learning
(Table 3). To put the numbers into a context, a difference of 5% in recall can translate to missing 5 out of 100 ADR
cases compared to using centralized learning. Higher recall is desirable given the potential cost of missing severe
ADR cases, and therefore federated learning with low % relative error is preferred. Based on statistical testing, in both
opioid and antipsychotic data, the performance of centralized learning and federated learning is comparable for all
three metrics for all classifiers. On the other hand, the performance of localized learning is inferior compared to either
centralized or federated learning for the three evaluated metrics (all p values < 0.05).

In Table 4, we report the running time (in seconds) incurred in training the models for different setups. As expected,
centralized learning requires a lot of time as it involves training the models on the entire training dataset. Federated
learning requires significantly less time to train the models. Localized learning models train on a subset of the data on
a single round, due to which they incur the lowest running time. For both datasets, perceptron required higher running
time, compared to SVM and logistic regression. Due to the considerably large scale of opioid data, it consistently
required more time to train the models.

To demonstrate the scalability of federated learning models, we further measure their predictive capability, in terms of
precision and recall, for a varying number of sites and data sizes. As the number of sites increases, the size of training
data residing at each site proportionally decreases. Due to the imbalanced nature of the data, this has a pronounced
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impact on the recall score, as evident in Figure 5. This scenario also accounts for the ability of the system to handle
varying sizes of training data.

As previously discussed, we partition the opioid cohort such that the sites have a varying distribution of ADR and
non-ADR cases (see class ratios in Table 2). We compare the effectiveness of our two proposed aggregation methods,
in terms of precision, recall, and accuracy, with respect to default averaging (without weights) and federated averaging
(based on data size). As seen in Table 5, for all evaluation metrics, our methods, particularly aggregation based on
loss per sample, outperforms the state-of-the-art method of aggregation. This result implies that for skewed datasets,
it is very important to consider the underlying characteristics of the data when aggregating local models.

Precision Recall Accuracy
Dataset Classifier FL vs CL LL vs CL FL vs CL LL vs CL FL vs CL LL vs CL
Opioid SVM 2.84(1.64) 6.44(1.59) 3.10(2.58) 8.49(3.88) 3.96(2.33) 13.34(2.50)

Perceptron 1.11(.73) 7.16(2.49) 7.32(5.45) 9.06(6.06) 5.31(3.99) 12.88(4.58)
LogReg 1.86(1.11) 11.28(2.56) 3.21(2.81) 11.55(3.37) 2.66(2.54) 12.55(4.49)

Antipsychotic SVM 1.61(1.04) 11.82(2.28) 2.24(1.49) 15.71(2.55) 4.47(3.63) 16.45(2.50)
Perceptron 2.81(1.68) 12.73(3.53) 2.39(1.95) 14.08(5.00) 4.87(2.50) 11.22(4.19)

LogReg 1.42(1.26) 11.13(2.05) 2.21(1.99) 12.70(4.60) 4.19(3.90) 7.90(6.13)

Table 3: Comparison of relative error (%) for federated learning (FL) and localized learning (LL) with respect to
centralized learning (CL). The values denote average (standard deviation) over 10 iterations.

Opioid Antipsychotic
CL FL LL CL FL LL

SVM 612.8 (8.5) 122.2 (3.4) 4.1 (.3) 170.1 (1.8) 17.3 (0.9) 3.2 (.1)
Perceptron 842.8 (9.0) 117.6 (2.9) 6.3 (.7) 169.1 (1.3) 19.1 (1.4) 4.6 (.7)

Logistic Regression 513.7 (6.4) 102.7 (3.4) 4.8 (.6) 147.8 (2.3) 14.2 (.3) 3.9 (.7)

Table 4: Time (in seconds) incurred in training the centralized learning (CL), federated learning (FL), and localized
learning (LL) models using SVM, perceptron, and logistic regression. The times denote average (standard deviation)
over 10 iterations.

(a) (b)
Figure 2: Comparison of precision score for centralized learning (CL), federated learning (FL), and localized learning
(LL) models using SVM, perceptron, and logistic regression with (a) opioid data and (b) antipsychotic data.

5 Discussion

The availability of electronic health data brings countless opportunities to investigate and predict ADR, provided that
the hurdles in gathering and using such data are overcome. In this work, we proposed and evaluated the use of federated
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(a) (b)
Figure 3: Comparison of recall score for centralized learning (CL), federated learning (FL), and localized learning
(LL) models using SVM, perceptron, and logistic regression with (a) opioid data and (b) antipsychotic data.

(a) (b)
Figure 4: Comparison of accuracy score for centralized learning (CL), federated learning (FL), and localized learning
(LL) models using SVM, perceptron, and logistic regression with (a) opioid data and (b) antipsychotic data.

learning to address the limitations of ADR prediction frameworks based on centralized learning. We demonstrated that
SVM and perceptron perform better than logistic regression with respect to precision, recall, and accuracy. Perceptron
has higher recall values, making it the preferable classifier for ADR detection, where false negatives generally have
more significant consequences than false positives. We also demonstrated that the performance of federated learning
models is comparable to that of centralized learning, implying that a federated learning framework can be used to pre-
dict ADR without compromising the model performance, while bypassing the challenges associated with centralized
learning. An important finding of our evaluation regards the quality of our proposed aggregation approach with loss to
sample ratio weighting, which achieves superior performance compared to state-of-the-art federated averaging. This
approach is advantageous in federated learning applications with real-world health data, where severe class imbalance
is a norm, rather than an exception.

In this paper, we focused on classification algorithms that are amenable to distributed solution using gradient descent,
as currently supported by the federated learning paradigm. In the future, we plan to extend our federated learning
framework to other types of algorithms, such as decision trees and gradient boosting, as well as applications where
large-scale distributed datasets are common and deep learning models are applicable. We will leverage other charac-
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Figure 5: Effect of varying number of sites on precision and recall scores of federated learning models (SVM, per-
ceptron, logistic regression) with (a) opioid data and (b) antipsychotic data.

Aggregate Precision Recall Accuracy
SVM Perc LR SVM Perc LR SVM Perc LR

Average .93 (.01) .91 (.02) .91 (.01) .63 (.02) .68 (.02) .59 (.01) .64 (.02) .68 (.03) .59 (.01)
Fed Avg .93 (.02) .91 (.01) .90 (.02) .58 (.03) .64 (.01) .54 (.02) .58 (.01) .64 (.02) .54 (.02)
Class ratio .94 (.01) .92 (.01) .90 (.01) .72 (.02) .68 (.01) .61 (.02) .71 (.01) .67 (.01) .62 (.01)
Loss/sample .94 (.01) .92 (.01) .91 (.01) .75 (.02) .69 (.01) .63 (.01) .74 (.01) .69 (.01) .63 (.02)

Table 5: Comparison of our proposed aggregation methods (based on class ratio and loss/sample) with respect to
averaging and federated averaging methods. For SVM, perceptron (Perc), and logistic regression (LR), we report the
average (standard deviation) values of precision, recall, and accuracy scores.

teristics of data, such as quality, relevance, and rate of generation, to determine the impact of sites when aggregating
their local model updates. We will also explore potential approaches for tuning hyperparameters of the global model in
a federated setup. We intend to work on approaches for privacy-preserving federated learning, which protect patients’
privacy against adversarial attacks, in addition to not exchanging raw data while training the models.
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