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Abstract 
With the increased adoption of electronic health records, data collected for routine clinical care is used for health 
outcomes and population sciences research, including the identification of phenotypes. In recent years, research 
networks, such as eMERGE, OHDSI and PCORnet, have been able to increase statistical power and population 
diversity by combining patient cohorts. These networks share phenotype algorithms that are executed at each 
participating site. Here we observe experiences with phenotype algorithm portability across seven research networks 
and propose a generalizable framework for phenotype algorithm portability. Several strategies exist to increase the 
portability of phenotype algorithms, reducing the implementation effort needed by each site. These include using a 
common data model, standardized representation of the phenotype algorithm logic, and technical solutions to 
facilitate federated execution of queries. Portability is achieved by tradeoffs across three domains: Data, Authoring 
and Implementation, and multiple approaches were observed in representing portable phenotype algorithms.  Our 
proposed framework will help guide future research in operationalizing phenotype algorithm portability at scale. 
 
Introduction and Background 
As the proliferation of electronic health records (EHRs) has increased the secondary use of healthcare data, it has also 
catalyzed the establishment of collaborative research networks where multiple institutions are working on large studies 
to increase their sample size and diversity of the study population. This has been demonstrated via multi-site 
prospective clinical trials and large-scale observational studies, where participant eligibility criteria queries - which, 
typically take the form of phenotype algorithms (i.e., structured selection criteria designed to produce research-quality 
phenotypes)1, 2 - are run at each participating institution to identify the study cohort. More recently, large collaborative 
networks such as the Health Care Systems Research Network (HCSRN, formerly the HMORN)3, Mini-Sentinel4, the 
electronic Medical Records and Genomics (eMERGE) Network5, the National Patient-Centered Clinical Research 
Network (PCORnet)6, the Accrual to Clinical Trials (ACT) Network7, the Observational Health Data Sciences and 
Informatics (OHDSI) program8, and the Electronic Health Records for Clinical Research (EHR4CR) European 
project9 have shown different models for how a single phenotype algorithm may be run across heterogeneous EHRs 
and database systems. A desired state from many of these networks is to have “computable phenotype algorithms” 
that are portable, and can be executed in a high-throughput manner10. 
 
In our observations, across both clinical trials and research networks, two primary models have emerged for the 
implementation of phenotype algorithms at multiple sites: 1) sharing a human-readable narrative of the algorithm that 
is re-implemented at each site (e.g., clinical trials, eMERGE), and 2) using a pre-coordinated common data model 
(CDM) which allows sharing of machine interpretable executable code (e.g., OHDSI, PCORnet, HCSRN). The first 
approach often reduces the burden on the algorithm authoring institution, as they may describe the phenotype 
algorithm logic and required medical vocabulary codes in a more generic manner or in a manner that meets their local 
institution-specific settings (e.g., local, non-standardized laboratory measurement codes). This algorithm logic can 
then be disseminated widely via public repositories - the eMERGE Network uses the Phenotype KnowledgeBase 
(PheKB)11, and clinical trial criteria are made available on ClinicalTrials.gov12. Sites implementing the phenotype 
algorithm then interpret and convert the written description to an executable format that can run against their local 
data, which often requires iterative communication with the original author(s) to ensure accuracy. Local validation is 
an important component to ensure the implementation is correct, and that the phenotype algorithm implementation is 
sufficiently sensitive and/or specific (depending on the specific study needs) when implemented across multiple 
sites13.   To this end, phenotype algorithms may be easily shared as a narrative document, but this limits scalability as 
each algorithm must be transformed from a narrative to local queries.  This has been shown to be a cumbersome, 
resource-intensive and error-prone process14. 
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The second approach, the use of a CDM, uses a pre-coordinated structure for the data such that the phenotype 
algorithm – represented as a database query – may be directly shared and executed at different sites using the same 
CDM. Several CDMs have been defined, including Informatics for Integrating Biology and the Bedside (i2b2)15, 
PCORnet6, Mini-Sentinel CDM16, OHDSI’s Observational Medical Outcomes Partnership (OMOP)17, the Clinical 
Data Interchange Standards Consortium (CDISC) Study Data Tabulation Model (SDTM)18, and the HCSRN’s Virtual 
Data Warehouse (VDW)19, 20. CDMs by their nature are optimized for a specific set of uses and data sources (e.g., 
clinical vs. research, claims data vs. EHR data)21. Furthermore, no CDM is “universally common,” meaning that 
translation and reimplementation are required when crossing CDM boundaries.  A more recent project led by the Food 
and Drug Administration, “Harmonization of Various Common Data Models and Open Standards For Evidence 
Generation”22, is developing mappings from several of these CDMs to the BRIDG23 domain analysis model to address 
this need. In addition, local adjustment of the phenotype algorithm is still sometimes needed to account for differences 
that may not be addressed by a CDM, such as different numeric ranges for abnormal lab results across sites.  Similar 
to the first approach, sensitivity and specificity still need to be assessed to ensure the phenotype algorithm is complete 
(e.g., includes all relevant vocabulary codes).  Because of this, portability of phenotype algorithms is not solved solely 
by a CDM, although a CDM provides many advantages10. 
 
The Phenotype Execution and Modeling Architecture (PhEMA) project has proposed an architectural model24 that 
supports the authoring of standards-based EHR-based phenotype algorithms, and their subsequent execution across 
multiple CDMs.  This is done by the use of a canonical, standard representation of the phenotype algorithm logic and 
value sets (collections of standard medical vocabulary codes).  PhEMA then automates the translation steps to convert 
these pieces to computable phenotype algorithms for individual CDMs.  Most recently, PhEMA was used to execute 
a benign prostatic hyperplasia phenotype algorithm across multiple institutions’ data warehouses and i2b2 instances25, 
demonstrating a basis for a single representation of a phenotype algorithm that can span multiple data models.  In 
addition to crossing data model boundaries, we recognize that many other facets of portability exist. In this work, we 
build on the reported experiences of collaborative research networks, as well as our experiences in implementing 
PhEMA across three academic medical centers, by further exploring the considerations needed for cross-site 
portability of phenotype algorithms. 
 
Methods 
We identified large research networks published in the health and biomedical informatics literature that have focused 
on building or leveraging infrastructure to support cross-site execution of EHR-based phenotype algorithms.  
Identification of the networks was done from on a cursory search of PubMed for consortia describing EHR-based 
phenotyping, supplemented by the authors’ collective experience. Within this paper, we are broadly considering an 
“EHR-based phenotype” as a definition of a disease or trait that is ascertained primarily from data stored in an EHR. 
We limited consideration to only those networks describing a distributed model, in which participating institutions 
retain access to their respective data, and those that have an established infrastructure to demonstrate portable 
phenotype algorithm execution. In total, we selected a purposive sample of seven collaborative networks: ACT 
Network, EHR4CR, eMERGE, HSCRN, Mini-Sentinel, OHDSI, and PCORnet. We reviewed the literature published 
by the respective networks, as well as documentation available online regarding CDMs and technical architecture. 
This was supplemented by the authors’ experience from participation in some (but not all) of the networks, and 
personal communication with members in other networks. From this, we created maps showing the elements used to 
compose a phenotype algorithm, the methods by which phenotype algorithms are shared across sites, and how they 
are executed at each site.  Multiple approaches may be used within a single network; however, as our objective was 
to evaluate the distinct approaches, we did not exhaustively document all possible permutations across all networks. 
These models were consolidated into a final framework to capture and model the considerations needed for portable 
EHR-based phenotype algorithms. 
 
Results 
From review and consolidation of the respective research network models, we developed a framework for phenotype 
algorithm portability that has three main components: 1) a phenotype algorithm workflow model, 2) a portability 
tradeoff model, and 3) a portability representation model. 
 
Phenotype Algorithm Workflow Model 
The phenotype algorithm workflow model is comprised of 8 steps across 3 broad domains that we identified as being 
involved within the phenotype modeling and execution process, and that have potential impact on portability (Table 
1).  As described, these steps identify the core work needed to establish a portable phenotype algorithm, and are part 
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of an iterative process. 
 
Table 1. Phenotype algorithm workflow model 

 

Domain Step Description Potential Challenges to Portability 

Data Data 
Collection 

The processes by which data 
is collected within the source 
EHR, and its intended 
purpose. 

Only data that is collected can be used for electronic 
phenotyping. 
How data is collected at a local institution 
(vocabulary used, frequency of collection, etc.) 
determines how that institution authors a phenotype 
algorithm. 
Modality of data collection (e.g., structured, 
narrative text, images) can affect how and if the data 
used in executing a phenotype algorithm. 

Data 
Preparation 

Extract-Transform-Load 
(ETL) processes through 
which data is consolidated 
into an integrated data 
repository (IDR). 

The need to transform the shape of the data from an 
IDR data into a common data model (CDM). 
Effort to convert data from one modality to another 
(e.g., natural language processing to obtain 
structured results). 
Mapping of local terms to a standard vocabulary 
term (national standard or prescribed by CDM), and 
potential lossy mappings or semantic drift. 

Authoring Define 
Value Sets 

Identifying the medical terms 
that are used to represent data 
elements within the 
phenotype algorithm logic. 

Not all terminologies/vocabularies are fully 
implemented at all institutions. 
Value sets may list all codes, or may list codes at the 
top level of a hierarchy that need to be expanded. 

Define 
Logic 

Create a representation of the 
required data elements, and 
how the elements are related 
by different operators (e.g., 
Boolean, temporal) to create 
a phenotype algorithm. 

The modality of the logic representation (narrative, 
intermediate representation, programming 
language), and what system(s) may understand it. 
Strictness of the logic, considering local instead of 
broader data availability. 

Implementation Distribution The mechanism by which a 
phenotype algorithm is 
transmitted from the author to 
an implementing site. 

Automated vs. manual approach. 
Policies that require human review and approval 
before execution. 

Translation How the phenotype algorithm 
is converted into an 
executable representation that 
may be directly applied to the 
institutional data model. 

Automated vs. manual approach. 
Technology-specific customizations (e.g., database 
schema names, table names). 
Information loss when elements of a data model do 
not have a direct translation or differ in granularity. 

Execution The computation process by 
which the executable 
representation is applied to an 
institutional data warehouse, 
and results are retrieved. 

Syntax errors that require human intervention and 
correction. 
 

Validation A formal or informal 
comparison of the execution 
results against a reference 
standard. 

Lack of detailed information concerning the 
inclusion and exclusion implications across multiple 
phenotype algorithm steps. 
Lack of access to source data to evaluate results.  
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Data Collection - A reality for any research network is that if a particular data element is not collected as part of an 
institution’s care process, it will never be available to a phenotype algorithm. Similarly, if a data element is available 
within a source system but is not made available to a site’s integrated data repository (IDR) in a way that it can be 
queried, a phenotype algorithm will not be able to include it.  This may be observed with data collected as clinical 
narratives or images, as opposed to structured data. We note that even with a common data model that is capable of 
representing all medical concepts, these potential barriers would keep the data not represented in the CDM from being 
provided.  This remains a consistent barrier across all networks. 
 
Data Preparation - We observed that many networks adopted a CDM to aid with portability. This requires those 
involved with the Data Preparation step to spend additional time “data wrangling” (i.e., cleaning, mapping and 
translating their source EHR data into the CDM). This reduces the downstream effort on both authors and 
implementers. There are variations in the pre-coordination of vocabularies within the CDMs, however. For example, 
within i2b2 (used in the ACT network), each site may have a local ontology specified for their data elements. This 
allows for custom data elements (e.g., status within a biobank or clinical trial), as well as individual site selection of 
the vocabulary to use (e.g., NDC codes for medications instead of RxNorm codes).  Other networks, such as OHDSI, 
provide stronger guidance on the vocabularies to use, potentially requiring additional time and effort in the data 
mapping process. They still allow flexibility by preserving the source system’s native vocabulary code, and allow 
phenotype algorithms to be defined using those codes.  Some CDMs account for processing steps to convert data 
between modalities, such as the NOTE_NLP table within OMOP to store structured results from natural language 
processing (NLP).  This requires additional effort to perform NLP on clinical text, but produces structured data that is 
more amenable to processing.  Depending on the amount of effort needed, not all sites adopting a CDM may perform 
this pre-processing, or may do it on an ad hoc basis as new categories of data are needed for a study (e.g., processing 
just echocardiogram reports). On the other hand, it was pointed out that existing NOTE_NLP table lacks flexibility to 
store relations between medical concepts26. 
 
Defining Value Sets - In networks where a pre-coordinated set of vocabularies have been implemented (as described 
in Data Preparation), time and effort are reduced within the authoring process as the phenotype algorithm author can 
write the phenotype algorithm for just those vocabularies. For example, within OMOP, diagnoses may be represented 
entirely using SNOMED CT. Within networks such as eMERGE where sites re-implement the phenotype algorithm 
locally, additional effort is needed by the author or implementation site to expand a value set. For example, an existing 
phenotype algorithm developed using just ICD-9-CM codes only would need to be updated for an implementer 
wishing to include ICD-10-CM codes (ICD-10 codes were used in the US only after October 2015). We note that the 
reduced authoring time in networks having a pre-coordinated vocabulary does not necessarily guarantee portability 
across research network boundaries.  For example, an HSCRN query representing a medication value set with NDC 
codes would require mapping to RxNorm to support execution in ACT.   
 
Defining Logic - Research networks use three general approaches to make their phenotype algorithms portable. The 
first is the use of a specific programming language to represent the query (e.g., SAS within HSCRN, R and SQL 
within OHDSI). A second approach is the use of a system-specific intermediary representation for the logic, agnostic 
to underlying implementation.  For example, the ATLAS JSON format within OHDSI, the XML query definition in 
i2b2, and the Eligibility Criteria Language for Clinical Trial Investigation and Construction (ECLECTIC) within 
EHR4CR27. The third approach is the development of a written narrative and/or visual flowchart to describe the 
phenotype logic (e.g., phenotype logic posted to PheKB for eMERGE). This last format is based on a computable 
implementation at the authoring site, which may be done against any data model and using any technology the 
authoring site chooses. The description of the phenotype algorithm may be easier for the author to provide as it can 
convey the intent of the logic without prescribing specific tables or fields to be used, but requires each implementing 
site to read, evaluate and map the intent of the logic to their local institutional data model. 
 
Distribution – Phenotype algorithms were distributed manually or automatically, and the choice of distribution method 
often depends on how the logic was represented as well as constraints within the research network. Within the 
eMERGE network, the author will manually publish a phenotype algorithm to PheKB, and inform implementing sites 
when it is ready. Similarly within OHDSI, phenotype algorithms may be tracked within a central GitHub repository28, 
where they can be reviewed and manually imported into a local OHDSI instance. The HSCRN and PCORnet have 
infrastructure to electronically share the phenotype algorithm to implementing sites, where it may be reviewed from 
a worklist before execution.  Federated architectures, such as EHR4CR’s Orchestrator, ACT’s use of the Shared Health 
Research Information Network (SHRINE)29 on top of i2b2, or the ARACHNE system within OHDSI, allow phenotype 
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algorithms to be automatically distributed. Within this step, automation can reduce burden on implementers, and also 
reduce burden on authors if a technical solution exists to link authoring to distribution.  
 
Translation - Varying levels of transformation are needed across the networks, driven by technical capabilities.  Within 
HSCRN (where SAS files were directly shared) and within OHDSI (where SQL and R code are shared), some manual 
translation may be needed to configure the code to run locally. As an example, SQL code for OHDSI may require 
specifying a local database schema name before it can be run. Within OHDSI where the JSON representation of a 
phenotype algorithm is shared from the ATLAS system, the translation is done automatically. Similarly, within ACT, 
SHRINE performs real-time mapping of ontology terms in the XML message to the local i2b2 instance, and i2b2 itself 
manages translation of XML to local SQL queries. 
 
Execution - This step is consistent across all research networks, as all translations have been completed and the 
phenotype algorithm is now in an executable format for the local data repository. During the execution phase, 
considerations for portability are driven largely by the results of the execution. A phenotype algorithm may be 
appropriately translated to SQL code, but requires a significant amount of time or resource to run. This may be to the 
point where the SQL code is unable to complete before a system-level timeout causes it to halt; thus, it is not truly 
executable and is no longer viewed as a portable implementation. Likewise, a phenotype algorithm may have 
execution paths that are entirely dependent on a category of data that is not present due to considerations from steps 
in the Data domain. Although a syntactically valid definition of the phenotype algorithm exists, it is also not viewed 
as portable given that it returns no records when some records are expected to be found. 
 
Validation – This step is carried out in multiple ways across the different research networks, often depending on the 
technical approach used to perform actual execution.  Usually the first pass of the execution is a simple cohort count 
(“how many cases and controls with X?”), which may be supplemented with a demographic breakdown.  An initial 
face-validity check of the result can be used to ascertain if the results seem feasible, given expected prevalence of a 
condition.  To perform more in-depth validation, or to troubleshoot why a phenotype algorithm is returning an empty 
cohort, access to the underlying data model is typically needed.  As this is a manual process, it requires additional 
coordination and time across implementation sites by the author site to conduct chart reviews.  Automation of this 
type of analysis can be done in the Execution step, although this increases overall execution time30. 
 
Portability Tradeoff Model 
The second component of our proposed framework is a portability tradeoff model that represents the interlinked nature 
of the three domains in the workflow model. Across the seven reviewed research networks, we observed that different 
weights are given to Data, Authoring and Implementation.  Within the portability tradeoff model, we consider a higher 
weight in a domain as having an increased overall cost (although we note that a high cost is not inherently “good” or 
“bad”). These costs are in turn linked to the “iron triangle” of project management: time, features and resource31. This 
results in what we have termed the “nested iron triangle 
of phenotype algorithm portability” (Figure 1).  For 
example, OHDSI and PCORnet put additional weight on 
the Data domain, such that more up-front work is needed 
at each institution to adhere to the CDM. This reduces the 
time spent on Authoring, as the author only needs to 
consider a single data model and a limited set of 
vocabularies. Similarly, less effort is then needed at each 
site for Implementation, as less localization is needed 
during the Translation step. As a second example, sharing 
phenotype algorithms as narratives (employed within the 
eMERGE network) allows flexibility in the data model, 
often leveraging existing data warehousing infrastructure 
(decreased weight on Data). However, additional time 
may be required during Authoring, if the author is 
considering portability and thoroughly investigating 
comprehensive value sets. Furthermore, more weight is 
given to steps in the Implementation domain, as each site 
must put more effort into the Translation step to arrive at 
an executable definition. 

Figure 1. Portability tradeoff model: the “nested iron 
triangle of phenotype algorithm portability”. 
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Portability Representation Model 
During our review, we observed how the seven 
research networks approached the representation of 
the phenotype algorithms, and the impact this 
representation had on portability across steps in the 
Authoring and Implementation domains.  This is 
defined in its own model given the additional 
considerations needed. Four general approaches 
were identified (Figure 2), with their own benefits 
and limitations. 
 
Unchanged – This approach is the ideal state of 
portable representation, as a single definition (the 
originally developed phenotype algorithm) may be 
distributed for use at the implementing sites.  
Technically this approach is currently available in 
our reviewed networks, with the exception of the 
non-computable narrative phenotype algorithms in 
the eMERGE network. 
 
Criteria Relaxation - This approach allows making 
a phenotype algorithm more general by reducing or 
removing constraints, while monitoring and 
balancing sensitivity and specificity for the 
intended use case25.  This results in a single 
phenotype algorithm that is distributed, and only 
includes the logic known to be runnable at each 
implementing site.  We observed this as being 
universally available across all of the research 
networks from a technical standpoint. All reviewed 
systems across the research networks allow criteria 
to be removed entirely (if overly-exclusive), or constraints broadened (if insufficiently inclusive). This requires 
creating a revision of the phenotype algorithm with the modified logic and/or value sets. This may result in a phenotype 
algorithm with overall lower sensitivity and higher specificity across multiple sites, but allows the phenotype 
algorithm to remain a singular entity that eases distribution, as the same phenotype algorithm is shared universally. 
 
Multi-Label Specification - This approach involves implementing a single version of the phenotype algorithm, but 
allowing different labels to be applied to the cohort, depending on quality of evidence (e.g., “gold standard” and “silver 
standard”)32. Unlike criteria relaxation, this allows the single phenotype algorithm to be run at each site and produce 
results, but may increase overall complexity of the phenotype algorithm depending on the number of logic paths.  This 
is not directly supported outside of narrative descriptions (eMERGE phenotype algorithms) and executable 
implementations (e.g., HSCRN SAS, OHDSI SQL and R).  In networks that provide an intermediary platform to 
author phenotype algorithms (ACT’s i2b2 and OHDSI’s ATLAS), no solution was observed.  Instead, authors must 
create multiple versions of a phenotype algorithm - one for each label. This causes duplication of logic, which must 
now be maintained across multiple phenotype algorithms, and these platforms do not provide a way to group the 
disparate phenotype algorithms together to show they are related. 
 
Site-Specific Customizations - In this approach, the implementing site changes the logic or translates executable code 
of the phenotype algorithm so that it will run and produce acceptable results25. This may be done at the discretion of 
the implementing site, or done in conjunction with the original author to assess tradeoffs. The result is multiple 
versions of the phenotype algorithm, which are (at best) loosely linked together.  This approach is also universally 
available across all of the research networks. We note that while it provides flexibility to implementers (at the tradeoff 
of additional work), it severs provenance to the original phenotype algorithm. This makes subsequent changes by the 
original author difficult or impossible to incorporate automatically, as well as changes from the implementers that 
may be useful to the author and other implementers. 

 
Figure 2. Portability representation model: Four approaches to 
represent computable phenotype algorithms that have been 
executed across multiple sites. 

Criteria 
Relaxation

Multi-Label 
Definitions

Site-Specific 
Customization

Site A Site B

Original 
Phenotype

Unchanged
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Discussion 
Here we have presented a framework of phenotype algorithm portability based on the reported experiences of seven 
research networks. It is comprised of three interlinked models, which together provide researchers and system 
evaluators with a comprehensive framework against which to consider barriers and solutions to the portability of EHR-
based phenotype algorithms. The framework demonstrates that the concept of phenotype algorithm portability is 
multi-faceted, as shown by the number of steps and potential impact points, and by the observation that the approaches 
within each model are not necessarily mutually exclusive within a single network.  For example, within the portability 
tradeoff model, an institution adopting a CDM such as PCORnet may put less up-front investment in the Data domain 
(reducing it compared to other sites), which then would increase Implementation resource needs for that site.  
Similarly, within the portability representation model, multiple approaches may be observed within the same network.  
Within OHDSI, an ATLAS-authored phenotype algorithm may be shared across sites as unchanged, but a SQL script 
written for a specific database vendor may require site-specific customization to port the syntax to another vendor 
system. While in our framework and respective models we consider automation and computability, we note that the 
concept of portability is not dependent on them. For example, several of the research networks that we evaluated 
require the manual review of a phenotype algorithm before it could be executed (driven by that network’s operating 
policies). We recognize that this mandated manual review step impacts how scalable that portability solution is to a 
large number of phenotype algorithms. 
 
Our proposed framework is supported by previous studies reported in the literature, but to our knowledge, no previous 
study has considered all aspects of portability. Our framework supports the ongoing need for localization of phenotype 
algorithms, which was also identified within a previously reported desiderata33. We believe the need for localization 
will remain for the foreseeable future, given the number of disparate CDMs that exist, and the complexities of data 
collection and representation within the EHR34. As CDMs continue to evolve, and as more work is done to harmonize 
CDMs35, that need will lessen. However, previous studies have demonstrated the impact of data heterogeneity on 
phenotype algorithms36, 37, which we believe will be an ongoing issue. Recognizing this, we propose adjusting the 
view of a phenotype algorithm as a single, immutable object.  This view is currently reflected in practice, as 
demonstrated by three of the four approaches in our portability representation model (criteria relaxation, multi-label 
specification, and site-specific customization). No system to date has fully addressed how to represent this in a 
computable way, although we note systems like PheKB provide a communication hub to centralize storing multiple 
site implementations for a phenotype algorithm. 
 
Instead, as more phenotype algorithms are made computable, they should incorporate localization considerations 
centrally, regardless of the approach needed. For example, criteria relaxation allows for a central computable 
definition, as it involves changing a single definition. The inclusion of version tracking (an approach used by 
PCORnet’s ADAPTABLE trial38 and OHDSI28) would also allow tracking changes to the phenotype algorithm as 
criteria are relaxed, and allow documentation of the tradeoff decisions considered over time. The resulting phenotype 
algorithm would then be a single repository with the full history available. For multi-label specification, a computable 
phenotype algorithm should provide a means by which the label may be assigned during authoring, and automatically 
tracked during implementation. This will require adjusting tools and specifications used in the authoring and execution 
processes. We note that within the PhEMA project, work is ongoing to develop a representation that meets these 
requirements. The final approach, site-specific customization, may benefit from lessons learned in version control 
systems for source code management. Based on a single, original phenotype algorithm, implementers may make a 
copy (“branch”) which retains a link back to the original. The implementer may propose changes (via “pull request”) 
or the author may review localized copies of the phenotype algorithm to determine if changes could be incorporated 
into the original definition. 
 
With particular respect to controlled medical vocabularies, a previous review noted the overlap in available terms 
across vocabularies, although no clear rationale was ascertained as to why different vocabularies (with incomplete 
mappings observed in some instances) were used in a phenotype algorithm14. We posit, based on our experiences, that 
this is in part due to the availability of data at a local institution (the Data phase of our proposed model). That is, the 
rules developed or features learned in the creation of a phenotype algorithm are driven by the data collected and 
mapped to an IDR or CDM. While some phenotype algorithm authors do consider the most comprehensive value set 
definition up-front, and CDMs such as OMOP use a prescribed set of vocabularies to obviate the need for 
heterogeneous vocabulary mapping, they are not singular solutions. This further highlights the importance of 
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implementing and evaluating phenotype algorithms at multiple institutions, which will naturally uncover gaps in the 
original definition.  Portability, in turn, becomes a critical consideration. 
 
Although our review primarily considered rules-based phenotype algorithms, similar parallels can be drawn with 
respect to machine learning (ML)-based data-driven algorithms14, 39.  ML-based approaches have demonstrated 
potential to achieve high-throughput phenotyping by learning relevant features of the EHR data (including features 
derived from narrative text), thereby reducing the time to establish a phenotype algorithm as opposed to manually 
curated, expert-driven rules-based phenotype algorithms at each institution40, 41. Additional considerations for 
portability within the phenotype algorithm workflow model would include an expansion of our proposed Translation 
and Execution steps.  This is because collection of a relevant corpus and re-training of the algorithm is needed locally 
before the phenotype algorithm may perform optimally42, 43. For the portability tradeoff model, we believe our 
proposed criteria relaxation and site-specific customization approaches would apply to ML-based phenotypes, as 
features used within the model may be removed (relaxed) from the model for all implementers, or require other local 
changes depending on factors such as data availability.  More recent advances in ML have included the concept of 
“federated learning”44, whereby predictive models may be trained across disparate data sources that are not centrally 
available to the model developer (e.g., to preserve privacy). This has been demonstrated in the healthcare space45, and 
future work in this area will be an important consideration for portable ML-based phenotype algorithms that can 
automate the evolution of phenotype algorithm by iterating through all sites’ data. 
 
We do acknowledge some limitations of this work. Although we are proposing our framework as a global one, we 
recognize that this is not based on a systematic literature review, and is focused on the health and biomedical domain. 
As our reconciliation of the network-specific models was based on multiple permutations, and we reached a saturation 
of new permutations during the review, we do believe the model represents the current state of the field. Similarly, as 
new knowledge is gained within the health and biomedical domain and beyond, the model can (and should) be adjusted 
accordingly.  We also recognize that no evaluation of the reviewed research networks is presented using this 
framework.  In development of the framework, we observed that heterogeneity within each network can and does exist 
(as previously mentioned).  This precluded us from classifying each network as a whole, and instead requires formal 
study within and across the respective networks.  We believe this is important future work to be undertaken, but was 
outside of the scope of this paper.  Given current knowledge, this model provides health and biomedical informatics 
researchers with a framework by which to formally evaluate and further study aspects of portability of EHR-based 
phenotype algorithms. 
 
Conclusion 
Based on a review of seven multi-site research networks, we have identified multiple steps and considerations that 
impact how an EHR-based phenotype algorithm may be made portable. We have provided a more comprehensive 
definition of phenotype algorithm portability by proposing a framework with eight steps across three domains (Data, 
Authoring, Implementation). Within these domains, we have also identified and illustrated how optimizing one can 
result in more or less effort required in another, and how multiple representations for portable phenotype algorithms 
have been used. We believe this framework will help guide future research in the area of phenotype algorithm 
portability. 
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